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Abstract: Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies
with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to
the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the
roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-
oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear
factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present
study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which
could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes
showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-
Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic
astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)-
and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-
phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting
factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me
ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity.
Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy
rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various
signaling pathways.
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1. Introduction

Epilepsy is one of the most common chronic neurological diseases. The mean preva-
lence rate of active epilepsy is 8% worldwide. The etiology of epilepsy is unknown
(idiopathic) or related to disease states including brain tumors and traumatic injury [1,2].
The main symptom of epilepsy is the presence of spontaneous episodes of abnormal exces-
sive neuronal discharges. This seizure activity results in neuronal loss in the various brain
regions, especially in the hippocampus (hippocampal sclerosis) [3,4]. Similar to other brain
injuries, neuronal loss and synaptic rearrangement induce astroglial activation (reactive
astrogliosis), which may contribute to epileptogenesis [5–7].

Astrocytes are key players in the regulation of extracellular glutamate concentration,
ion homeostasis and neuronal functionality, and are believed to be resistant to harm-
ful stresses [8,9]. More than 100 years ago, however, Alzheimer reported irreversible
astroglial injury characterized by extensive swollen cell bodies with vacuoles and disin-
tegrated/beaded processes, and Cajal termed it as “clasmatodendrosis” [10]. In addition,
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Revuelta et al. [11] reported terminal deoxynucleotidyl transferase dUTP nick-end la-
beling (TUNEL)-negative astroglial degeneration in the CA1 region and the amygdalar
complex after kainic acid administration. We have also reported clasmatodendrosis in
the CA1 region of chronic epilepsy rats, although TUNEL-positive astroglial death in
the molecular layer (not the hilus) of the dentate gyrus was observed in the acute stage
following status epilepticus (SE, a continuous unremitting seizure activity) [7,12–16]. Since
clasmatodendritic astrocytes show eosinophilic cytoplasm with vacuoles, at first we re-
ported that clasmatodendrosis might be coagulative necrotic events and be one of the
epilepsy-related complications [16,17]. Later, we fortunately found that vacuoles in clasma-
todendritic astrocytes are active lysosomes, which are required for the essential activation
of autophagy [12,13]. Thereafter, ultrastructural studies by other investigators confirmed
that clasmatodendritic astrocytes showed autophagocytosis and ubiquitin proteasome sys-
tem (UPS)-mediated astroglial degeneration under various pathological conditions [18,19].
Thus, clasmatodendrosis is an autophagic astroglial degeneration. This is because aber-
rant regulation of autophagy results in non-apoptotic programmed cell death (type II
programmed cell death) independent of caspase activity [20–22]. Furthermore, clasmato-
dendrosis is closely relevant to the synchronous epileptiform discharges [16]. However, the
underlying molecular mechanisms of clasmatodendrosis and the therapeutic strategies to
protect astrocytes from this irreversible degeneration are still elusive, although extracellular
signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)-mediated prolonged heat
shock protein 25 (HSP25) can lead to clasmatodendrosis [23–25].

Nuclear factor-erythroid 2-related factor 2 (Nrf2) is involved in the maintenance of
redox homeostasis by regulating antioxidant-response element (ARE)-dependent tran-
scription [26,27]. Under physiological conditions, Nrf2 is bound to Kelch-like erythroid
cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1), and is sub-
sequently ubiquitinated through the cullin-3 (Cul3)-based E3 ubiquitin ligase complex.
Under oxidative stress, the oxidation of SH-groups in Keap1 liberates Nrf2, and facilitates
nuclear Nrf2 translocation, which induces ARE-mediated transactivation of redox enzymes,
including glutathione S-transferases (GSTs) and scavengers of reactive oxygen species
(ROS). Glycogen synthase kinase 3β (GSK3β) also inhibits nuclear Nrf2 translocation by
phosphorylation [28–31]. Furthermore, Nrf2 inhibits SP1 activation, which is one of the
key molecules inducing clasmatodendrosis [25,32]. Indeed, Nrf2 protects neurons and
astrocytes from SE [33–36]. Thus, it is noteworthy to explore whether 2-cyano-3,12-dioxo-
oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402, a Nrf2 activator) affects
clasmatodendrosis and spontaneous seizure activity in chronic epilepsy rats.

