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Abstract: Oxidative stress promotes pupation in some holometabolous insects. The levels of super-
oxide, a reactive oxygen species (ROS), are increased and superoxide dismutase 1 (BmSod1) and
superoxide dismutase 2 (BmSod2) are decreased during metamorphic events in silkworm (Bombyx
mori). These observations strongly suggest that pupation is initiated by oxidative stress via the
down-regulation of BmSod1 and BmSod2. However, the molecular mechanisms underlying ROS
production during metamorphic events in silkworm remain unknown. To investigate these molecular
mechanisms, the peripheral proteins of BmSod1 and BmSod2 were identified and characterized
using dry and wet approaches in this study. Based on the results, silkworm heat shock protein 60
(BmHsp60) was identified as an interacting partner of BmSod2, which belongs to the Fe/MnSOD
family. Furthermore, the present study results showed that BmHsp60 mRNA expression levels were
increased in response to oxidative stress caused by ultraviolet radiation and that BmHsp60 protein
levels (but not mRNA levels) were decreased during metamorphic events, which are regulated
by the molting hormone 20-hydroxyecdysone. These findings improve our understanding of the
mechanisms by which holometabolous insects control ROS during metamorphosis.

Keywords: reactive oxygen species; superoxide dismutase 2; heat shock protein 60; oxidative stress;
insect; metamorphosis; pupation

1. Introduction

Reactive oxygen species (ROS) are constantly generated in all aerobic biological
systems as the natural products of oxidative metabolism and are produced by tissues and
cells in response to environmental stress, extreme temperatures, and chemical agents. ROS
are toxic due to their high reactivity, causing oxidative damage to proteins, lipids, and
nucleic acids. Moreover, they are related to aging and lifespan [1].

Despite this toxicity, ROS are necessary for normal development in holometabolous
insects. Several insect studies have revealed the relationship between ROS generation in
response to environmental oxidative stress and developmental processes. For example,
hypoxic stress promotes wandering during pupation in the tobacco hornworm (Manduca
sexta) [2]. The administration of isosorbide dinitrate, a NO donor, to the beetle Homoderus
mellyi Parry rapidly promotes the process of pupation [3]. Therefore, ROS generation in
response to environmental oxidative stress seems to be closely associated with the initiation
of metamorphic events in insects.

Superoxide dismutase (SOD) is a metalloprotein that scavenges superoxide (O2
−) and

converts it into hydrogen peroxide (H2O2) and dioxygen (O2) [4]. Three kinds of SOD are
present in eukaryotes. SOD1 and SOD3 bind to copper and zinc ions at their active sites,
while SOD2 binds to manganese or iron ions. SOD1 is mainly localized in the cytosol, while
SOD2 is localized in the mitochondria. SOD3 is secreted into the extracellular space [5].
Thus, each SOD subtype has distinct roles in the cell.
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Silkworm (Bombyx mori) is utilized as an agricultural model insect owing its well-
characterized genome [6,7]. Silkworm has a much larger body size than Drosophila
melanogaster, and the tissue-specific functions of proteins can be analyzed. SOD1, SOD2, and
SOD3 have been found in silkworm [8–10]. Furthermore, we previously identified four ad-
ditional Sod (BmSod) genes, BmSod4, BmSod5, BmSod6, and BmCcs, in the silkworm genome
and found that all seven BmSod genes differed in tissue specificity and responsiveness to
different types of oxidative stress [11].

With respect to the molecular mechanisms by which oxidative stress induces metamor-
phosis, we have shown that superoxide levels in fat body cells increase during metamorphic
events in silkworm. BmSod1 and BmSod2 mRNA are abundantly expressed in fat bodies,
unlike the other five BmSod genes [11]. Furthermore, we have shown that BmSod1 and
BmSod2 protein expressions in the fat body are downregulated during pupation [12].

Several proteins that interact with mammalian SOD1 and SOD2 have been identi-
fied [13–20]. Understanding the peripheral proteins that interact with BmSod1 and BmSod2
can provide important insight into the molecular mechanisms underlying the effects of
ROS production on metamorphic events in silkworm. The results in this study show
that silkworm heat shock protein 60 (BmHsp60) is an interacting partner of BmSod2, and
BmHsp60 expression at the mRNA and protein levels in response to oxidative stress is
caused by UV irradiation and during metamorphic events in the silkworm fat body. These
results suggest the possibility that BmHsp60–BmSod2 protein interactions contribute to
the normal development of holometabolous insects.

