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Abstract: Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a
critical role in regulating their physiological functions. Disturbance of balance between generation
and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac
myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain,
NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms.
Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by
ROS under physiological and pathological conditions, thereby producing alterations in contraction,
membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under
hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for
stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced
pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants,
enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility
and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review
may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and
natural antioxidants.

Keywords: cardiac Ca2+ signaling; ROS; natural antioxidants; mitochondria; cardiac pathogene-
sis cardioprotective

1. Introduction

Antioxidants are substances that can prevent or slow damage to cells caused by free
radicals, unstable molecules that the body produces as a reaction to environmental changes
and other stresses. Representative free radicals, endogenously produced by our body, are
reactive oxygen species (ROS) and reactive nitrogen species (RNS). A balance between free
radicals and antioxidants is necessary for normal physiological function. An unbalanced
increase of free radical level adversely alters lipid bilayers, proteins, and DNA and causes
many human diseases, including cardiac diseases. Recent evidence additionally shows that
ROS and RNS act as ubiquitous intracellular messengers and conduct redox signaling [1–4].
The present review provides an overview of ROS regulations in cardiac myocytes and
their effects on Ca2+-signaling proteins and ion transporters/channels that are critical for
cardiac rhythm and contraction. In addition, we describe alterations of ROS regulatory
mechanisms and their impact on cardiac myocytes under cardiac diseases and natural
antioxidants in foods and herbs, which modulate cardiac muscle functions, its pathological
remodeling and apoptosis. This review may provide an insight on their potential use
to prevent and treat heart failure (HF), ischemia-reperfusion (I–R)-mediated cardiac cell
apoptosis, hypertrophic growth and arrhythmias.
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2. Oxidative Stress and Endogenous Antioxidants in Cardiac Muscle
2.1. Cardiac Oxidative Stress and Its Role in Ischemic Injury

ROS are a group of chemical species that comprise at least one oxygen atom in each
molecule and display stronger reactivity than molecular oxygen. ROS are classified into
free radicals with an unpaired electron (e.g., O2

•− and OH•) and non-radical derivatives
(e.g., H2O2) [5]. The representative RNS is •NO that plays a central role in cardiovascular
signaling. Homeostasis of ROS level is required to establish the redox balance of the cell.
Excess ROS or fewer antioxidants cause oxidative stress and harmful effects. Potential
sources of ROS include the mitochondrial electron transport chain, xanthine oxidase,
cytochrome P450-based enzymes and NADPH oxidase (NOX) [5,6]. The bulk of ATP in
cardiac cells is generated by oxidative metabolism, which is the sequential passage of
electrons from high to low redox potentials down the electron transport chain composed
of complexes I to IV [6]. This process results in the active pumping of H+ out of the
mitochondrial matrix into the intermembranous space. Electrochemical gradient across the
inner mitochondrial membrane is then established by the translocation of a proton from
the intermembrane space through the Fo/F1 ATPase back into the mitochondrial matrix.
This proton translocation is coupled to the phosphorylation of ADP to generate ATP [6].
During this process, O2

•− are produced via complexes I and III.
The progression of HF, as well as its complications, involves significant mitochon-

drial remodeling, including Ca2+ regulation, ROS or RNS generation, and energy produc-
tion [6–9]. In HF, subpopulations of mitochondria around the cell periphery are primarily
affected, while interfibrillar mitochondria are less affected [10]. Under pathological condi-
tions, ROS can trigger a burst of ROS production by mitochondria that can lead to apoptotic
cell death and inflammatory response. For example, during reperfusion of the ischemic
heart, a burst of ROS formation occurs [11–13]. Extracellular stimuli, such as stretch,
shear stress and angiotensin II (ANG II), often produce O2

•− via a membrane-associated
NOX [14–17]. NOX family has seven members, NOX1, NOX2, NOX3, NOX4, NOx5, dual
oxidase 1 and dual oxidase 2. However, only the NOX1, NOX2, and NOX4 isoforms
are expressed in the heart, NOX2 being the predominant isoform in the adult cardiac
myocytes [18]. NOX2 is localized in the t-tubules of cardiac muscles, which makes it an
important regulator of Ca2+ signaling at the dyads [19]. It is well-recognized that a higher
level of ROS causes oxidative stress in ANG II-associated cardiovascular diseases through
activation of NOXs [16,17], mitochondrial dysfunction [20–23], inflammation [23–27] and
the decrease of endogenous antioxidant enzymes [28,29]. Nitrogen oxide synthase (NOS)
also contributes to ANG II-related pathological conditions, such as hypertension, atheroscle-
rosis, and diabetes [30] and to stretch signaling in cardiac myocytes [31].

ROS plays a significant role in the pathogenesis of myocardial infarction (MI) and
post-MI remodeling in mice [32]. The ROS-mediated nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) activation can trigger inflammation and damage
through upregulating tumor necrosis factor-α (TNF-α), Bcl-2-associated X protein (Bax)
and transforming growth factor β1 (TGF-β1) [33]. NOX2 protein levels as well as NF-κB
activity were elevated in cardiac myocytes after acute MI in the infracted area [33,34],
supporting that NF-κB is involved in the downstream pathway of ROS. This mechanism
may lead to cardiac remodeling. Under myocardial injury, Toll-like receptor 4 (TLR4) is acti-
vated, which mediates the inflammatory response [35]. TLR-4 activation requires complex
formation with myeloid differentiation protein 2 (MD2). The complex engages with the
myeloid differentiation factor 88 adaptor protein (MyD88), which triggers receptor com-
plex interaction with TNF receptor-associated factor 6 (TRAF6) and transforming growth
factor-activated kinase 1 (TAK1) [36]. This signaling results in the downregulation of the
inhibitor of NF-κB, which further triggers the NF-κB to induce many inflammation media-
tors [37]. Evidence also suggests that I-R injury in the heart involves necroptosis, a form
of programmed necrosis that can be observed downstream of death receptor and pattern
recognition receptor signaling under a certain context and triggers inflammatory responses.
Necroptosis is known to be triggered by activation of the receptor-interacting protein ki-
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nases (RIPK) [38]. Zhu et al. [39] have shown that the RIPK3 is induced in cardiomyocytes
with lipopolysaccharide and H2O2 treatment and in I-R-injury. The induced-RIPK3 repre-
senting endoplasmic reticulum (ER) stress leads to cardiomyocyte necroptosis through the
increase of intracellular Ca2+ level and xanthine oxidase expression. Under these condi-
tions, xanthine oxidase increases cellular ROS and involves mitochondrial permeability
transition pore (mPTP) opening [39].