Here, we demonstrate that CDDO-Me attenuated HSP25-induced clasmatodendro-
sis through Nrf2-, ERK1/2-SP1- and Src-casein kinase 2 (CK2)-phosphatase and tensin
homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-
GSK3β-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy
rats. In addition, CDDO-Me ameliorated seizure duration, but not seizure frequency
or behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis
may increase seizure duration in chronic epilepsy rats, and CDDO-Me may attenuate this
autophagic astroglial degeneration via various signaling pathways.

2. Materials and Methods
2.1. Experimental Animals and Chemicals

Adult male Sprague-Dawley (SD) rats (7 weeks old) were used in the present study.
Animals were kept under controlled light and environmental conditions (22 ± 22 ◦C,
humidity 55 ± 5%, a light-dark cycle on a 12-h on-off cycle) with ad libitum access to water
and food throughout the experiments. All experimental protocols were approved by the
Institutional Animal Care and Use Committee of Hallym University (code number: Hallym
2018-2, approval date: 26 April 2018). All reagents were obtained from Sigma-Aldrich
(St. Louis, MO, USA), except as noted [14,15].
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2.2. Epilepsy Model

Animals were subjected to the LiCl-pilocarpine model of temporal lobe epilepsy (TLE).
Rats were given LiCl (127 mg/kg, i.p.) 24 h before the pilocarpine treatment. Animals were
treated with pilocarpine (30 mg/kg, i.p.) 20 min after atropine methylbromide (5 mg/kg
i.p.). Two hours after SE onset, diazepam (Valium; Hoffmann-la Roche, Neuilly-sur-
Seine, France; 10 mg/kg, i.p.) was administered to terminate SE and repeated, as needed.
Control animals received saline in place of pilocarpine [14–16,37,38]. Animals were video-
monitored 8 h a day for selecting chronic epileptic rats showing spontaneous recurrent
seizures. Behavioral seizure severity was evaluated according to Racine’s scale [37,38].

2.3. Electrode Implantation, CDDO-Me Trials and Quantification of Seizure Activity

Control and epileptic rats were implanted with a monopolar stainless steel electrode
(Plastics One, Roanoke, VA, United States) in the right hippocampus under Isoflurane
anesthesia (3% induction, 1.5–2% for surgery and 1.5% maintenance in a 65:35 mixture of
N2O:O2) using the following coordinates: −3.8 mm posterior; 2.0 mm lateral; −2.6 mm
depth. Animals were also implanted with a brain infusion kit 1 and an Alzet 1007D osmotic
pump (Alzet, Cupertino, CA, USA) to infuse with vehicle or CDDO-Me (10 µM) into the
right lateral ventricle [35,36]. The correct location of infusion needle into the ventricle was
confirmed during brain sections and when sampling tissues for Western blot. Electrode
and infusion needle were secured to the exposed skull with dental acrylic. Three days after
surgery, an electroencephalogram (EEG) was recorded 2 h a day at the same time over
4 days [37–39]. Behavioral seizure severity was also evaluated as aforementioned [37,38].
After recording, animals were used for Western blot and immunofluorescent study.

2.4. Western Blots

Animals were sacrificed via decapitation. The brains were quickly removed and
coronally cut to 1 mm thickness (approximately 3–4 mm posterior to the bregma) using
rodent brain matrix (World Precision Instruments, Sarasota, FL, United States) on ice.
Thereafter, the stratum radiatum of the CA1 region of the dorsal hippocampus were rapidly
dissected out in cold (4 ◦C) artificial cerebrospinal fluid under stereomicroscope [14]. The
CA1 tissues were homogenized and protein concentration determined using a Micro
BCA Protein Assay Kit (Pierce Chemical, Rockford, IL, United States). Western blot
was performed by the standard protocol as follows: following electrophoresis, proteins
were transferred to nitrocellulose membranes. Membranes were incubated overnight at
4 ◦C with 2% bovine serum albumin (BSA) in Tris-buffered saline (TBS; in 10 mM Tris,
150 NaCl, pH 7.5 and 0.05% Tween 20) and then in primary antibodies (Supplementary
Table S1). Subsequently, the membranes were incubated for 1 h at room temperature
in a solution containing horseradish peroxidase (HRP)-conjugated secondary antibodies.
A chemiluminescence signal was detected by luminol substrate reaction (ECL Western
Blotting System, GE Healthcare Korea, Seoul, Korea). The values of each sample were
calculated with the corresponding amount of β-actin. The ratio of phosphoprotein to total
protein was described as phosphorylation level [25,37–39].