2. Materials and Methods
2.1. Insect

The B. mori hybrid strain Kinshu × Showa supplied by Ueda-Sha Co. Ltd. (Nagano,
Japan) was used in all experiments. Silkworm larvae were reared on the artificial diet
Silkmate 2S (Nosan, Tsukuba, Japan). Insects were maintained at 25 ◦C with a 12 h
light/dark cycle.

2.2. The Molting Hormone Injection into Larvae

The molting hormone, 20-hydroxyecdysone (20E), was purchased from Sigma-Aldrich
(St. Louis, MO, USA) and dissolved in 10% isopropanol (Wako Pure Chemical Industries,
Ltd., Osaka, Japan) to make a 1 mg/mL stock solution. The 1 mg/mL stock solution of 20E
was adjusted to 5, 10, 20, 50, 100, or 200µg/mL with 10% isopropanol, and 50µL of each
diluted solution was injected into the hemocoel of day 4 fifth instar larvae. Thus, the final
concentrations for the injections were 0.25, 0.50, 1.0, 2.5, 5.0, or 10µg/larva. The control
larvae were injected with 50µL of 10% isopropanol. After 24 or 48 h, the fat bodies were
dissected from the larvae in each group.

2.3. Tissue Culture

Fat bodies were dissected from day 4 fifth instar larvae sterilized using ethanol for
10 min. The dissected fat bodies were washed using PBS and incubated in 1.8 mL/tissue
Grace’s insect medium (Thermo Fisher Scientific, Inc., Waltham, MA, USA) on a 6-well
plate. Subsequently, 20E (Sigma-Aldrich) was added to the wells at final concentrations of
2.5, 5.0, or 10 µM. The control tissue was treated with only 10% isopropanol. After 24 or
48 h, the fat bodies were collected for downstream experiments.

2.4. UV Irradiation of Larvae

UV irradiation of larvae was performed according to previously described meth-
ods [21].

2.5. Immunoblotting

Fat body samples were collected from four individual larvae. To prepare protein
extracts, the fat bodies were homogenized with a lysis buffer composed of 10 mM Tris-HCl
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at pH 7.5 and 130 mM NaCl and supplemented with a protease inhibitor cocktail (Sigma-
Aldrich). The protein extracts were centrifuged at 15,000× g for 30 min at 4 ◦C. The protein
concentration was determined using a BCA Protein Assay Kit (Thermo Fisher Scientific,
Inc.).

To detect BmHsp60, protein samples (5µg) were separated by SDS-PAGE and trans-
ferred to nitrocellulose membranes (Bio-Rad Laboratories, Inc., Hercules, CA, USA) using
the method described by Towbin et al. [22]. The membranes were incubated in blocking
buffer composed of 5% non-fat dry milk and PBS, including 0.1% Tween 20 (PBS-T) for 1 h
at 25 ◦C, then incubated in an anti-HSP60 antibody (sc-1052; Santa Cruz Biotechnology,
Inc., Dallas, TX, USA) at a dilution of 1:5000 in blocking buffer overnight, followed by
washing with PBS-T for 10 min three times. The washed membranes were incubated with
goat anti-goat IgG-conjugated horseradish peroxidase (HRP) (sc-2020; Santa Cruz Biotech-
nology, Inc., Santa Cruz, CA, USA) at a dilution of 1:2000 in blocking buffer for 1 h at 25 ◦C
and then washed with PBS-T for 10 min three times. The membranes were developed
using a chemiluminescent substrate (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and
detected with Amersham Hyperfilm ECL (GE Healthcare Co. Ltd., Buckinghamshire, UK).
Immunoblotting was performed in three biological replicates.

Antibodies were stripped by incubating the membranes at 50 ◦C for 30 min in strip-
ping buffer composed of 62.5 mM Tris-HCl pH 6.8, 2% SDS, and 100 mM 2-mercaptoethanol.
Subsequently, these membranes were processed for relabeling with an anti-actin antibody
(ab1801; Abcam, Cambridge, UK) at a dilution of 1:1000. The band intensity was an-
alyzed using ImageJ version 1.51s through Fiji version 1.0 (http://fiji.sc/; accessed on
31 July 2021). The expression levels of BmHsp60 were normalized against that of BmActin
as an endogenous control. Antibody specificity has been confirmed in previous stud-
ies [12,23].