2.2. Antioxidant Defense Systems

Intracellular ROS levels are held in check by an intricate array of antioxidant defense
systems. Impairment in these defenses and ROS scavenging can also lead to cardiac dys-
function [31,40–45]. There are enzymatic antioxidants and a nonenzymatic protection
system. The enzymes include catalase, glutathione peroxidase (GSHPx), superoxide dismu-
tase (SOD), and glutaredoxins (Grxs); nonenzymatic antioxidants include vitamins E and
C, β-carotene, ubiquinone, lipoic acid, urate, and reduced glutathione (GSH) [46–48]. GSH
acts as a scavenger of electrophilic and oxidant species either in a direct way or through en-
zymatic catalysis. GSH is the cosubstrate of GSHPx and allows the reduction of peroxides
and the production of GSSG [49]. The GSHPx enzyme is highly expressed in the cytoso-
lic and mitochondrial compartments and is an important protection mechanism in the
heart [49]. There are GSH-dependent oxidoreductases that can catalyze S-glutathionylation
and deglutathionylation of proteins to defend SH groups from oxidation and restore func-
tionally active thiols [50]. The thioredoxin (Trx) system composed of NADPH, thioredoxin
reductase (TrxR), and Trx, can provide electrons to thiol-dependent peroxidases (peroxire-
doxins) to remove ROS [51]. Peroxiredoxins, placed in different cellular compartments,
act as molecular chaperones and phospholipase A2 [52]. Many of these antioxidation
pathways are regulated by the transcription factor nuclear factor (erythroid-derived 2)-like
2 (NFE2L2), known as Nrf2 [53,54]. Therefore, Nrf2 exhibits many merits for tissue protec-
tion. Under normal conditions, Kelch-like ECH-associated protein 1 (KEAP1) promotes
ubiquitination and eventual degradation of Nrf2 [55], while under conditions where the
Nrf2-dependent cell defense mechanism is activated, Nrf2 is released from Keap1 and
translocates to the nucleus where it binds to conserved antioxidant response element (ARE)
sequence, which is followed by induction of expression of an array of cytoprotective gene
products, including NAD(P)H quinone oxidoreductase, heme oxygenase-1 (HO-1), GSTs,
and glutamate-cysteine ligase catalytic subunit [53,54].

HO-1, in particular, can be induced by numerous stress conditions [56], and thus
HO-1 induction is thought to be valuable as a pharmacological target. Many studies have
demonstrated the role of HO-1 as an endogenous defense mechanism against cellular injury.
The beneficial effect of HO-1 induction on oxidative stress or inflammation is associated
with catalyzing the rate-limiting step in the degradation of heme group with its products,
ferrous iron (Fe2+), carbon monoxide (CO), and biliverdin, which is converted to bilirubin
by the biliverdin reductase [57–61]. Excess heme contributes to free radical formation and
increases cell damage due to its oxidative and inflammatory properties [62]. It is shown
that biliverdin and bilirubin efficiently scavenge chemically generated peroxyl radicals
at micromolar concentrations and decrease the peroxidation of low-density lipoproteins
in vitro [63–65]. Intracellular CO alleviates oxidative damage by modulating mitochondrial
function [66].

Pyruvate (2-oxopropanoate), a natural aliphatic carbohydrate produced in cytosol by
glycolysis or lactate oxidation, has the capacity to enhance NADPH production and con-
tributes to the glutathione redox state. In fact, this effect increases sarcoplasmic reticulum
(SR) Ca2+ release [40]. It also has a beneficial effect to regenerate β-adrenergic signaling of
ischemically stunned myocardium [40]. It is also known that pyruvate suppresses inflam-
mation in the post-ischemic myocardium by decreasing Ca2+ dysregulation and oxidative
stress [40]. It has been suggested that infusion of highly concentrated pyruvate solutions
improves cardiac mechanical performance and protects the myocardium from ischemic
injury [40].
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3. Regulation of Cardiac Ca2+ Signaling by Mitochondria and ROS in Health
and Disease

3.1. Interaction between Cytosolic Ca2+ Signal and Mitochondria

Contraction of cardiac myocytes is elicited by a transient increase in intracellular
Ca2+ upon action potential firing. This Ca2+ increase is caused by a sequence of events
(“excitation-contraction coupling”) that includes L-type Ca2+ current (ICa)-gated opening
of Ca2+ release channels (ryanodine receptors, RyRs) and the release of Ca2+ from the
SR [67–70]. Laser scanning confocal microscopy has revealed the presence of focal Ca2+

release events from RyR clusters in cardiac myocytes (“Ca2+ sparks”). The Ca2+ sparks are
independent of ICa and voltage and represent unitary properties [71–73], indicating that
they represent the elementary Ca2+ releases for cytosolic Ca2+ increase on depolarizations
in cardiac myocytes [71–75]. Cytosolic Ca2+ is then removed from the cytosol via the SR
Ca2+-ATPase pump (SERCA2) and sarcolemmal Na+–Ca2+ exchanger, and sarcolemmal
Ca2+ pump [76,77].

A large fraction of cell volume (~35%) in cardiac myocytes is occupied by mitochon-
dria [78]. Mitochondria control cellular energy status by regulating O2-consuming ATP
production. Mitochondrial ATP production allows cardiac contractile function and active
transport via the Na+–K+ pump and SR Ca2+ pump. These active transporters are essential
for maintaining ionic gradients for Na+, Ca2+ and K+ through the cell membrane and
organelle membrane. Appropriate Ca2+ handling is also essential in the mitochondrial
oxidative phosphorylation, redox balance [79] and for the production of optimal levels of
ROS [6] and RNS [80]. However, mitochondrial Ca2+ uptake during an action potential has
been thought to be very small (about 1%) in ventricular myocytes [81,82]. Nevertheless, a
small level of Ca2+ taken up by the mitochondria is thought to effectively regulate the oxida-
tive phosphorylation by activating several key enzymes, such as pyruvate dehydrogenase
phosphatase, isocitrate dehydrogenase, and α-ketoglutarate dehydrogenase involved in
ATP production in the mitochondrial matrix [83,84]. However, both increased and reduced
mitochondrial Ca2+ levels have been associated with mitochondrial dysfunction [7].