2.5. Immunohistochemistry, Cell Counts and Measurement of Fluorescent Intensity

Under urethane anesthesia (1.5 g/kg, i.p.), animals were transcardially and subse-
quently perfused with 0.9% saline followed by 4% paraformaldehyde in 0.1 M phosphate
buffer (PB, pH 7.4). The brains were isolated and post-fixed in the same fixative overnight,
and then stored in 30% sucrose/0.1 M PBS. Coronal sections were sliced at a 30-µm thick-
ness with a freezing microtome. Then, sections were reacted with in 0.1% bovine serum
albumin and successively primary antibody (Supplementary Table S1). After washing,
sections were further incubated in appropriate Cy2- and Cy3-conjugated secondary anti-
bodies. Immunofluorescence was observed using an AxioScope microscope (Carl Zeiss
Korea, Seoul, Korea). To establish the specificity of the immunostaining, a negative control
test was carried out with normal mouse serum (#31880, ThermoFisher Korea, Seoul, Korea),
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normal rabbit serum (#31883, ThermoFisher Korea, Seoul, Korea), mouse IgG1 isotype
control (#02-6100, ThermoFisher Korea, Seoul, Korea) and mouse IgG2a isotype control
(#02-6200, ThermoFisher Korea, Seoul, Korea), instead of the primary antibodies. No im-
munoreactivity was observed for the negative control in any structures (Figure S1) [14,15].
All experimental procedures in this study were performed under the same conditions
and in parallel. For cell counts, sections (10 sections per each animal) were captured and
areas of interest (1 × 104 µm2) were selected from the CA1 region using an AxioImage M2
microscope. Thereafter, cell counts were performed using AxioVision Rel. 4.8 Software.
For measurement of fluorescent intensity, 30 areas/rat (400 µm2/area) were randomly
selected within the stratum radiatum of the CA1 region (15 sections from each animal, n = 7
in each group). After capture, green or red channel was converted to a grayscale image,
and mean intensity was measured using AxioVision Rel. 4.8 software (Carl Zeiss Korea,
Seoul, Korea). Fluorescent intensity was normalized by setting the mean background. In
addition, colocalization of Nrf2 with 4′,6-diamidino-2-phenylindole (DAPI) was analyzed
for nuclear Nrf2 intensity. Thereafter, the ratio of nuclear:cytosolic Nrf2 intensity was
calculated. Cell counts and measurement of fluorescent intensities were performed by two
different investigators who were blind to the classification of tissues [25,37–39].

2.6. Data Analysis

Data were analyzed using Student t-test or one-way analysis of variance (ANOVA)
followed by Bonferroni’s post hoc comparisons after evaluating the values on normality
using Shapiro–Wilk W-test. Mann–Whitney U-test was also used to determine statistical
significance of data. A p-value less than 0.05 was considered to be significant [25,37–39].