2.6. Co-Immunoprecipitation Assay

Frozen day 4 fifth instar larval fat bodies (0.43 g) were homogenized with a lysis
solution composed of 20 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% TritonX-100 (Sigma-
Aldrich), and protease inhibitor (Sigma-Aldrich) using a Potter Elvehjem Homogenizer.
The solution was incubated for 1 h and then centrifuged at 15,000× g for 20 min.

Then, 100 µL of Protein G Sepharose 4 Fast Flow (GE Healthcare Co. Ltd.) was
centrifuged at 12,000× g for 1 min, and the supernatant was discarded. To wash the Protein
G Sepharose, 500 µL of 1 mg/mL BSA (Nacalai Tesque, Kyoto, Japan) diluted in lysis buffer
was added to the pellet, and the supernatant was discarded. The wash step was performed
three times. Then, 50 µL of 1 mg/mL BSA solution was added to the washed pellet to
obtain 100 µL of 50% slurry. To wash the homogenized solution using Protein G Sepharose,
50 µL of 50% slurry was added to 1 mL of homogenized solution, incubated for 1 h at 4 ◦C,
and centrifuged at 12,000× g for 1 min.

Aliquots of 5 µL of anti-BmSod1 antiserum or anti-BmSod2 antiserum were added
to 500 µL of the washed and homogenized solution and incubated for 4 h at 4 ◦C. Then,
50 µL of 50% slurry was added to the homogenized solution with the antibody, incubated
for 2 h at 4 ◦C, and centrifuged at 12,000× g for 1 min. The pellet was washed using a
lysis buffer three times and using wash buffer composed of 20 mM Tris-HCl (pH 7.6) and
150 mM NaCl. Then, 30 µL of 5× sample buffer including bromophenol blue was added to
the washed pellet, incubated for 3 min at 95 ◦C, and centrifuged at 12,000× g for 1 min.
The supernatant (5 µL) was used for immunoblotting, as described above. The antibodies
or antiserum used for immunoblotting after the co-immunoprecipitation assay are shown
in Supplementary Table S1. Antibody and antiserum specificity has been confirmed in
previous studies [12,23].

http://fiji.sc/
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2.7. RNA Purification and qRT-PCR

Fat body samples were weighed, homogenized with lysis buffer using a PureLink®

RNA Extraction Kit (Thermo Fisher Scientific, Inc.), and centrifuged at 13,000× g for 10 min.
Next, the supernatants were collected and processed for RNA purification, according to
the manufacturer’s instructions. Purified total RNA (1µg) was processed for quantitative
RT-PCR (qRT-PCR).

One-step RT-PCR was performed using reaction volumes of 20µL with 1µg of RNA
template and custom-made primers and probes (Supplementary Table S2) from the TaqMan
RNA-to-CT 1-Step Kit (Thermo Fisher Scientific, Inc.), in accordance with the manufac-
turer’s instructions. qRT-PCR was performed on a Step One Plus Real-Time PCR System
(Thermo Fisher Scientific, Inc.) following the ∆∆Ct method. Further, 18S ribosomal RNA
(GeneID: 84310305) was used as an endogenous reference for the standardization of mRNA
expression levels, and all data were calibrated against universal reference data. Relative
quantification (RQ) values represent the relative expression level against a reference sample.
All samples were assayed in triplicate as technical replications.

2.8. RNA-Seq Analysis of Public Data

RNA-Seq data (DRP003401) were downloaded from NCBI SRA (https://trace.ncbi.
nlm.nih.gov/Traces/sra/; accessed on 31 July 2021), including data for five tissues de-
rived from fifth instar silkworm larvae. The public data were based on 15 experiments
consisting of 3 biological replicates per tissue. The data quality in the fastq files was veri-
fied using the fastqc tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/;
accessed on 31 July 2021). Read trimming was performed using trimmomatic version 0.36
(http://www.usadellab.org/cms/?page=trimmomatic; accessed on 31 July 2021) [24]
with the Illumina TruSeq adapter removal process (2:30:10) and the following options:
LEADING:20, TRAILING:20, SLIDINGWINDOW:4:20, and MINLEN:25. Trimmed reads
were mapped to the reference silkworm genome available in SilkBase (http://silkbase.
ab.a.u-tokyo.ac.jp/cgi-bin/index.cgi; accessed on 31 July 2021) using hisat2 version 2.2.1
(http://daehwankimlab.github.io/hisat2/; accessed on 31 July 2021) [25] with default pa-
rameters. Bam files were used as inputs to featureCounts version 2.0.1 (http://subread.
sourceforge.net/; accessed on 31 July 2021) [26] to generate read count data, which were
converted into transcripts per million (TPM). Finally, TPM values were converted to
log2(TPM + 1).