The kinetics of mitochondrial Ca2+ uptake during action potential and how much
mitochondria contribute to Ca2+ signaling are controversial [85]. However, these organelles
likely interact with each other in the microdomains in the cardiac myocytes because mi-
tochondria are closely localized to the SR membrane and myofibrils [86,87]. The outer
membrane of mitochondria is known to be localized at 37–270 nm away from the SR
RyRs [86]. Mathematical modeling has shown that the concentration of Ca2+ ([Ca2+]) in
the narrow space between the mitochondria and SR could reach 10–300 nM when [Ca2+]
reach 1–2 µM on depolarization [88,89]. Recent experimental evidence supports the role of
mitochondrial Ca2+ handling in the microdomains of cardiac myocytes [88–91]. The outer
mitochondrial membrane does not have much selectivity for ionic movements. However,
the voltage-dependent anion channel (VDAC) 2 in the outer mitochondrial membrane
seems to contribute to the decay of Ca2+ sparks in the vicinity of RyRs and restrict Ca2+

spark expansion in atrial cells under resting conditions [91]. Interestingly, it has been
reported that in atrial myocytes lacking transverse (T)-tubules, that peripheral mitochon-
dria and VDAC are involved in regulating Ca2+ transients [92]. The level of Ca2+ in the
space between mitochondria and SR seems to be enough to drive mitochondrial Ca2+

uptake through the inner mitochondrial membrane transporter or channels [85]. A ma-
jor mechanism for Ca2+ transport across the mitochondrial inner membrane is known
as mitochondrial Ca2+ uniporter [6]. Experimental evidence supports that local Ca2+ re-
leases (sparks) may activate the low-affinity Ca2+ uptake in adjacent mitochondria [90] and
thereby showing local mitochondrial matrix Ca2+ signals (“Ca2+ marks”) [90]. In addition,
the size and duration of Ca2+ sparks become bigger when the inner mitochondrial Ca2+

uptake is inhibited [90]. Ca2+ efflux from cardiac mitochondria occurs via the Na+–Ca2+

exchange (NCXL) [93]. Mitochondrial Na+–Ca2+ exchange has been shown to regulate mi-
tochondrial Ca2+ levels and to connect mitochondrial Ca2+ to intracellular Na+. Therefore,
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increased cytosolic Na+ concentration that occurs during hypertrophy and heart failure is
known to lead to altered redox and metabolism.

3.2. Altered Ca2+-Signaling Proteins by ROS and Their Pathological Significance

Because of the high-energy demands of the heart, mutations in genes that encode
electron transport chain proteins are associated with developing cardiomyopathy [94–96].
In addition, it is not surprising that impairment in the electron transport chain altered
ATP production with subsequent dysregulations of intracellular Ca2+ and increased ROS
generation, as well as redox unbalance [97,98]. Cardiac failure, ischemia, and arrhythmia
are frequently associated with energy decrease and mitochondrial dysfunction [10,99].
Under pathological conditions of high cytosolic Ca2+, mitochondria are capable of taking up
large amounts of Ca2+, which leads to the opening of the mPTP, a large conductance channel
in the inner mitochondrial membrane [100]. The sustained opening of this transition pore
is a trigger for cell death [101]. Then, what could be the cellular and molecular basis for
ROS-mediated deteriorations of cardiac Ca2+ signaling?

In cardiac myocytes, action potential triggers L-type Ca2+ channel opening and initi-
ates Ca2+ signaling (see above). The pore-forming subunit α1C of the L-type Ca2+ channel
contains more than 10 cysteine residues, which can undergo redox modification [102]. Thiol
oxidizing agents are known to decrease the ICa [103,104], although there are controversies
in the effects of different oxidizing agents on the current in different species [105]. NO
enhances ICa redox-dependently or indirectly inhibits its cGMP-dependently [105].

Ca2+ leak through the RyR2 and Ca2+ wave under resting conditions increase in cardiac
myocytes from HF and atrial fibrillation patients [106,107]. Using murine models are
harboring RyR2 mutation that renders the channel leaky (RyR2-S2808D) and a model with
RyR2 channels protected against leak (RyR2-S2808A), Santulli et al. [7] have demonstrated
RyR2-mediated SR Ca2+ leak is associated with increased mitochondrial Ca2+ and ROS
production, and that constitutive cardiac SR Ca2+ leak via RyR2 results in dysmorphic
and malfunctioning mitochondria. In this regard, increasing evidence has demonstrated
that cardiac RyRs also act as a cellular redox sensor because they have rich free thiol
groups in their structure (364 cysteine residues in homotetramer, 21 of which are free
on each subunit) [108–110]. Oxidation of the free thiols has been thought to activate
RyRs in vitro and in situ, and their reductions suppress RyR activity [111–114]. Treatment
of SOD or reducing agents and inhibition of the Complex III in the electron transport
chain decrease not only the cytosolic ROS level but also Ca2+ spark occurrence in cardiac
myocytes [111]. This indicates that basal ROS production and redox balance are responsible
for a significant portion of the spontaneous Ca2+ spark activity. Application of H2O2
exogenously at the concentrations of 50–100 µM markedly enhances Ca2+ sparks [115,116].
At the concentrations of 200 µM–1 mM exogenous H2O2 application increased Ca2+ sparks
and Ca2+ transients transiently for 1–3 min, which were followed by suppressing the
local and global Ca2+ releases in cardiac myocytes [26,117]. Introduction of superoxide by
activating xanthine oxidase also biphasically enhance Ca2+ spark activity for several min,
such that they only transiently enhanced spark occurrence in cardiac myocytes [117,118].

Inositol 1,4,5-trisphosphate receptor (IP3R), another Ca2+ release channel on the SR
membrane, is thought to modulate Ca2+ signaling, although the density of IP3Rs is much
lower than that of RyR2 in cardiac myocytes. In atrial myocytes, they significantly con-
tribute to Ca2+ signaling regulation and arrhythmias [118–120]. It has been reported only
in other cell types, such as hepatocytes and smooth muscle cells, or in vitro system, that
oxidizing agents (e.g., thimerosal or oxidized glutathione) stimulate the IP3-mediated Ca2+

flux [121,122]. It has been shown that cardiac-specific deletion of IP3R2 had no major effect
on mitochondrial fitness in HF [7].