3. Results
3.1. The Nrf2 Protein Level and Its Nuclear Translocation Are Reduced in Clasmatodendritic Astrocytes

In control animals, Nrf2 expression was mainly observed in the cytoplasm of astro-
cytes in the stratum radiatum in the CA1 region (referred to as CA1 astrocytes below).
Some CA1 astrocytes (~27%) also demonstrated nuclear Nrf2 signals (Figure 1A–D). In
epileptic rats, Nrf2 expression was reduced in clasmatodendritic CA1 astrocytes that had
round-shaped edematous cell bodies, vacuoles, loss of distal processes and glial fibril-
lary acidic protein (GFAP) tangles (t(12) = 12.6, p < 0.00001 vs. control animals, Student
t-test, n = 7, respectively; Figure 1A,B). Only a few CA1 astrocytes (~ 6%) showed nuclear
Nrf2 signals (t(12) = 9.6, p < 0.00001 vs. control animals, Student t-test, n = 7, respectively;
Figure 1A,C). Western blots also revealed that Nrf2 level was reduced to ~0.67-fold of con-
trol animal level in epileptic rats. CDDO-Me increased Nrf2 level to ~1.36- and ~1.35-fold
of vehicle level in control and epileptic animals, respectively (F(3,24) = 56.7, p < 0.00001,
one-way ANOVA, n = 7, respectively; Figure 1E,F, Figure S2). In addition, CDDO-Me
attenuated clasmatodendritic changes in CA1 astrocytes of epileptic animals, accompanied
by elevated Nrf2 fluorescent intensity (F(2,18) = 68.1, p < 0.00001, one-way ANOVA, n = 7,
respectively; Figure 1A,B) and nuclear Nrf2 accumulation (F(2,18) = 1081.1, p < 0.00001,
one-way ANOVA, n = 7, respectively; Figure 1A,B). Thus, CDDO-Me also increased the
ratio of nuclear:cytosolic intensity in CA1 astrocytes (F(2,18) = 19.3, p = 0.00003, one-way
ANOVA, n = 7, respectively; Figure 1A,D). These findings indicate that the reduced Nrf2
level may be involved in autophagic CA1 astroglial degeneration in epileptic animals.
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Figure 1. Effects of CDDO-Me on nuclear factor-erythroid 2-related factor 2 (Nrf2) expression and its nuclear accumu-
lation in CA1 astrocytes of control and epileptic rats. As compared to control animals (Cont), Nrf2 expression and its
nuclear accumulation were reduced in CA1 astrocytes in epileptic rats. CDDO-Me increased Nrf2 expression and its nuclear
accumulation in CA1 astrocytes, as compared to vehicle (Veh). (A) Representative photos demonstrating astroglial Nrf2
expression in CA1 astrocytes. Arrows indicate the inserted magnification photos. (B–D) Quantifications of Nrf2 expression
(B), the fraction of astrocytes showing Nrf2 signals in total astrocytes (C) and the ratio of nuclear:cytosolic Nrf2 intensity (D)
in CA1 astrocytes. Error bars indicate SEM (*,# p < 0.05 vs. control and vehicle-treated epileptic rats, respectively; n = 7).
(E) Representative Western blot for Nrf2 in the CA1 region. (F) Quantitative values (mean ± SEM) of the Western blot data
concerning Nrf2 expression level (n = 7, respectively). Open circles indicate each value. Horizontal bars indicate the mean
value. Significant differences are *,# p < 0.05 vs. control animals and vehicle-treated animals.

3.2. CDDO-Me Regulates ERK1/2-Mediated HSP25 Induction in CA1 Astrocytes

In previous studies [24,25], we reported that ERK1/2-mediated prolonged HSP25
upregulation lead to astroglial autophagy. Thus, we investigated whether CDDO-Me
affected clasmatodendrosis by influencing sustained HSP25 expression in the epileptic
hippocampus. In control animals, HSP25- and lysosomal-associated membrane protein
1 (LAMP1)-positive astrocytes were rarely observed in the hippocampus (Figure 2A,B).
In epileptic rats, HSP25-positive astrocytes demonstrated the clasmatodendritic changes
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with LAMP1 positive vacuoles (Figure 2A,B). In CDDO-Me-treated epileptic rats, CA1
astrocytes showed typical reactive astrogliosis rather than clasmatodendrosis. CDDO-Me
reduced the fluorescent intensities of HSP25 (t(12) = 6.3, p = 0.00004 vs. vehicle, Student
t-test, n = 7, respectively; Figure 2A,C) and LAMP1 (t(12) = 6.8, p = 0.00002 vs. vehicle,
Student t-test, n = 7, respectively; Figure 2B,D) in CA1 astrocytes, respectively.
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Figure 2. Effects of CDDO-Me on HSP25 and LAMP1 expressions in CA1 astrocytes in control and epileptic rats. As
compared to control animals (Cont), expressions of heat shock protein 25 (HSP25) and lysosomal-associated membrane
protein 1 (LAMP1) were increased in CA1 astrocytes in epileptic rats. CDDO-Me decreased both HSP25 and LAMP1
expressions in CA1 astrocytes, as compared to vehicle (Veh). (A,B) Representative photos demonstrating astroglial HSP25
(A) and LAMP1 (B) expressions in CA1 astrocytes. (C,D) Quantifications of HSP25 (C) and LAMP1 (D) expression in CA1
astrocytes. Error bars indicate SEM (* p < 0.05 vs. vehicle-treated epileptic rats, respectively; n = 7).