2.9. WGCNA and Network Construction

Cellular localization was predicted using DeepLoc-1.0 (http://www.cbs.dtu.dk/
services/DeepLoc/; accessed on 31 July 2021) with protein sequences predicted by the
gene model for silkworm available in SilkBase (http://silkbase.ab.a.u-tokyo.ac.jp/cgi-bin/
index.cgi; accessed on 31 July 2021). Then, genes encoding proteins predicted to be localized
in the cytoplasm or mitochondria were independently extracted from the final output file
from the RNA-Seq analysis. The extracted files were used as the input files for a weighted
correlation network analysis (WGCNA). WGCNA was performed using the WGCNA
package version 1.69 (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/
Rpackages/WGCNA/; accessed on 31 July 2021) [27] in R version 4.0.3. The genes encod-
ing proteins predicted to be localized in the cytoplasm or mitochondria were independently
inputted to WGCNA. Proper soft-thresholding powers were chosen using the pickSoft-
Threshold function with power values ranging from 1 to 20. The lowest power values
for which the scale-free topology fit index reached 0.80 were chosen. The power values
were 13 and 9 for genes encoding proteins predicted to be localized in the cytoplasm and
mitochondria, respectively. Then, adjacencies were calculated with the soft thresholding
power set to 13 or 9 using the adjacency function. To minimize the effects of noise and
spurious associations, adjacencies were transformed into topological overlap matrix (TOM),
and the corresponding dissimilarity (TOMdiss) was calculated using the following equation:
TOMdiss = 1 − TOM. To produce a hierarchical clustering tree (dendrogram) of genes, the
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hclust function was used with TOMdiss. To identify modules, the cutreeDynamic function
was used with the following options: deepSplit = 2 and minClusterSize = 30. Then, numeric
labels for each module were converted to colors using the labels2colors function. Finally,
figures were generated using the plotDendroAndColors function.

To find genes co-expressed with BmSod1 or BmSod2, gene networks were constructed
using Cytoscape version 3.8.1 (https://cytoscape.org/; accessed on 31 July 2021). Mod-
ules for BmSod1 or BmSod2 were independently identified and imported to exportNet-
workToCytoscape with threshold 0.3 to generate the input file for Cytoscape. Gene
annotation was performed using an annotation file available from SilkDB 3.0 (https:
//silkdb.bioinfotoolkits.net/base/download/-1; accessed on 31 July 2021).

2.10. Statistical Analysis

Comparisons were performed by two-tailed Student’s t-tests using Excel (Microsoft,
Redmond, WA, USA). p-values of <0.05 were considered significant.

3. Results
3.1. Gene Co-Expression with BmSod1 or BmSod2

To predict genes that are co-expressed with BmSod1 or BmSod2, a public RNA-Seq
dataset obtained from five tissues derived from silkworm larvae was re-analyzed by
WGCNA. Previously, we have shown that BmSod1 and BmSod2 are localized in the cytosol
and mitochondria, respectively [12]. Thus, prior to WGCNA, 5077 genes encoding proteins
localized in the cytosol and 1895 genes encoding proteins localized in the mitochondria
were extracted from the gene model in SilkBase using Deeploc. By independent WGCNA,
40 modules based on the genes encoding proteins localized in the cytosol and 14 modules
based on genes encoding proteins localized in mitochondria were identified (Figure 1A,B).
BmSod1 mRNA was clustered into a module composed of 67 genes (shown as white in
Supplementary Figure S1A), and BmSod2 mRNA was clustered into the a module composed
of 104 genes (shown as green in Supplementary Figure S1B). Then, genes directly connected
to BmSod1 mRNA were extracted from the white module shown in Supplementary Figure
S1A, and genes directly connected to BmSod2 mRNA were extracted from the green module
shown in Supplementary Figure S1B. Network construction showed that two genes were
co-expressed with BmSod1 mRNA, and 17 genes were co-expressed with BmSod2 mRNA
(Figure 1C,D). In the BmSod2 mRNA network, BmHsp60 mRNA was identified as a co-
expressed gene (Figure 1D).