Ca2+ sequestration by SERCA2a in the SR membrane plays a major role in the relax-
ation of cardiac myocytes. SERCA pump contains 25 cysteine residues, but only 1 or 2
are essential for enzyme action [123]. In contrast to the RyR, thiol oxidizing agents inhibit
pump activity, whereas reducing agents protect SERCA from this inhibition [124]. H2O2
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and hydroxyl radicals inactivate cardiac SERCA by interfering with the ATP-binding site
on the SERCA [125]. ROS may also inhibit SERCA activity by peroxidation of membrane
phospholipids [124]. NO does not appear to alter SERCA activity by S-nitrosylation of
cysteine residues [126].

The Na+–Ca2+ exchanger 1, another major pathway of Ca2+ removal and homeostasis
in cardiac myocytes, consists of 9 transmembrane domains. Disulfide bonds between
cysteine residues of different domains of a Na+–Ca2+ exchanger is thought to be important
for its function [127]. Superoxide produced by xanthine/xanthine oxidase reaction, but
not by H2O2 and HOCl, enhanced Na+–Ca2+ exchange-mediated Ca2+ fluxes [128]. ROS
burst during reperfusion of the ischemic heart may enhance Ca2+ influx mode of Na+–Ca2+

exchange by an increase of intracellular Na+, resulting in Ca2+ overload.
Mitochondrial uncoupling using carbonyl cyanide m-chlorophenyl hydrazone (CCCP)

or carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) that disrupt mitochon-
drial inner membrane potential and mimics ischemic conditions depolarizes the mitochon-
drial transmembrane potential, thereby inducing reduced Ca2+ uptake through the inner
mitochondrial Ca2+ uniporter [129,130]. This is caused by the removal of the electrical
gradient for Ca2+ uptake through the mitochondrial membrane. This mitochondrial up-
coupling reduces action potential-induced Ca2+ transients [131,132] and SR Ca2+-loading,
which results in cytosolic Ca2+ increase at diastole and the increased propensity of sponta-
neous Ca2+ waves [132]. It has been shown using confocal measurement with Mg-fluo-4
that intracellular ATP level decreases under such mitochondrial uncoupling [132]. In
addition, ICa has been inhibited by FCCP [132]. These responses can explain mitochondrial
uncoupling-mediated Ca2+ transient decease as well as lower SR Ca2+-loading.

4. Roles of ROS in Cardiac Mechanical Stress Response and Pathogenesis

Changes in the mechanical environment of the heart, caused by each cardiac cycle,
alter cardiac excitation and contraction [133,134]. Such mechanical forces in the heart
include preload, afterload and shear stress. Increased preload enhances cardiac contractility
by Frank-Starling’s law under physiological conditions [133], but high preload makes
cardiac cells be largely stretched. Cardiac chambers become enlarged and dilated in HF,
valve diseases, and chronic hypertension. Therefore, the stretch stimulus is implicated
in developing such diseases. The responses of cardiac myocytes to stretch, including the
stimulation of stretch-activated ion channels, have been well documented [135–137] and
are thought to be an important cellular basis for cardiac remodeling and arrhythmogenesis
under congestive HF [134]. The stretch-dependent changes in the cardiac contraction
force have biphasic properties: first, a rapid and larger increase in force, and second, a
slow increase in force [138,139]. Stretching of the ventricle and atrium is accompanied by
increases in Ca2+ transient amplitude [140–142]. Stretch-induced augmentation of Ca2+

transients may result from enhanced unitary Ca2+ releases in ventricular myocytes. Stretch
is known to activate NOX2 and endothelial isoform of NO synthase (eNOS) activity in the
ventricular cells to produce ROS, thereby increasing Ca2+ spark occurrences [14,31]. Stretch-
induced eNOS activation is known to occur via phosphatidylinositol-3-OH kinase (PI(3)K)-
protein kinase B (Akt) signaling [31]. This signaling is a possible downstream signal of the
ANG II and endothelin-1 [143,144]. There is a controversy on the role of NOS in the stretch-
induced spark enhancement in ventricular myocytes. Some researchers have reported that
the blockades of NOS, stretch-activated ion channel, mitochondrial uncoupling do not
suppress axial stretch-induced spark enhancement in ventricular myocytes [14].

High shear stress, associated with volume overload, mitral regurgitation and increased
afterload, also significantly increased ROS in rat ventricular myocytes through NOX2 [15].
In this shear stress response, a small level of ROS generated via NOX2, in turn, induces
bulk mitochondrial ROS generation, which is distinct from the source of ROS in the stretch
response of ventricular myocytes [14]. The shear-induced ROS generation enhances resting
Ca2+ sparks, depolarization-induced Ca2+ releases, and SR Ca2+-loading. This response also
involves an increase of NOS and Na+–Ca2+ exchanger activity in the prolonged shear stress
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stimulus [15]. It is still unclear how this shear response plays a role in the pathogenesis of
ventricular muscle under pressure- or volume-overload.

In fact, volume- and pressure-overload, associated with hypertension, valvular heart
diseases, and heart failure, are clinically associated with atrial fibrillation [145]. Although
cellular mechanisms for the mechanical signaling in cardiac myocytes and their clear rel-
evance to specific diseases remain to be fully understood, ROS appears to be a common
effector molecule to induce cardiac myocyte remodeling and altered cardiac function. In-
creased afterload in the transverse aortic constriction (TAC) animal model elicited ROS
increase in cardiac cells. The ROS signaling plays a critical role in the alteration of Ca2+

signaling and contractility [146]. Activation of NOX has been suggested as a potential
player in pressure-overload-induced HF. Various roles for individual NOX isoforms have
been reported. In NOX2y/− mice in which pressure overload was induced by TAC, hyper-
trophy of the left ventricle wall was prevented. However, ROS levels in the myocardium of
NOX2y/− mice were increased, which appears to be due to compensation by other NOX
isoforms that depend on p22phox and p47phox [147]. ANG II-induced oxidative stress was
abrogated in NOX2y/− mice, ROS levels were unchanged after TAC in NOX2y/−. Using
cardiac-specific NOX4−/− mice, it was demonstrated that ROS production under baseline
condition is reduced and that after TAC (4 weeks), these mice showed attenuated left ven-
tricular hypertrophy. However, a contrasting finding has been reported using NOX4−/−

mice and a cardiac NOX4 is overexpressing transgenic model. TAC and MI increased
NOX4 expression, but NOX4−/− mice showed larger cardiac dilatation and contractile
dysfunction compared with wild-type (WT) mice, and NOX4 transgenic mice developed
less hypertrophy and fibrosis compared with WT mice [148].

