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Abstract: Autophagy, a main degradation pathway for maintaining cellular homeostasis, and redox
homeostasis have recently been considered to play protective roles in neurodegenerative diseases
such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Increased
levels of reactive oxygen species (ROS) in neurons can induce mitochondrial damage and protein
aggregation, thereby resulting in neurodegeneration. Oxidative stress is one of the major activation
signals for the induction of autophagy. Upon activation, autophagy can remove ROS, damaged
mitochondria, and aggregated proteins from the cells. Thus, autophagy can be an effective strategy
to maintain redox homeostasis in the brain. However, the interaction between redox homeostasis
and autophagy is not clearly elucidated. In this review, we discuss recent studies on the relationship
between redox homeostasis and autophagy associated with neurodegenerative diseases and propose
that autophagy induction through pharmacological intervention or genetic activation might be a
promising strategy to treat these disorders.
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1. Introduction

Neurodegenerative diseases are a heterogeneous group of disorders characterized
by progressive loss of the structure or function of neurons. The major risk factor for the
development of neurodegenerative diseases is aging; therefore, the prevalence of these
disorders increases as the average lifespan increases. However, effective treatments for
most neurodegenerative diseases are still lacking. Over the past decades, various studies
demonstrated that the progression of neurodegenerative diseases is accompanied by de-
creased antioxidant levels, increased oxidative stress, and decreased autophagy. Oxidative
stress can induce autophagy, which relieves the cytotoxicity caused by accumulated oxida-
tive stress. Here, we describe the dysregulation of redox homeostasis that is observed in
major neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and
amyotrophic lateral sclerosis. We then discuss the molecular pathways related to oxidative
stress and autophagy in neurodegenerative diseases. Finally, we suggest that manipulation
of autophagy might be an effective strategy to alleviate oxidative stress in patients suffering
from neurodegenerative diseases.

2. Main Players Involved in Maintaining Redox Homeostasis

Cells continually generate small, highly reactive molecules called reactive oxygen
species (ROS) due to incomplete reduction of oxygen during aerobic metabolism or immune
response. ROS include superoxide anion (O2

•−), hydrogen peroxide (H2O2), hydroxyl
radical (•OH), and 4-hydroxynonenal (HNE). ROS can be generated from endogenous
sources. The mitochondrial electron transport chain is recognized as one of the major modes
of cellular ROS generation [1]. NADPH oxidases, which share the capacity to transport
electrons across the plasma membrane, are also able to generate superoxide and other
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downstream ROS [2]. Cytochrome P450 generates ROS and lipid peroxidation products
which might interact with DNA to create oxidative DNA adducts [3]. ROS generally cause
detrimental effects, such as DNA damage, lipid peroxidation, and protein oxidation, in cells,
ultimately leading to cellular stress or pathological conditions. Therefore, under normal
physiological conditions, the formation and elimination of ROS are tightly regulated
by endogenous antioxidants and ROS scavengers, to maintain homeostasis and avoid
oxidative stress and toxicity. The antioxidants that are produced endogenously, include
superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and peroxiredoxins (Prxs).
When electrophiles, such as ROS, are increased in turn, antioxidant responses, such as
NF-κB or Keap1-Nrf2-mediated signaling cascade, are upregulated to restore the original
steady-state [4]. These redox reactions are important for cellular homeostasis to regulate
cell signaling, proliferation, and survival [5].

Superoxide anion (O2
•−) is produced by one-electron reduction of dioxygen, which

occurs in the mitochondrial electron chain reaction or NADPH oxidase-mediated immune
response in phagocytic cells [6]. Owing to its high reactivity, the generation of O2

•−,
even at low levels, is essential for the oxygen-dependent killing of invading pathogens in
phagocytic cells [7]. However, there is a proper defense mechanism to remove O2

•−, as it
is harmful to cells when present in excess. SOD is an antioxidant enzyme that catalyzes
the dismutation of O2

•− into molecular oxygen and hydrogen peroxide, which is the
first defense mechanism against ROS. Almost all organisms that use O2

•− for mitochon-
drial respiration express SOD. In mammals, SODs exist in three isoforms with distinct
compartmentalization—SOD1 in the mitochondrial intermembrane space and cytoplasm,
SOD2 in the mitochondrial matrix, and SOD3 in the extracellular region [8].