3.2. Interaction between BmSod2 and BmHsp60

WGCNA showed that BmHsp60 is co-expressed with BmSod2 mRNA. Next, I inves-
tigated whether the BmHsp60 protein is an interacting partner of BmSod2 in the tissue
lysate of silkworm by a co-immunoprecipitation (co-IP) assay. BmSod1 and BmSod2 pro-
teins were detected by co-IP with anti-BmSod1 antiserum and anti-BmSod2 antiserum,
respectively. BmHsp60 was detected by co-IP with anti-BmSod2 antiserum but not with
anti-BmSod1 antiserum (Figure 2). These results suggest that BmSod2 binds to BmHsp60,
whereas BmSod1 does not bind to BmHsp60.

3.3. BmHsp60 mRNA Is Altered in Response to UV Irradiation in Larvae

BmSod2 responds to oxidative stress caused by UV irradiation [21]. Thus, BmHsp60
expressions at the mRNA and protein levels were examined in the fat body of silkworm
larvae irradiated with UV. Applying UV irradiation at 4.86, 9.72, and 58.32 J/cm2, BmHsp60
mRNA was significantly higher after 9.72 J/cm2 treatment than in non-irradiated con-
trols, while longer exposure periods of 58.32 J/cm2 decreased the expression (Figure 3A).
The protein expression level of BmHsp60 was not drastically affected by UV irradiation
(Figure 3B), although quantification using ImageJ showed that the relative protein expres-
sion increased slightly in response to UV irradiation.

https://cytoscape.org/
https://silkdb.bioinfotoolkits.net/base/download/-1
https://silkdb.bioinfotoolkits.net/base/download/-1
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Figure 1. Gene co-expression analysis based on BmSod1 or BmSod2. (A,B); WGCNA results using
genes encoding proteins predicted to be localized in the cytoplasm (A) or mitochondria (B) as inputs.
In the clustering tree (dendrogram), each leaf (short vertical line) corresponds to a gene. Branches of
the dendrogram show densely interconnected, highly co-expressed genes. Modules were defined
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results using genes encoding proteins predicted to be localized in the cytoplasm (C) or mitochondria
(D) as inputs. Each node indicates a gene. When two nodes are linked by an edge, the two genes
are co-expressed. The length of an edge indicates the weight (i.e., the strength of the connection).
BmHsp60 mRNA is highlighted in red.
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immunoprecipitation, IB; immunoblotting. The predicted molecular weights of BmSod1, BmSod2,
and BmHsp60 are 15.8 kDa, 24.2 kDa, and 60 kDa, respectively [21,23]. According to the predicted
molecular weights, the black arrows indicate proteins.

3.4. Developmental Profile of BmHsp60 in the Fat Bodies from Fourth Instar Larvae to Adults

Increased superoxide levels and decreased BmSod expression in the fat body cells
of silkworms at pre-pupal stages are required to initiate pupation [12]. To investigate
whether the expression of BmHsp60 is involved in molting and pupation, BmHsp60 protein
expression in the fat bodies of fourth instar larvae, fifth instar larvae, pupae, and adults
were examined. BmHsp60 protein expression decreased gradually from early day 3 to late
day 4 fourth instar larvae and were lower than levels on day 1 (Figure 4A). Additionally,
BmHsp60 protein expression decreased from day 7 (fifth instar larvae) to day 8 (pupae) and
was lower than levels in day 0 fifth instar larvae. Thereafter, BmHsp60 protein expression
shows a slight return to initial levels when approaching emergence (Figure 4B). In contrast,
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BmHsp60 mRNA expression did not change drastically from fifth instar larvae to adults
(Supplementary Figure S2).
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Figure 3. Expression of BmHsp60 at the mRNA and protein levels in fat bodies dissected from
silkworms subjected to UV irradiation. (A); BmHsp60 mRNA expression levels in fat bodies pooled
from larvae subjected to UV irradiation at 4.86 J/cm2 (n = 3), 9.72 J/cm2 (n = 3) and 58.32 J/cm2