5. Exogenous Natural Antioxidants to Protect Cardiac Muscle from Oxidative Stress
5.1. Flavonoids

Flavonoids are a group of polyphenolic compounds diverse in chemical structure and
characteristics. Flavonoids are classified into four predominant classes, 4-oxoflavonoids
(flavones and flavonols), isoflavones, anthocyanins, and flavan-3-ol derivatives (tannins
and catechin) [149,150]. They are well-known as antioxidants, free radical scavengers, and
chelators of divalent cation [151,152]. SR Ca2+-ATPase pumps are known to be inhibited
by various hydrophobic molecules that can be derived from natural products, such as
thapsigargin [153], curcumin [154], and the flavonoid quercetin [155]. Some flavonoids can
bind to nucleotide-binding sites of the SR Ca2+-ATPase pump and change its activity, which
can result in apoptosis via increased cytosolic Ca2+ level and initiation of Ca2+-dependent
mitochondrial pathway [156].

Catechin [(2R,3S)-3′,4′,5,7-tetrahydroxyflavan-3-ol] has been proven to effectively sup-
press lipid peroxidation and scavenge free radicals [157,158]. Several previous reports have
shown that green tea (Camellia sinensis) containing catechin (specifically epigallocatechin-
3-gallate (EGCG)) has a cardioprotective effect [159,160]. It has been shown that EGCG
protects I-R-induced cardiac myocytes apoptosis by decreasing phosphorylation of STAT-1,
which is a transcription factor involved in the promotion of apoptosis [161,162]. Sheng
et al. [163] have also shown that EGCG inhibits cardiac myocytes apoptosis and oxida-
tive stress in pressure overload-induced hypertrophic hearts [162]. Luteolin (3′, 4′, 5′,
7′-tetrahydroxyflavone), one of the most prevalent flavones, is known to inhibit apoptosis
by upregulating Akt in a simulated I-R model [163]. It also increases Bcl-2 expression and
the Bcl-2 to Bax ratio and reduces Bax expression. The SERCA2a activity has been shown
to be improved by luteolin via the activation of the PI(3)K/Akt signaling pathway with
an increase of phosphorylated Akt. Luteolin does not seem to change the expression of
SERCA2a at the protein level [164]. In adult rat cardiac myocytes, luteolin is known to
improve contractile function and reduce apoptosis after I-R injury [165].

Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one) is one of the
most abundant dietary flavonoids, and it contains a polyphenolic chemical substructure
that prevents oxidation in the oxidative chain reactions by scavenging free radicals, thereby
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preventing inflammation, hypertension and ischemic heart diseases [166,167]. It is known
to protect cardiac myocytes from myocardial injury under doxorubicin treatment. This
substance also reduces ROS generation and increases the endogenous antioxidant enzymes
and non-enzymes (see above) [168]. Santos et al. [169] have shown that quercetin increases
ICa under β-adrenoceptor stimulation and intracellular Ca2+ transient without changing
Ca2+ sparks [112]. Anthocyanins are a water-soluble pigment subgroup mainly found in
flavonoid groups that are ranging from red to blue colors in many kinds of plants, flowers,
and seeds, etc. [169]. The strength of antioxidation among anthocyanins is controlled by
their differences in chemical structure, such as the number and location of conjugation
groups, hydroxyl groups, glycosylation, donor electrons in the ring structure, as well as the
aromatic group’s capacity to sustain the disappearance of electrons [170,171]. Shaughnessy
et al. [172] have shown that systolic blood pressure can be decreased by a blueberry-
enriched diet in spontaneously hypertensive stroke-prone rats [172]. Other previous
studies also have shown that consumption of blueberries-containing food can suppress
hypertension and prevent cardiovascular disease. The blueberries diet has been suggested
to alter aortic contractility via modulation of the NO metabolic pathway. Other reports
suggest that its vasodilator effect is dependent on the endothelium [173–176].

Honey from honeybee (Apis mellifera) contains acacetin and kaempferol that are ef-
fective in the heart. Acacetin (a 4′-O-methylated flavone), a radical scavenging flavonoid,
inhibits ultrarapid delayed rectifier K+ current and prolongs action potential duration
in human atrial myocytes [177]. It also blocks the acetylcholine-activated K+ current
in guinea-pig cardiac myocytes [177]. Based on these mechanisms, acacetin has been
suggested as an atrium-specific anti-atrial-fibrillation agent. It is known that kaempferol,
3,4′,5,7-tetrahydroxyflavone, inhibits endothelial dysfunction and activation, resulting in
reductions of cardiac fibrosis and left ventricular diastolic dysfunction in pathological
condition of ANG II infusion [178]. In addition, this can protect cardiac cell apoptosis
caused by I-R injury [179]. Rutin, also called rutoside and sophorin, is the glycoside com-
bining the flavonol quercetin and the disaccharide rutinose and is a citrus flavonoid found
in tea (Camellia sinensis), buckwheat (Fagopyrum esculentum), tobacco (Nicotiana tabacum)
and stink beans (Parkia speciosa). Rutin has cardioprotective effects under I-R injury and
also decreases cardiac hypertrophy induced by ANG II via attenuating intracellular Ca2+

increase. Rutin is known to upregulate sirtuin 1 in vitro and in vivo [180–182]. It has been
suggested that rutin decreases cardiomyocyte hypertrophy induced by ANG II via the
suppression of an increase of intracellular Ca2+ level [183].

Isorhamnetin, an O-methylated flavonol found in the Chinese herb Hippophae rhamnoides
L., has suppressed cardiac hypertrophy by blocking the PI3K-Akt pathway [184]. In H9c2
cardiac cells, isorhamnetin has been shown to protect I-R injury by decreasing apoptosis
and oxidative stress [185]. In the same cardiac cell line, this compound also has reduced
ROS level, inactivated extracellular signal-regulated kinase (ERK) and inhibited H2O2-
induced intrinsic apoptotic pathway [186]. Rhamnetin (O-methylated flavonol) from spiraea
has cardioprotective effects in miconazole-stimulated H9c2 cardiac cells through ROS
reduction [187] and in ischemia-induced cardiac injury [188]. Similar cardioprotective
effects have been observed with apigenin (4′,5,7-trihydroxyflavone) from the flowers of
chamomile. It has beneficial effects to prevent cardiac cell death under I-R injury through
the PI(3)K-Akt pathway [189]. It suppresses cardiac hypertrophy and downregulates
hypoxia-inducible factors in rats [190].