Hydrogen peroxide (H2O2) has an unstable peroxide bond, which can oxidize proteins,
lipids, and DNA. Mitochondrial respiratory chain is a continuous source of H2O2 resulting
from the dismutation of O2

•− by SOD [9]. Upon H2O2 generation, CAT rapidly detoxifies
it to molecular oxygen and H2O [10]. CAT, which is enriched in peroxisomes, contains
four iron-containing heme groups that allow it to react with H2O2. Glutathione system
also eliminates H2O2 from organisms [11]. H2O2 is reduced by glutathione peroxidase,
which transfers the energy of the peroxide to GSH, a small sulfur-containing tripeptide.
Since glutathione exists in reduced (GSH) and oxidized (GSSG) states, the ratio of GSH
to GSSG can be a sensor of oxidative stress [12]. As H2O2 has a lower activity than the
hydroxyl radical, it remains in the nucleus for a longer time, which further damages DNA.
Although H2O2 has cytotoxic effects, it also acts as a signaling molecule in regulating
various biological processes, such as immune cell activation and vascular remodeling [13].
Therefore, its production is highly regulated as part of redox homeostasis.

Hydroxyl radical (•OH), the three-electron reduction state of O2
•−, is an extremely

reactive and short-lived ROS. It is produced by reduction of H2O2 or due to the immune
responses in macrophages and microglia [14]. The hydroxyl radical damages almost all
types of molecules, such as nucleic acids, lipids, and amino acids. In addition, the hydroxyl
radical attacks the plasma membrane, causing membrane damage. Due to its high reactivity,
the hydroxyl radical cannot be used as a substrate for any enzyme and therefore cannot be
removed by enzymatic reactions [15]. The hydroxyl radical is neutralized by toxic reactions
with adjacent oxidizable molecules.

Lipid peroxidation is a process that occurs when free radicals attack nucleophilic
polyunsaturated fatty acids in lipids. Since lipids are particularly abundant in the cell
membrane, lipid peroxidation leads to membrane lipid degradation and cell damage. It
produces lipid hydroperoxides (LOOH), such as malondialdehyde, 4-hydroxynonenal
(HNE), 4-oxo-2-nonenal, and acrolein, thereby causing oxidative stress. For example,
modification of mRNA expression or the activity of antioxidant enzymes increases, as the
amount of HNE increases due to lipid peroxidation [16]. Thus, HNE is often regarded as a
marker of oxidative stress.

The accumulation of ROS, resulting from the failure to maintain redox homeosta-
sis, permanently induces increased oxidative stress, thereby leading to the functional
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loss of proteins, cellular apoptosis, mutagenesis, carcinogenesis, and fibrosis [17–19]. In-
creased ROS levels are associated with oxidative DNA damage and genomic instability [20].
NADPH oxidase-derived ROS were identified as the main cause of fibrotic diseases [21].
These harmful effects are known to cause various diseases, including cancer, metabolic
disorders, chronic inflammation, cardiovascular diseases, and neurodegenerative diseases
(Figure 1) [22–24].
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Figure 1. Schematic of the biological processes regulating cellular redox homeostasis. ROS are
generated from various sources due to incomplete reduction of oxygen, causing oxidative stress. The
elimination of ROS is tightly regulated by antioxidants, such as SOD, to maintain homeostasis and
avoid oxidative stress. However, dysregulation of oxidative stress induces various diseases such
as cancer, metabolic disorders, and neurodegenerative diseases. O2

•−: superoxide anion, H2O2:
hydrogen peroxide, •OH: hydroxyl radical, HNE: 4-hydroxynonenal, SOD: superoxide dismutase,
CAT: catalase, GSH: glutathione, and Prx: peroxiredoxin.