Western blots showed the increase in LAMP1 expression in the epileptic hippocampus
(t(12) = 16.1, p < 0.00001 vs. control animals, Student t-test, n = 7, respectively; Figure 3A,B),
accompanied by upregulated HSP25 and phospho (p)-HSP25 levels (Figure 3A). In con-
trast, p-ERK1/2 level was significantly lower in the epileptic hippocampus than the
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control (t(12) = 12.1, p < 0.00001 vs. control animals, Student t-test, n = 7, respectively;
Figure 3A,F–H, Figure S2). CDDO-Me decreased LAMP1 expression level to ~0.52-fold of
vehicle level in epileptic animals, respectively (F(3,24) = 106, p < 0.00001 vs. vehicle, one-way
ANOVA, n = 7, respectively; Figure 3A,B). CDDO-Me also reduced HSP25 (t(12) = 9.3,
p < 0.00001 vs. vehicle, Student t-test, n = 7, respectively; Figure 3A,C) and p-HSP25 levels
(t(12) = 6.1, p = 0.00006 vs. vehicle, Student t-test, n = 7, respectively; Figure 3A,D) without
altering the p-HSP25 phosphorylation ratio (Figure 3A,E). However, CDDO-Me increased
p-ERK1/2 level (F(3,24) = 211.1, p < 0.00001 vs. vehicle, one-way ANOVA, n = 7, respectively;
Figure 3A,G) and p-ERK1/2 ratio (F(3,24) = 88.6, p < 0.00001 vs. vehicle, one-way ANOVA,
n = 7, respectively; Figure 3A,H) in control and epileptic rats without changing ERK1/2
expression level (Figure 3A,F, Figure S2). Considering CDDO-Me induced ERK1/2 activa-
tion, and the negative effect of ERK1/2 on SP1-mediated HSP25 induction [25,35], these
findings indicate that CDDO-ME may ameliorate clasmatodendrosis of CA1 astrocytes by
activating ERK1/2-mediated HSP25 inhibition.
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Figure 3. Effects of CDDO-Me on LAMP1, HSP25, p-HSP25, ERK1/2 and p-ERK1/2 levels in the CA1 region of control
and epileptic rats. As compared to control animals (Cont), LAMP1, HSP25 and p-HSP25 levels were enhanced in the CA1
region of epileptic rats. However, extracellular signal-related kinases 1/2 (ERK1/2) phosphorylation (p-ERK1/2) level
was diminished in epileptic rats without altering its protein level. CDDO-Me treatment decreased protein expression
and phosphorylation of LAMP1 and HSP25, but increased ERK1/2 phosphorylation. (A) Representative Western blot for
LAMP1, HSP25, p-HSP25, ERK1/2 and p-ERK1/2 in the CA1 regions. (B–H) Quantitative values (mean ± SEM) of protein,
phosphorylation and phosphorylation ratio concerning LAMP1 (B), HSP25 (C–E) and ERK1/2 (F–H) (n = 7). Open circles
indicate each value. Horizontal bars indicate the mean value. Significant differences are *,# p < 0.05 vs. control animals and
vehicle-treated animals.