(n = 4) and in non-irradiated controls (n = 5) are plotted as RQ values. Error bars indicate the relative
minimum/maximum expression levels against mean RQ expression levels. Technical replications
were performed in triplicate. CNT; control (non-irradiated). (B); Fat bodies from UV-irradiated and
non-irradiated (control) larvae were assessed. Aliquots (10 µg) of protein samples from fat bodies
of day 3 fifth instar larvae were separated by SDS-PAGE, transferred to nitrocellulose membranes,
and probed with an anti-HSP60 antibody: non-irradiated (lane 1; CNT), and irradiated at 4.86 J/cm2

(lane 2), 9.72 J/cm2 (lane 3), and 58.32 J/cm2 (lane 4). The band intensity of BmHsp60 was calculated
using ImageJ and normalized against the band intensity of BmActin. The normalized intensities are
shown as percentages.
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Figure 4. BmHsp60 protein expression during development in the fat body. (A); Expression of
BmHsp60 in the fat body from day 1 (fourth instar larvae) to day 4 (fourth instar larvae). Aliquots
(10 µg) of the fat body lysate were separated by 15% SDS-PAGE, transferred to nitrocellulose mem-
branes, and probed with the anti-HSP60 antibody. BmActin was used as an endogenous control.
Expression was quantified at 0 h on day 1 (fourth instar) (day 1E), 0 h on day 2 (fourth instar) (day 2E),
0 h on day 3 (fourth instar) (day 3E), 12 h on day 3 (fourth instar) (day 3L), 0 h on day 4 (fourth instar)
(day 4E), and 12 h on day 4 (fourth instar) (day 4L). The relative expression levels were calculated by
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setting expression on day 1E fourth instar larvae to 1.0. (B); Expression of BmHsp60 in the fat bodies
from day 0 fifth instar larvae to the adult stage. Aliquots (10 µg) of the fat body lysate were separated
by 15% SDS-PAGE, transferred to nitrocellulose membranes, and probed with the BmHsp60 antibody.
BmActin was used as an endogenous control. The relative expression levels were calculated by
setting levels in day 0 fifth instar larvae to 1.0. Ad indicates day 0 of the adult stage. Statistically
significant differences against day 1E (A) or day 0 (B) were determined by Student’s t-test and are
indicated as * p < 0.05 and ** p < 0.01.

3.5. Effect of 20E on the mRNA and Protein Expression of BmHsp60 In Vitro and In Vivo

Insect metamorphosis is promoted by the molting hormone ecdysone, and ecdysone
titers in the hemolymph increase during metamorphic events in insects [28]. Owing to
the importance of ecdysone, the relationship between ecdysone and the expression of
BmHsp60 was assessed. In particular, after treatment with 20E, the active form of ecdysone,
BmHsp60 expression in fat bodies was examined using in vitro and in vivo experiments.
The expression of BmHsp60 mRNA was lower after treatment with 5.0 or 10 µM 20E for
48 h than in the control group (Figure 5A), although BmHsp60 protein expression did not
differ among groups (Figure 5B).
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Figure 5. mRNA and protein expression levels of BmHsp60 in the fat body after 20E treatment. (A,B);
Cultured fat bodies were treated with 0, 2.5, 5.0, 10, or 20 µM 20E for 24 or 48 h. Controls (CNT) were
treated with only 10% isopropanol. mRNA expression of BmHsp60 examined by qRT-PCR after 24 or
48 h is plotted as relative quantification (RQ) values compared with levels in the CNT (A). Error bars
indicate relative minimum/maximum expression levels against mean RQ values. 18S rRNA was
used as the endogenous control. Expression of BmHsp60 was examined by immunoblotting after 24
or 48 h (B). Aliquots (5 µg) of the fat body lysate samples were separated by 15% SDS-PAGE and
immunoblotted. BmActin was used as an endogenous control. The band intensity of BmHsp60 was
calculated using ImageJ and normalized against the band intensity of BmActin; relative expression
levels compared with CNT levels are plotted. Error bars indicate SD (n = 12). (C,D); Day 4 fifth instar
larvae were treated with 0, 0.25, 0.50, 1.0, 2.5, 5.0, or 10 µg/larva 20E, and fat bodies were dissected
after 24 or 48 h. Controls (CNT) were injected with only 10% isopropanol. mRNA expression levels
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of BmHsp60 examined by qRT-PCR after 24 or 48 h are plotted as relative quantification (RQ) values
compared with levels in the CNT (C). Error bars indicate relative minimum/maximum expression
levels against mean RQ values. 18S rRNA was used as the endogenous control. BmHsp60 expression
was examined by immunoblotting after 24 or 48 h (D). Aliquots (5 µg) of the fat body lysate samples
were separated by 15% SDS-PAGE and immunoblotted. BmActin was used as an endogenous control.
The band intensity of BmHsp60 was calculated using ImageJ and normalized against the band
intensity of BmActin. Relative expression levels compared with CNT levels are plotted. Error bars
indicate SD (n = 12). ** p < 0.01; and *** p < 0.001.