3. Dysregulation of Redox Homeostasis in Neurodegenerative Diseases

ROS, at lower levels, generally act as a small molecule messenger for cell signaling
in the brain, whereas, at higher levels, they induce protein misfolding and neuronal cell
death [18,25,26]. The brain requires large amounts of oxygen for mitochondrial respiration,
which inevitably generates ROS. Conversely, the brain is very susceptible to excessive for-
mation of ROS, as it is rich in polyunsaturated fatty acids, which are the preferred substrates
of ROS, and it shows a low expression of antioxidants such as GSH [27,28]. Therefore, it
was recognized that oxidative stress contributes to the pathogenesis of neurodegenerative
diseases [24,29].

Although it is unclear whether it is the cause or result, a decrease in antioxidant levels
and an increase in ROS levels are commonly observed in the nervous systems of patients
with neurodegenerative diseases as well as animal models of such diseases, including
Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis [30–34]. Fur-
thermore, aging, the major risk factor for most neurodegenerative diseases, induces loss of
mitochondrial function and an imbalance in GSH homeostasis [35,36]. As a result, aging-
induced pro-oxidizing states in the mitochondria and cells cause synaptic dysfunction,
such as impairment of synaptic activity and neurotransmission [37]. In particular, increased
ROS levels results in the thermodynamically unstable redox states of proteins, leading to
their misfolding [38]. Various studies reported that oxidative stress triggers the formation
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of malfunctional proteins in the central nervous system, leading to abnormal release of
neurotransmitters, and the formation of protein aggregates, which is a hallmark of several
neurodegenerative diseases [26,39].

3.1. Alzheimer’s Disease

Alzheimer’s disease (AD), the most common neurodegenerative disease, is a progres-
sive brain disorder that accounts for approximately 70% of dementia cases. AD is mainly
characterized by the formation of extracellular amyloid-beta (Aβ) plaques, neurofibrillary
tau tangles, and neuronal loss. Disruption of redox homeostasis was also observed in
patients with AD [23,27]. Brain tissues or cells derived from patients with AD showed
increased levels of ROS as well as oxidized proteins, and defects in antioxidant defense
mechanisms [40–43]. Furthermore, the APP/PS1 double transgenic mice, which is a com-
monly used animal model of AD, showed a significant increase in ROS levels, which
resulted in reduced neurogenesis in the brain [44]. In addition, increased ROS levels by
H2O2 or NO caused AD pathology, such as the occurrence of brain lesions and memory
deficits [45,46].

The formation of Aβ plaques or tau neurofibrillary tangles in the brain appears to
be directly related to the impairment of redox homeostasis. Aβ, a small peptide derived
from the cleavage of amyloid precursor protein (APP) by BACE1 and γ-secretase, forms
oligomeric fibrils in the brains of patients with AD. As mentioned above, ROS facilitate the
formation of neurofibrillary tangles by promoting the misfolding and cross-linking of pro-
teins [23,47,48]. Some studies reported the potential role of Aβ monomers as antioxidants,
depending on the metal ion concentration in vitro [49,50]. In contrast, other studies showed
that oligomeric Aβ, the dominant form in patients with AD, promotes ROS production
in cooperation with metal ions in vitro and in vivo [51–54]. In addition, inhibition of the
γ-secretase activity was reported to reduce the levels of ROS and oxidize proteins, and to
enhance resistance to oxidative stress [55]. Aβ activates NADPH oxidase and interferes
with Ca2+ homeostasis and mitochondrial membrane potential, leading to impaired ROS
homeostasis [53,56–58]. Tau neurofibrillary tangles, which contain oxidized molecules,
also produce ROS by interacting with Cu2+, which in turn increases the formation of tau
aggregates [59]. Furthermore, tau aggregation activates NADPH oxidase, which accelerates
ROS-mediated neuronal death [60].