Antioxidants 2021, 10, 655 8 of 19

3.3. CDDO-Me Leads to PTEN-Mediated AKT Inhibition in the Epileptic Hippocampus

Sustained HSP25 induction activates AKT serine (S) 473/Bif-1-mediated autophagy in
CA1 astrocytes, and AKT inhibition attenuates clasmatodendrosis [25]. Thus, it is likely
that CDDO-Me may also ameliorate clasmatodendrosis in CA1 astrocytes by inhibiting
AKT activity. In the present study, p-AKT level (t(12) = 10.7, p < 0.00001 vs. control animals,
Student t-test, n = 7, respectively; Figure 4A–C), p-AKT ratio (t(12) = 15.3, p < 0.00001
vs. control animals, Student t-test, n = 7, respectively; Figure 4A,D, Figure S3) and Bif-1
expression (t(12) = 8.8, p < 0.00001 vs. control animals, Student t-test, n = 7, respectively;
Figure 4A,E, Figure S3) in the epileptic hippocampus was higher than that in the control
hippocampus. CDDO-Me attenuated the elevated p-AKT level (F(3,24) = 76.6, p < 0.00001
vs. vehicle, one-way ANOVA, n = 7, respectively; Figure 4A,C, Figure S3), p-AKT ratio
(F(3,24) = 79.4, p < 0.00001 vs. vehicle, one-way ANOVA, n = 7, respectively; Figure 4A,D)
and Bif-1 level (F(3,24) = 44.4, p < 0.00001 vs. vehicle, one-way ANOVA, n = 7, respectively;
Figure 4A,E). These findings indicate that CDDO-Me may inhibit AKT/Bif-1-mediated
astroglial autophagy in the epileptic hippocampus.
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Figure 4. Effects of CDDO-Me on AKT, p-AKT, Bif-1, PTEN and p-PTEN levels in the CA1 region of control and
epileptic rats. As compared to control animals (Cont), AKT-S473 phosphorylation and bax-interacting factor 1 (Bif-1)
expression were lower in the CA1 region of epileptic rats. However, PTEN expression and its phosphorylation were also
decreased in epileptic rats. CDDO-Me treatment attenuated the increases in AKT phosphorylation and Bif-1 expression in
epileptic rats. In addition, CDDO-Me reduced p-PTEN level in epileptic rats without affecting its protein expression level.
(A) Representative Western blot for AKT, p-AKT, Bif-1, PTEN and p-PTEN in the CA1 regions. (B–H) Quantitative values
(mean ± SEM) of protein, phosphorylation and phosphorylation ratio concerning AKT (B–D), Bif-1 (E) and PTEN (F–H)
(n = 7, respectively). Open circles indicate each value. Horizontal bars indicate the mean value. Significant differences are
*,# p < 0.05 vs. control animals and vehicle-treated animals.
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Since PTEN negatively regulates AKT phosphorylation [40], we also validated the
effect of CDDO-Me on PTEN expression and its phosphorylation. Consistent with previous
studies [41,42], PTEN protein level (t(12) = 17.4, p < 0.00001 vs. control animals, Student
t-test, n = 7, respectively; Figure 4A,F, Figure S3) and its phosphorylation levels were down-
regulated in the epileptic hippocampus (t(12) = 12.9, p < 0.00001 vs. control animals, Student
t-test, n = 7, respectively; Figure 4A,G, Figure S3). However, p-PTEN ratio was unaltered
(Figure 4A,H). Considering that PTEN phosphorylation represents its inactivation [43],
these findings indicate that the reduced PTEN expression, but not its post-modification
(phosphorylation), may decrease PTEN activity in the epileptic hippocampus. CDDO-Me
reduced p-PTEN level (F(3,24) = 253.9, p < 0.00001 vs. vehicle, one-way ANOVA, n = 7,
respectively; Figure 4A,G) and its ratio (F(3,24) = 37.4, p < 0.00001 vs. vehicle, one-way
ANOVA, n = 7, respectively; Figure 4A,H) in the epileptic hippocampus without affecting
PTEN protein level (Figure 4A,F). Thus, it is likely that CDDO-Me may increase PTEN
activity in the epileptic hippocampus by reducing PTEN phosphorylation. These findings
represent that CDDO-Me may abrogate clasmatodendrosis by facilitating PTEN-mediated
AKT inhibition in the epileptic hippocampus.