After 20E injection into silkworm larvae, the mRNA expression of BmHsp60 did not
change (Figure 5C). The BmHsp60 protein level decreased significantly 48 h after the
injection of 2.5, 5.0, and 10 µg/larva 20E (Figure 5D).

4. Discussion

In this study, BmHsp60 was identified as an interacting partner of BmSod2 using
dry and wet approaches. Hsp is a family of proteins that act as molecular chaperones.
Hsp60, also called chaperonin, is a ubiquitous molecular chaperone with an important
role in protein folding [29]. BmHsp60 is expressed in various tissues and through all
developmental stages of silkworm, and both BmHsp60 and BmSod2 are localized in the
mitochondria of silkworm fat body cells [12,23]. These results suggest that BmHsp60
functions as a molecular chaperone for BmSod2.

Next, the protective effect of Hsp60 against oxidative stress was examined in silk-
worm larvae subjected to UV irradiation. The expression of BmHsp60 mRNA increased in
response to 9.72 J/cm2 treatment, indicating that BmHsp60 mRNA responds to oxidative
stress caused by UV irradiation. However, the expression after 58.32 J/cm2 irradiation was
lower than that after 9.72 J/cm2 irradiation. The antioxidant system of organisms may be
unable to remove significant amounts of ROS produced under harsh environmental condi-
tions [30,31]. In other insect species, excessive UV irradiation decreases Sod activity and its
mRNA expression [31–33]. Therefore, excessive UV irradiation might decrease BmHsp60
mRNA expression or promote its degradation. Additionally, BmHsp60 protein level was
not drastically affected by UV irradiation and a discrepancy between mRNA and protein
levels were observed in the UV irradiation experiment. Genome-wide correlations between
mRNA and protein expression levels are weak, and this discrepancy can be attributed
to post-transcriptional and post-translational regulation and protein degradation [34–37].
Thus, the discrepancy in the response to UV irradiation is presumed to be a consequence
of similar regulatory processes. In addition, the expression after 4.82 J/cm2 irradiation was
lower than that after 9.72 J/cm2 irradiation. BmSod mRNAs with increased or decreased
expressions have been observed with lower doses of UV irradiation, suggesting that the
responsive ability of BmSod to different types of UV irradiation doses differs [11]. Therefore,
the expression of BmHsp60 mRNA might also be regulated depending on the UV irradiation
dose.

Subsequently, the developmental expression profile of BmHsp60 was investigated
in the fat bodies of silkworm larvae. The expression of BmHsp60 decreased from day 3
(fourth instar larvae) to day 4 (fourth instar larvae) and from day 7 (fifth instar larvae) to
day 8 (pupae). BmSod2 protein expression decreases from the pre-pupal to early pupal
stages, whereas superoxide levels increase over the same period. Furthermore, decreased
BmSod2 protein expression is required for silkworm pupation [12]. The developmental
expression pattern of BmHsp60 observed in this study was highly consistent with the
previously reported pattern of BmSod2 protein expression. Therefore, ROS levels in the fat
body during metamorphic events might be increased via decreases in both BmHsp60 and
BmSod2 expression levels, and decreased BmHsp60 expression might also be necessary for
silkworm pupation, in addition to BmSod2.