3.2. Parkinson’s Disease

Parkinson’s disease (PD) is a chronic neurodegenerative disorder that mainly affects
the motor system; its primary symptoms are rigidity, tremor, bradykinesia, and postural
instability. PD is characterized by the loss of dopaminergic neurons in the substantia
nigra and accumulation of abnormal α-synuclein aggregates called Lewy bodies. The
neuropathological characterization of PD appears to be directly related to the production
of ROS, owing to mitochondrial dysfunction, neuroinflammation, and genetic mutations.
Brain tissues derived from patients with PD showed defects in mitochondrial complex
I and an increase in the levels of oxidized proteins [61]. Conversely, a systemic partial
defect in the mitochondrial complex I is sufficient to reproduce the neuropathological
features observed in patients with PD. Mutations in DJ-1 cause autosomal recessive forms
of PD. Oxidized DJ-1 was observed in the brains of patients with idiopathic PD [62].
DJ-1 knock-out (KO) mice exhibited a significant increase in α-synuclein levels in the
substantia nigra, increased levels of oxidized dopamine, and diminished the activity of
glucocerebrosidase [63]. A reduction in GSH levels, which causes redox imbalance, was
observed in the substantia nigra of patients with PD [64].

Oxidative stress is thought to be directly linked to PD pathogenesis. First, oxidative
stress modifies and disrupts the activity of glucocerebrosidase, encoded by GBA1, whose
mutations are commonly known genetic risk factors involved in the development of
PD [65]. Second, α-synuclein accumulation appears to be directly affected by oxidative
stress. α-Synuclein binds to ubiquitin and forms Lewy bodies. Oxidative stress leads
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to post-translational modifications of α-synuclein, such as HNE-α-synuclein and n-α-
synuclein, which are more toxic than unmodified α-synuclein and are prone to form
oligomers [66]. In particular, dopaminergic neurons in PD are susceptible to oxidative
stress, as the dopamine metabolism generates ROS [67]. Levels of oxidized cholesterol
metabolites derived from ROS were found to be increased in the cortex of patients with PD,
resulting in accelerated generation of α-synuclein aggregates [68]. Brain tissues derived
from patients with PD also showed oxidized nucleic acids, lipids, and proteins generated
due to oxidative damage, indicating that oxidative damage of nucleic acids is probably
a major risk factor for PD [69]. It is plausible that oxidative stress can trigger mutations
resulting in cellular dysfunction, thereby increasing the chance of spontaneous mutations
induced by this process [70]. The cytokine tumor necrosis factor (TNF), a critical regulator
of the immune system, can contribute to neurodegeneration by promoting the generation
and release of ROS or by exacerbating ROS generation by activating NADPH oxidase [71].

3.3. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease characterized
by the death of motor neurons and leads to the impairment of voluntary muscle movement.
Sporadic or familial ALS cases are caused by diverse gene mutations, including those in
TAR DNA-binding protein 43 (TDP-43) and SOD1, the antioxidant enzyme [72]. SOD1
catalyzes the conversion of O2

•− to H2O2 with Cu2+. Therefore, the autosomal dominant
mutations in SOD1, which account for up to 20% of familial ALS, increase the oxidative
stress prior to the onset of ALS symptoms [73–75]. In addition, increased SOD1 activity
boosted the production of ROS in the mitochondrial intermembrane space, resulting in
morphological and functional impairment of the mitochondria [76,77]. Cells bearing the
SOD1-G93A mutation are more vulnerable to ROS exposure, leading to the death of motor
neurons [76,78]. Conversely, inhibition of SOD1 activity or treatment with antioxidants
ameliorates the toxicity of motor neurons [76,79]. This increase in oxidative stress in cells
caused SOD1 and TDP-43 protein aggregates, which are hallmarks of ALS [80,81]. As
a result, the brain and motor neurons of patients with ALS as well as those of animal
models of ALS exhibited increased levels of oxidized proteins, lipid peroxidation, and ROS,
and decreased levels of antioxidants [82–87]. Furthermore, antioxidant treatment showed
protective effects against neuronal survival and motor neuron impairment and decreased
the ALS score [88,89].