Baicalein (5,6,7-trihydroxyflavone) from the root of Scutellaria baicalensis Georgi [191]
alleviates E3 ubiquitin–protein kinase (MARCH5) expression to inhibit apoptosis caused
by oxidative stress in cardiac myocytes [192,193]. In addition, it has been reported that it
protects cardiac hypertrophy in mice through initiating autophagy and repressing oxidative
stress [194]. It is shown that baicalein suppresses the lipopolysaccharide-induced NO
production in RAW 264.7 mouse macrophages in vitro [195] and reduced plasma NO
levels leading to improved vasoreactivity, blood pressure, and survival rate in septic
rats [196]. Lee and colleagues investigated the protective effect of baicalein related to HO-1
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against myocardial dysfunction caused by lipopolysaccharide-induced endotoxemia in
rats [197]. According to this study, baicalein seems to improve myocardial contractility in
lipopolysaccharide-induced sepsis, which may be related to reductions in oxidative stress
by induction of HO-1 protein and suppression of superoxide anion formation.

Silymarin, a standardized extract of the milk thistle seeds containing a mixture of
flavonolignans, can decrease abnormal growth of cardiac myocytes via downregulation
of epidermal growth factor [198]. Naringin, a flavanone-7-O-glycoside, contained in Dry-
naria fortune, Citrus aurantium L. and Citrus medica L., is known to protect cardiac my-
ocytes against hyperglycemia-induced injuries in vitro and in vivo [199]. It ameliorates
hypoxia/reoxygenation-induced ER stress-mediated apoptosis in H9c2 cells via activating
transcription factor 6 (ATF6), inositol-requiring enzyme1α (IRE1α) and ERK signaling acti-
vation [200]. A previous report has shown that naringin improves mitochondrial function
and reduces cardiac damage following I-R injury via the AMP-activated protein kinase
(AMPK)-sirtuin 3 signaling pathway [201].

Figure 1 shows a summary on effective substances and mechanisms to decrease
or increase ROS level and functional outcomes of redox unbalance in cardiac myocytes
and heart.

Figure 1. Effective substances and mechanisms to decrease or increase ROS level and functional
outcomes of redox unbalance in cardiac myocytes and heart. Redox unbalances by overproduction of
ROS via fewer antioxidants or excess ROS-producing stimuli may result in dysregulation of Ca2+

signaling and metabolism (“functional outcomes”) and are associated with the pathogenesis of
cardiac diseases. ETC., electron transport chain; NCX, Na+–Ca2+ exchanger; XO, xanthine oxidase.

5.2. Non-Flavonoids

N-acetylcysteine (NAC) is a popular antioxidant that possesses a sulfhydryl group,
which acts as a source of cysteine to glutathione synthesis and is used as a generic med-
ication to treat acetaminophen overdose. It is contained in onion (Allium cepa). This
compound is commonly used in the research laboratory to decrease ROS levels and test
its role in biological responses. In the rat ventricular myocytes, it has been shown that
NAC slightly suppresses resting Ca2+ spark occurrence [15]. In pressure-overloaded rats,
NAC has suppressed myocardial fibrosis during the transition from compensated left
ventricular hypertrophy to HF [202]. Myocardial total glutathione level appears to be
upregulated by NAC treatment, while mitogen-activated protein kinase (MAPK) signaling
is downregulated by NAC [202].

Zinc is an essential mineral largely contained in meats and oysters that is required
for various cellular functions, and it has a critical antioxidant action. Metallothionein
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(Zn2+-binding protein) expression increases at the sites of cardiac injury, which allows local
accumulation of Zn2+, thereby accelerating gene transcription and wound healing. Zn2+

insufficiency can delay this process under ischemic conditions [203–209]. It is known that
Zn2+ transport into the cells is achieved by Zn2+ transporters and L-type Ca2+ channels. In
addition, the Zn2+ transporters can be activated by oxidative stress. The level of cytosolic
free Zn2+ increases by NO, derived from endothelial NOS [210].

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a phytoalexin produced by several
plants in response to injury or when the plant is under attack by pathogens. It enhances the
SOD activity and eNOS activity and increases the level of glutathione [211]. Pretreatment
with resveratrol from red wine (Vitis vinifera) and blueberries (Cyanococcus) is reported to
reduce infarct size and both tachycardia and bradycardia after myocardial infarction [212].
Resveratrol improves cardiac function via increases of sirtuin 1 (SIRT1) activity and AMPK
activity [213]. The long-term dietary supplement of resveratrol has improved ventricular
systolic function as well as an atrioventricular coupling in chronic HF rats derived from per-
manent coronary artery ligation [214]. The cardiovascular protective effects by resveratrol
also have been recently reviewed by Carrizzo et al. [167]. Polydatin, a resveratrol gluco-
side found in Hu-zhang (Polygonum cuspidatum) and red wine, is one of the antioxidants
showing anti-inflammation and anti-platelet coagulation. This compound can increase
cardiac contraction [215,216] and also has a cardioprotective effect against I-R injury and
pressure-overload-induced ventricular remodeling [184]. In rat cardiac myocytes, SOD,
NOS and NO were upregulated by polydatin [185]. A more recent study has shown that
polydatin suppresses ICa and Ca2+ transients and that it increases cardiac RyR activity.
This compound increases contraction by enhancing myofilament Ca2+ sensitivity via NO
production [186].