Because the decrease in Hsp60 protein expression occurs before molting or pupation,
corresponding to an increase in the secretion of ecdysone into the hemolymph, I next
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investigated whether ecdysone regulates the expression of BmHsp60 during metamorphic
events in silkworm. The injection of 20E into silkworm larvae decreased BmHsp60 pro-
tein expression in the fat bodies, whereas BmHsp60 mRNA expression was not affected.
This result is consistent with the developmental profile of BmHsp60 protein and mRNA
expression. Furthermore, public RNA-Seq data including data for BmE cells treated with
20E were re-analyzed. BmE is a cell line derived from embryonic cells of silkworm. In
this analysis, BmHsp60 mRNA levels were not affected by 20E, although BmE75 mRNA,
known as a 20E responsive gene [38], increased in response to 20E treatment (Supplemen-
tary Figure S3). As mentioned above, this discrepancy can also likely be attributed to
post-transcriptional and post-translational regulation and protein degradation. In contrast
to in vivo results, 20E treatment in cultured fat bodies did not affect protein expression.
These results suggest that post-transcriptional and post-translational regulation and protein
degradation affected BmHsp60 protein expression during development, and the decrease
in BmHsp60 protein expression occurred in a non-cell autonomous manner or required
additional factors, beyond 20E, in the hemolymph of silkworm larvae.

A mammalian study has shown that SOD2 is a substrate of the HSP60 folding ma-
chinery, and the heterozygous knockout of Hsp60 results in increased oxidative stress and
decreased SOD2 activity in neuronal tissues [39]. Therefore, the present study results
suggest that Hsp60–Sod2 interaction is highly conserved in insects and mammals and that
BmSod2 activity might be positively regulated by BmHsp60. In addition, D. melanogaster
Hsp60 is increased by exposure to paraquat, a generator of ROS [40–42]. Therefore, Hsp60
might be necessary for defense systems against oxidative stress in various organisms.

To investigate the physiological role of decreased BmSod proteins in the fat body, RNA
interference (RNAi) experiments were performed in this study. However, BmSod1 and
BmSod2 protein expression was not decreased by two double stranded RNAs (dsRNAs)
targeting each BmSod gene (Supplementary Figure S4A–C, Table S3), even though the
injected dsRNA amounts were 30 µg/larva, which is a very high dose compared with
that used in the successful RNAi experiments of previous studies [43]. The RNA-Seq
data showed that BmSod1 and BmSod2 mRNA were abundantly expressed in the fat body
compared to that with the target mRNAs in the successful RNAi experiments of previous
studies [44–46] (Supplementary Figure S5). It seems that the reason for this was the
abundance of each BmSod mRNA. BmHsp60 mRNA was abundantly expressed in the fat
body compared with BmSod2 mRNA (Supplementary Figure S5). Thus, RNAi experiments
for BmHsp60 knockdown were very difficult in this study.

To address this problem, RNAi experiments using D. melanogaster are useful. In
D. melanogaster, highly controlled gene knock-down at specific time points can be achieved
using the GAL4-upstream activating sequence system with a temperature-sensitive variant
of GAL80 [47]. Accordingly, in the future, further analyses of the effects of Hsp60 in
Drosophila are needed to investigate its physiological role.

5. Conclusions

In this study, BmHsp60 was identified as an interacting partner of BmSod2, and its
mRNA expression was altered in response to oxidative stress caused by UV irradiation.
Furthermore, the expression pattern of BmHsp60 during silkworm development was
highly consistent with that of BmSod2 [12] and was regulated by 20E. These results suggest
the possibility that, during feeding stages, BmHsp60 and BmSod2 both contribute to the
removal of ROS produced in response to internal and external oxidative stress, and their
expression levels decrease via 20E to generate ROS required for metamorphosis. These
findings improve our understanding of biological defense systems against environmental
oxidative stress and the roles of ROS in the development of holometabolous insects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10091385/s1, Figure S1: Gene counts for each module for genes encoding proteins
predicted to be localized in the cytoplasm (A) or mitochondria (B). Figure S2: Expression patterns of
BmHsp60 mRNA at various developmental stages as determined by RT-PCR. Figure S3: Differentially
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expressed genes in BmE cells treated with 20E or DMSO. Figure S4: RNAi experiments targeting
BmSod1 and BmSod2 in the fat body of 5th instar larvae of silkworm. Figure S5: Expression level of
BmSod1, BmSod2, and BmpHsp60 mRNA in the fat body. Table S1: Catalog number, host, and dilution
for each antibody and antiserum used for immunoblotting after co-IP. Table S2: Probes and primer
sets used for qRT-PCR. Table S3: Primer sets used for RNAi experiments.
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