4. Upregulation of Autophagy: An Effective Strategy to Maintain Redox Homeostasis
in the Brain
4.1. General Description of Autophagy

Autophagy is a major intracellular degradation process that is important for the
survival and homeostasis of cells [90,91]. Stress-induced autophagy mediates the clearance
of protein aggregates, damaged intracellular organelles, and ROS. Autophagy is induced by
a variety of stress stimuli such as starvation, ER stress, hypoxia, mitochondrial dysfunction,
and oxidative stress. Notably, ROS were reported to be crucial early inducers of autophagy,
as they are indispensable for the recruitment of LC3 into autophagosomes [92]. Autophagy
is initiated by the formation and expansion of the phagophore to form the autophagosome,
a double-membrane vesicle that sequesters cargoes to be degraded [93]. Autophagosomes
then fuse with lysosomes to form autolysosomes, and the materials contained within
them are degraded by the lysosomal enzymes. The degradation of cargoes by lysosomes
generates nutrients that enable cells to survive [94]. After degradation, new lysosomes are
formed from existing autolysosomes through autophagic lysosome reformation (ALR), a
recently described lysosome biogenesis mechanism [95].

Increasing evidence suggests that autophagic impairments are closely linked to the
pathogenesis of neurodegenerative disorders [96]. Mutations in autophagic receptors,
such as p62 and optineurin (OPTN), are associated with a variety of neurodegenerative
diseases, including PD, AD, and ALS [97,98]. The autophagic receptors are required
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for the interaction and autophagosomal recruitment of specific cargoes for degradation.
Accumulation of protein aggregates, mostly due to impaired autophagic degradation,
is a common feature of neurodegenerative diseases. Therefore, it is reasonable that the
malfunction of the autophagic receptors is related to the etiology of neurodegenerative
diseases. Conversely, diverse genes associated with neurodegenerative diseases were
shown to function in autophagy [96,99]. For example, PTEN-induced kinase 1 (PINK1)
and parkin, which are often mutated in patients with early onset autosomal recessive PD,
are well-known to be critical for mitophagy, a selective autophagy that degrades damaged
mitochondria [100]. Presenilin-1, which is associated with familial AD, regulates the
maturation of lysosomal v-ATPase and affects the autophagic degradation of cargoes [101].

4.2. Regulatory Mechanism of ROS-Mediated Autophagy

Several studies demonstrated that oxidation of cellular molecules by ROS, such as
peroxidation of unsaturated lipids and DNA or the production of mitochondrial ROS, is
sufficient for activating autophagy, which can mitigate the cytotoxic stress caused by ROS
(Figure 2) [102–104]. Conversely, inhibition of autophagy by lysosomal inhibitors causes
an increase in ROS-induced cytotoxicity [105,106]. ROS can directly induce autophagy
by activating protein kinases, including AMP-activated protein kinase (AMPK) and c-Jun
N-terminal kinase (JNK), which are essential for the activation of autophagy [107–109]. For
example, ROS directly oxidize Cys299/Cys304 of AMPK and activate its kinase activity
without reducing the cellular ATP levels [110]. Mitochondrial ROS production also activates
AMPK and triggers an antioxidant response [111,112]. In addition, ROS activate JNK
by stimulating the ER stress response [102]. ROS can also influence autophagy via the
oxidation of core autophagy proteins, such as ATG4 and TFEB [113,114].
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Figure 2. ROS induce autophagy and mitophagy. Damaged mitochondria and cellular stresses generate ROS. ROS activate
AMPK and inhibit mTORC1, leading to sequential activation of the autophagy initiation complex, the ULK1 and VPS34
complex. The activated autophagy initiation complex induces autophagosome formation. Autophagosomes engulf cargoes,
such as damaged organelles and proteins, and fuse with lysosomes. Autolysosomes degrade the autophagic cargoes.
Damaged mitochondria are targeted for degradation by a form of selective autophagy, called mitophagy. PINK1 is recruited
to damaged mitochondria and phosphorylates parkin, an E3 ubiquitin ligase, and mitophagy receptors such as BNIP3L/NIX.
Parkin-mediated poly-ubiquitination of OMM proteins leads to the recognition of damaged mitochondria by autophagic
receptors. These autophagic receptors interact with the ATG8 family proteins and transport the damaged mitochondria to
autophagosomes for their degradation. Detailed pathway is described in Section 4. AMPK: AMP-activated protein kinase,
BNIP3L: Bcl2 interacting protein 3 like, mTORC1: mammalian target of rapamycin complex 1, OMM: outer mitochondria
membrane proteins, and PINK1: PTEN-induced kinase 1.
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4.2.1. ROS-Mediated Regulation of Mitophagy