Honokiol (3′,5-di(prop-2-en-1-yl)[1,1′-biphenyl]-2,4′-diol), a lignan isolated from the
bark of magnolia trees, has the capacity to activate mitochondrial sirtuin 3 that inhibits
ROS production, thereby locking cardiac hypertrophy in mice [217]. Another group also
has reported that this compound improves mitochondrial function and protects against
doxorubicin-induced cardiotoxicity [218]. Danshen (Salvia miltiorrhiza) component salviano-
lic acid A, a stilbenoid ((R)-3(3,4-dihydroxyphenyl)-2-(((E)-3-(2-((E)-3,4-dihydroxystyryl)-
3,4-dihydroxyphenyl)acryloyl)oxy)propanoic acid), is reported to have inhibitory effects on
ventricular fibrillation and lipid peroxidation [219]. This compound has significantly attenu-
ated cardiac dysfunction and injury induced by isoproterenol and enhanced mitochondrial
respiratory function [220]. In addition, it has shown protective effects against inflamma-
tory injury by modulating forming MD2-TLR4-MyD88 complex and TLR4-TRAF6-NF-κB
signaling pathway in acute MI rats [221]. This compound also suppressed L-type Ca2+

channels, contraction, and Ca2+ transients in adult rat cardiac myocytes [222].
α-linolenic acid is normally found in seeds, nuts and oils, and has beneficial effects of

decreasing the risk of cardiac arrhythmias, especially ventricular fibrillation, and protect
against the risk of HF and cardiac hypertrophy [223]. Under ischemia and I-R, α-linolenic
acid can protect cardiac cells from the apoptosis process by reducing the production of
specific pro-apoptotic oxidized phosphatidylcholine species. Thus, the pro-apoptotic
oxidized phosphatidylcholine species are thought to be a potential target to protect the
heart from ischemic damage [224]. β-carotene (a terpenoid strongly colored red-orange
pigment), contained in carrots, spinach and tomatoes, has a good effect of reducing the
possibility of acute MI. β-carotene can significantly reduce cell death and apoptosis induced
by “advanced glycation end products”, which are abundant in aged persons and in the
patients with diabetes mellitus, degenerative diseases, and chronic kidney disease, and
are the main cause of diabetic cardiomyopathy. In addition, a recent report demonstrated
that it decreases the production of intracellular ROS, antioxidative enzyme, hyperactive ER
stress and autophagy via the activation of the PI(3)K/Akt/mammalian target of rapamycin
(mTOR) pathway in H9c2 cells [225].

Chlorogenic acid, the ester of caffeic acid and (−)-quinic acid found in Eucommia ul-
moides, is known to be a free radical scavenger and suppress the activation of the mitogen-
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activated protein kinase kinase (MEK)/ERK signaling pathway and myocardial I-R injury
in rats [226]. This substance modulates the protein-B expression in cardiac myocytes follow-
ing hypoxia-reoxygenation through the ROS signaling pathway [227]. It is also known that
chlorogenic acid shows cardioprotective effects via directly suppressing the activation of
the NF-κB and c-Jun N-terminal kinase (JNK) pathway in the TAC mouse model. Therefore,
this component may be useful for the prevention of HF [228].

Oridonin (7,20-epoxy-1α,6β,7α,14R-tetrahydroxy-kaur-16-en-15-one; a diterpenoid),
the major active ingredient of the traditional Chinese medicinal herb Rabdosia rubescens,
has been suggested to have antihypertrophic effects in cardiac muscle [229]. It has been
demonstrated that oridonin treatment increases the expression of myocardial HO-1 in
pressure-overloaded heart muscles and that it also limits ROS generation in these hearts
with an increase of myocardial SOD and GPx [229]. Furthermore, Zhao et al. [230] have
demonstrated that cinnamaldehyde, one of the main bioactive constituents isolated from
Cortex cinnamomi, can ameliorate cardiac dysfunction induced by lipopolysaccharides in
rats through suppression of TLR4-NOX4 signaling, ROS production, and autophagy.

Bee pollen, a substance packed by worker honey bees during collection, is obtained
from field-gathered flower pollen and honey, agglutinated into pellets with bee saliva. It
comprises proteins, simple sugars, minerals and vitamins, and fatty acids. Due to the nu-
merous bioactive compounds, bee pollen has been reported to have many pharmacological
properties, including antioxidative effects [231–234]. According to Zhang et al.’s study,
Schisandra chinensis bee pollen extract (SCBPE) possesses the most robust total antioxidant
capacity among ten kinds of bee pollens, evaluated by radical scavenging activity, Trolox
equivalent antioxidant capacity, and reducing power [235]. The cardioprotective effect of
SCBPE against ROS attack also has been demonstrated in animal model experiments. Shen
et al. [231] studied the changes in the expression of Nrf2 and HO-1 proteins by SCBPE
in cardiac tissues of rat MI model induced by isoproterenol. After administrating SCBPE
to rats for 30 days, the protein expression of Nrf2, HO-1, and Bcl2 (apoptosis regulator)
in the heart increased in the SCBPE groups, while Bax protein (apoptotic activator) and
pathological cardiac phenotype were reduced compared to the control group [231].

Garlic (Allium sativum) is widely known as a natural product with plenty of beneficial
effects, such as antioxidative [236], antibacterial [237], lipid-lowering [238], and antitu-
mor [239] activity. Notably, it is getting more attention for its powerful cardioprotective
effects [236]. The organosulfur compounds are the primary active ingredients in garlic.
Diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS) have been
studied, and their antioxidative effects are more substantial with a higher number of sulfur
atoms (DATS > DADS > DAS) [240,241]. In Yu et al.’s study, DATS treatment markedly
improved left ventricular systolic pressure and reduced myocardial infarct size, serum
creatine kinase, lactate dehydrogenase activities, and the myocardial apoptosis in type
1 diabetic rats. They showed that these effects were partly due to the activation of the
Nrf2/HO-1 antioxidant signaling pathway [242].

Table 1 categorizes natural antioxidants according to their target diseases in the heart,
and summarizes their effects and action mechanisms.

Table 1. Exogenous natural antioxidants to modulate cardiac function and pathogenesis.

Cardiac Disease Antioxidant Source Effects/Mechanisms References

Arrhythmias

Acacetin Honey Anti-AF, ↓IKur [177]

α-Linolenic acid Seed, nut, and their oil Anti-VF, Anti-HF [223]

Resveratrol Red wine, blueberry Anti-arrhythmias [212]

Salvianolic acid A Danshen Anti-VF [221]
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Table 1. Cont.