Mitochondrial dysfunction is strongly associated with various diseases, including
neurodegenerative disorders. Therefore, it is important to minimize mitochondrial dys-
function to counteract the development of numerous human diseases [115]. Mutations in
genes encoding mitochondrial quality control proteins were found in patients with PD,
indicating their failure to protect against stress-induced mitochondrial dysfunction [116].
Dysfunctional mitochondria can be degraded by mitophagy. Engulfment of mitochondria
by autophagosomes can occur under various conditions, including starvation and oxida-
tive stress, and when the mitochondrial function is impaired [117,118]. ROS produced by
mitochondria act as signaling molecules for stress-induced autophagy, and ROS produced
by damaged mitochondria induce mitophagy for their elimination [118].

In response to ROS, parkin, an E3 ubiquitin ligase, is selectively recruited to dam-
aged mitochondria, promoting mitochondrial degradation [119]. PINK1, a mitochondrial
serine/threonine-protein kinase, is required for the recruitment of parkin to the damaged
mitochondrial membrane and activates parkin ligase activity [120]. Parkin mediates the
formation of poly-ubiquitin chains in clustered mitochondria. Subsequently, p62, the
autophagic receptor that recognizes poly-ubiquitin chains, is recruited to the ubiquiti-
nated mitochondria for their clearance [121]. Moreover, VDAC1, a voltage-gated channel
protein in the mitochondria, was identified as a mitophagy target through parkin-mediated-
ubiquitylation. By interacting with LC3, mitophagy receptors, such as p62, mediate the
targeting of damaged mitochondria into autophagosomes, for degradation [122]. Fur-
thermore, BNIP3L/NIX, a BH3-only member of the BCL2 family, serves in mitochondrial
clearance as a receptor that targets organelles for mitophagy [123].

4.2.2. Transcriptional and Post-Transcriptional Regulation of Autophagy by ROS

TFEB is a master regulator of lysosomal biogenesis and autophagy [124]. Inactivated
TFEB is retained in the cytoplasm, whereas activated TFEB translocates to the nucleus and
promotes the transcription of genes essential for the autophagy–lysosome system. ROS
directly oxidize the Cys212 residue of TFEB [113]. This oxidation inhibits the interaction
of TFEB with RRAG GTPases, which promotes the translocation of TFEB to the nucleus,
ultimately leading to the upregulation of lysosomal and autophagic pathways. ROS also
induce transient receptor potential mucolipin 1 (TRPML1) channel-mediated lysosomal
Ca2+ release [125]. Increased Ca2+ levels in the cytoplasm stimulate TFEB activity, which in
turn promotes mitochondrial protein transcription, thereby reducing mitochondrial frag-
mentation, and recovering mitochondrial function [126,127]. Furthermore, overexpression
of TFEB stabilizes Nrf2 by inhibiting DDB1 and CUL4-associated factor 11 (DCAF11), an
E3 ligase of Nrf2, which enhances the transcription of Nrf2-response antioxidant genes,
such as heme oxygenase-1 (HO-1), SOD2, and glutathione-s-transferase µ1 (GSTM1) [128].

Beclin-1, a component of the autophagy initiation complex (the VPS34 complex)
that is essential for autophagy initiation, is regulated by various post-translational mod-
ifications [93,129]. ROS increase the protein levels and activity of Beclin-1 through the
pro-apoptotic protein Bcl-2 [130,131]. Under normal conditions, Bcl-2 inhibits Beclin-1 ac-
tivity via a direct binding to the BH domain within Beclin-1 [132,133]. Conversely, nutrient
deprivation stimulates the JNK1-mediated phosphorylation of Bcl-2, leading to interference
with its binding to Beclin-1 [134]. ROS decrease Bcl-2 protein levels through JNK-mediated
Bcl-2 phosphorylation [135,136]. As a result, ROS increase Beclin-1 protein levels and
promote autophagy initiation while simultaneously alleviating oxidative stress caused by
ROS [130,131].

p62 is a representative autophagic receptor that recognizes ubiquitin-positive protein
aggregates or mitochondria [137]. However, recent studies reported that p62 has a novel
regulatory role in the Nrf2-Keap1 pathway, under oxidative stress conditions [138,139].
Nrf2 is a transcription factor that regulates several genes that encode antioxidants. Under
normal conditions, the E3 ubiquitin ligase cullin 3 (CUL3) and ring-box 1 (RBX1) ubiquiti-
nate Keap1, which interacts with Nrf2, leading to proteasomal degradation of Nrf2 [140].
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Oxidative stress causes structural changes in Keap1 by generating an internal disulfide
bond, resulting in the dissociation of Nrf2. The released Nrf2 binds to an antioxidant
response element (ARE) sequence in target genes and suppresses the ROS-mediated toxic-
ity [141,142]. p62 also interacts with Keap1 through the Kelch domain of Keap1, which is
the Nrf2-binding site, and inhibits Keap1-mediated Nrf2 repression by producing Keap1
protein aggregates that are degraded by the proteasomal or autophagy–lysosomal sys-
tem [138,143–145]. As the promoter of p62 contains an ARE sequence, activated Nrf2 can
promote p62 transcription in response to oxidative stress [145]. The increased p62 levels
can further activate Nrf2 [145,146]. Furthermore, since many promoters of autophagy
core proteins, such as ATG5, ATG7, ATG9, ATG16L1, GABARAPL1, LAMP2A, and ULK1,
contain ARE sequences, the brain tissues of Nrf2-deficient mice exhibit reduced protein
levels of various autophagy regulators in response to ROS [147,148]. As a result, p62 and
Nrf2 form a positive feedback loop to attenuate oxidative stress through activation of
autophagy (Figure 3).
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from RRAG GTPase and Beclin-1 from Bcl-2. ROS also activate Nrf2 through a conformational change in Keap1, leading
to the dissociation of the Keap1-Nrf2 complex. Therefore, cells can ameliorate increased oxidative stress by the TFEB-
and Nrf2-dependent upregulation of autophagic activity and antioxidant proteins. The detailed defense mechanisms are
described in Section 4. TFEB: transcription factor EB, DCAF11: DDB1 and Cul4 associated factor 11, RBX1: Ring-box
1, CUL3: Cullin 3, ARE: antioxidant response element, JNK: c-Jun N-terminal kinase, HO1: Heme oxygenase 1, SOD2:
Superoxide dismutase 2, and GSTM1: Glutathione-S-transferase µ1.

5. Autophagy as a Promising Therapeutic Strategy for Neurodegenerative Diseases

As described above, an imbalance in redox homeostasis contributes to the pathol-
ogy of various neurodegenerative diseases, including AD, PD, and ALS, which exhibit
increased ROS levels, as well as decreased levels of antioxidant proteins [37,42,76,87,149].
Various studies showed that adequate relief from oxidative stress can ameliorate the
symptoms of neurodegenerative diseases, such as motor neuron death and cognitive dys-
function [45,53,76,149–151]. Therefore, induction of autophagy to eliminate ROS might be
an appropriate therapeutic strategy for neurodegenerative diseases.

Treatment with small molecules can induce autophagy in an mTOR-dependent or
-independent manner. Rapamycin, a representative autophagy inducer, inhibits the ki-
nase activity of mTORC1. Rapamycin treatment reportedly reduced ROS production and
improved abnormalities in neurodegenerative disease models [151–153]. For example,
rapamycin treatment showed a protective effect by reducing intracellular ROS, as well
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as increasing antioxidant protein levels in vitro and in vivo [152,153]. Furthermore, ra-
pamycin treatment recovered impaired synaptic function, neurotransmission, and cognitive
ability, by reversing impaired redox homeostasis in animal models of AD [151].