Cardiac Disease Antioxidant Source Effects/Mechanisms References

HF/Contractile
dysfunction

Polydatin Hu zhang
(polygonum cuspidatum)

↓ICa, ↑RyR activity,
↑Myofilament Ca2+ sensitivity [186,215,216]

Quercetin Oak, blueberry ↓ICa, ↑Ca2+ transient [112]

Luteolin Celery, parsley ↑Contraction, ↑SERCA [165]

NAC Onion ↓HF [202]

Resveratrol Red wine, blueberry ↑Contraction [214]

Salvianolic acid A Danshen ↓ICa, Ca2+ transient, contraction [222]

Hypertrophy

Rutin Tea, buckwheat, tobacco ↓Intracellular Ca2+ [183]

NAC Onion ↓MAPK [202]

α-Linolenic acid Seeds, nuts, and their oils ? [223]

Silymarin Milk thistle ↓EGFR [194]

Honokiol Magnolia tree bark ↑Mitochondrial sirtuin 3 [217]

Isorhamnetin Hippophae rhamnoides L. ↓PI3K-Akt [184]

Apigenin Chamomile ? [190]

Oridonin Rabdosia rubescens ? [229]

MI
I-R injury

Resveratrol
Polydatin

Red wine, blueberry
Hu-zhang

↑AMPK-sirtuin 1,
↓apoptosis [184,213]

Luteolin Celery, parsley ↑Akt, ↓apoptosis [163]

β-carotene Carrots, spinach, tomatoes ↑p-Akt, ↓apoptosis [225]

EGCG/catechin Green tea ↓p-STAT-1, ↓apoptosis [161,162]

Kaempferol Honey ↓Inflammation [179]

Quercetin Oak, blueberry ↓Inflammation [166,167]

Isorhamnetin
Rhamnetin

Hippophae rhamnoides L.
Spiraea

↓ROS, ↓ERK
↓ROS [185,187,188]

Apigenin Chamomile ↑PI3K-Akt [189]

Chlorogenic acid Eucommia ulmoides
↓MEK/ERK [209]

Protein B [210]

Rutin Tea, buckwheat, tobacco
↓p-Akt [180–182]

↑Sirtuin 1 [181,182]

DATS, DADS, DAS Garlic ↑Nrf2/HO-1 [242]

Baicalin Scutellaria baicalensis ↑Autophagy, ↑MARCH5
↑HO-1 [192–194,197]

Naringin Citrus ↑ATF6-IRE1α-ERK
↑AMPK-sirtuin 3 [196,197]

Zinc Meat, oysters ↓Oxidation [203–209]

Salvianolic acid A Danshen ↓MD2-TLR4-MyD88,
↓TRAF6-NF-κB [221]

SCBPE Bee pollen ↑Nrf2, HO-1, and Bcl2 [231]

AF, atrial fibrillation; Akt, protein kinase B; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; HF, heart
failure; ICa, L-type Ca2+ current; IKur, ultrarapid delayed rectifier K+ current; I-R, ischemia-reperfusion; MEK, mitogen-activated protein
kinase kinase; MI, myocardial infarction; RyR, ryanodine receptor; SCBPE, Schisandra chinensis bee pollen extract; VF, ventricular fibrillation;
DAS, Diallyl sulfide; DADS, diallyl disulfide, DATS, diallyl trisulfide. “?” indicates unknown.
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6. Conclusions

In cardiac myocytes under physiological conditions, Ca2+ signaling on regular action
potentials contributes to mitochondrial Ca2+ signal, which, in turn, regulates oxidative
phosphorylation of mitochondria to produce ATP with generating a small amount of ROS.
ATP, produced by the mitochondria, plays a key role in maintaining cytosolic concentrations
of Na+, Ca2+, and K+ by driving Na+–K+ pump, SR Ca2+ pump and Na+–Ca2+ exchange
during beating. This is mandatory for generating normal action potentials and subsequent
Ca2+-induced Ca2+ release to trigger contraction and relaxation during each cardiac cycle
that determines arterial blood pressure. Ischemia and pressure- or volume-overload
induce initial cardiac hypertrophy, which is accompanied by HF and arrhythmias. It is
thought that remodeling and death of cardiac myocytes by bulk ROS generation via NOX
(NOX2 and NOX4) and mitochondria and by Ca2+ overload during the oxygen deprivation
and mechanical stresses play key roles in contractile failure and arrhythmias. Natural
antioxidants may serve as an alternative way to prevent such oxidative stress-dependent
cardiac pathogenesis. Antioxidants that are effective for ischemia and reperfusion injury,
associated with inflammation and apoptosis/necroptosis, have been discovered from
red wine (resveratrol), fruit, such as blueberries (quercetin), herbs, including green tea
(catechin), chamomile (apigenin), and Citrus plants (naringin), vegetables, such as carrot
(β-carotene), celery (luteolin), and garlic (diallyl sulfides), and buckwheat (rutin), honey
(kaempferol), bee pollen extract, and medicinal plants, including Polygonum cuspidatum,
Hu-zhang (polydatin), Hippophae rhamnoides (isorhamnetin), danshen (salvianolic acid A),
and Eucommia ulmoides (chlorogenic acid). α-linolenic acid in the nuts and seeds has shown
anti-arrhythmic and antihypertrophic effects. Resveratrol and salvianolic acid A have
anti-arrhythmic effects and cardiotonic effects in HF. Quercetin decreases Ca2+ currents
and is beneficial for HF. Interesting to note is that acacetin from honey has anti-atrial-
fibrillation effects.

In fact, clinical investigations on the effects of natural antioxidants significantly in-
creased in recent years, but they mostly focus on blood and vascular function. A random-
ized clinical trial (RCT) has indirectly shown that oral supplementation of resveratrol in
patients with stable angina may be cardioprotective because it decreases the inflammatory
marker, brain natriuretic peptide and lipid marker [243,244]. The RCT recently demon-
strated that quercetin has beneficial effects on blood pressure, blood lipids and endothelial
function [245]. In addition, chlorogenic acid and its physiological metabolites improved
human vascular functions [246]. Supplementation with green tea catechin extract or α-
linolenic acid significantly reduced circulating total cholesterol concentrations [247,248].
The RCTs investigating the effects of flavonoid-rich foods on cardiovascular function have
shown that most compounds, except pro-anthocyanidins, are extensively metabolized
and display poor bioavailability [245,249]. Nevertheless, it was recently suggested that
flavonoid metabolites could be more bioactive than their precursors [245]. Further in vivo
research and clinical trials need to be initiated to further validate the cardio-effective natural
antioxidants in medicinal applications for cardiac hypertrophy, atrial fibrillation, MI and
congestive HF.
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