Excessive use of mTOR-dependent autophagy inducers can cause various side effects,
as mTOR signaling is important for global translation. Trehalose induces autophagy by
activating AMPK or TFEB in an mTOR-independent manner [154]. It was suggested that
trehalose might exhibit a protective effect against oxidative stress by scavenging ROS via
the upregulation of SOD activity in plants [155]. In mammalian cells, trehalose causes the
dissociation of Nrf2 from Keap1 through upregulation of the p62-mediated Nrf2 positive
feedback loop [156]. Trehalose also promotes autophagy, especially mitophagy, resulting in
the amelioration of oxidative stress [157].

Since ROS directly affect the function of autophagy genes associated with various
neurodegenerative diseases, upregulation of autophagy genes is considered to be a pre-
ventive and therapeutic strategy for controlling these diseases. Therefore, several studies
examined whether genetic activation of autophagy genes could relieve oxidative stress and
the symptoms of neurodegenerative diseases in animal models.

Overexpression of TFEB enhances the degradation of substrates, lipid droplets, and
damaged mitochondria, and alleviates the phenotypes associated with neurodegenerative
diseases, such as PD and AD, by promoting autophagy and lysosomal biogenesis [124].
Moreover, adeno-associated virus (AAV)-mediated overexpression of TFEB was reported
to show neuroprotective effects in rat nigral dopaminergic neurons [158]. Notably, the
injection of viral vectors induced local protection of neuronal cell bodies and improved
dopamine neurotransmission.

In response to ROS stimulation, CHK2 binds to Beclin-1 and phosphorylates it at
Ser90/Ser93, thereby promoting autophagy via Beclin-1 release from Bcl-2 sequestra-
tion [159]. Beclin-1-deficient mice showed disrupted neuronal autophagy, abnormal APP
processing, and increased neurodegeneration [160]. Lentivirus-mediated Beclin-1 transfer
into the brain of α-synuclein transgenic mice relieved the synaptic and dendritic pathology
with reduced α-synuclein accumulation [161]. Therefore, upregulation of Beclin-1 levels
might have therapeutic potential in AD and PD.

Parkin functions as a critical regulator of mitophagy. Mutations in the parkin gene
are linked to an autosomal recessive form, known as autosomal recessive juvenile parkin-
sonism [162]. Parkin overexpression by lentivirus ameliorated the dopaminergic neuronal
cell death induced by α-synuclein overexpression in the rat substantia nigra [163]. In
addition, parkin overexpression, using recombinant AAV (rAAV) in striatum of macaque
monkeys, reduced the accumulation of co-expressed α-synuclein [164]. Therefore, parkin
gene therapy is thought to be effective against α-synucleinopathy, suggesting its potential
suitability for patients with PD [165].

DJ-1 is known to orchestrate a defense mechanism against oxidative stress, as its
deletion leads to increased mitochondrial oxidative stress [166]. Dopamine adducts can
modify α-synuclein and promote its aggregation; a recent study showed that loss of DJ-1
function is associated with Lewy body pathology [167]. As described earlier, DJ-1 KO mice
showed increased levels of α-synuclein aggregation in the substantia nigra, accompanied
by increased levels of oxidized dopamine [63]. Conversely, overexpression of DJ-1 in vitro
effectively reduced the α-synuclein levels [168,169].

6. Conclusions

In this review, we discussed the intersection between redox homeostasis and au-
tophagy, focusing on the pathogenesis of neurodegenerative diseases. Increasing evidence
further clarifies that the disruption of redox homeostasis due to various reasons is a major
cause of neurodegenerative diseases. When redox homeostasis is disrupted, cells upreg-
ulate antioxidant responses to restore it. Various studies revealed the potential role of
autophagy in exerting a protective effect against oxidative stress, along with other an-
tioxidant responses. In this context, it is necessary to elucidate the regulatory roles of
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autophagy in redox homeostasis in greater details. It is expected that optimal upregulation
of autophagy could be a desirable therapeutic strategy to ameliorate neurodegenerative dis-
eases.
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