3.4. CDDO-Me Inhibits CK2 Phosphorylation in the Epileptic Hippocampus

CK2 was the first to be identified and is the most prominently characterized PTEN
kinase. CK2 regulates PTEN stability, activity and subcellular localization via phosphoryla-
tion of PTEN at S370, S380, threonine (T) 382, T383 and S385 sites [44,45]. CK2 activity is
regulated by the phosphorylation of tyrosine (Y) 255 and T360/S362 sites, which are phos-
phorylated by Src family protein tyrosine kinases and ERK1/2, respectively [46,47]. Thus,
we explored whether CDDO-Me affected CK2 expression and its phosphorylation in the
epileptic hippocampus. Consistent with a previous study demonstrating the unchanged
CK2 expression after kainic acid injection [37,48], CK2 expression was similarly observed in
the epileptic hippocampus, as compared to the control (Figure 5A,B, Figure S4). However,
CK2 Y255 phosphorylation (t(12) = 8.93, p < 0.00001 vs. control animals, Student t-test, n = 7,
respectively; Figure 5A,C) and its ratio (t(12) = 6.73, p = 0.00002 vs. control animals, Student
t-test, n = 7, respectively; Figure 5A,D, Figure S4) were reduced in the epileptic hippocam-
pus. CK2 T360/S362 phosphorylation level and its ratio were similar to those observed
in control animals (Figure 5A,E,F, Figure S4). Although CDDO-Me did not affect CK2
phosphorylation in the normal hippocampus, it alleviated CK2 Y255 phosphorylation level
(F(3,24) = 101.7, p < 0.00001 vs. vehicle, one-way ANOVA, n = 7, respectively; Figure 5A,C)
and its ratio (F(3,24) = 47.1, p < 0.00001 vs. vehicle, one-way ANOVA, n = 7, respectively;
Figure 5A,D, Figure S4) without altering T360/S362 phosphorylation (Figure 5A,E,F). Thus,
these findings indicate that CDDO-Me may activate PTEN activity via inhibiting CK2 Y255
phosphorylation in the epileptic hippocampus.
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Figure 5. Effects of CDDO-Me on CK2 and p-CK2 levels in the CA1 region of control and epileptic rats. As compared
to control animals (Cont), casein kinase 2 (CK2)-Y255, but not T360/S362, phosphorylation was reduced in the CA1 region
of epileptic rats without altering its expression level. CDDO-Me treatment decreased CK2-Y255 phosphorylation more
in epileptic rats. (A) Representative Western blot for CK2 and p-CK2 in the CA1 regions. (B–F) Quantitative values
(mean ± SEM) of protein, phosphorylation and phosphorylation ratio concerning CK2 (B), p-CK2-Y255 (C,D) and p-CK2-
T360/S362 (E,F) (n = 7). Open circles indicate each value. Horizontal bars indicate the mean value. Significant differences
are *,# p < 0.05 vs. control animals and vehicle-treated animals.

3.5. CDDO-Me Inhibits Src Family Phosphorylation at Y416 Site in the Epileptic Hippocampus

As aforementioned, CK2 increased its catalytic activity by Src family protein tyrosine
kinases-mediated phosphorylation at the Y255 residue [37,46]. The Src family of protein
tyrosine kinase activities are regulated by tyrosine phosphorylation at two sites, but with
opposing effects. Autophosphorylation of tyrosine (Y) 396 (equivalent to Y416 of Src),
located in the catalytic domain, upregulates Src kinase activity. Y507 phosphorylation
(equivalent to Y527 of Src) inactivates the kinase activity, while dephosphorylation of this
site is not sufficient for full kinase activation [49,50]. Interestingly, CDDO-Me affects Src and
AKT activation [51,52]. Thus, we evaluated the effect of CDDO-Me on Src family activities.
As compared to the control hippocampus, Src family-Y416 phosphorylation was reduced in
the epileptic hippocampus without changing Src family expression (t(12) = 19.4, p < 0.00001
vs. control animals, Student t-test, n = 7, respectively; Figure 6A–C, Figure S5). p-Src-Y416
family ratio was also decreased in the epileptic hippocampus (t(12) = 6.7, p = 0.00002 vs.
control animals, Student t-test, n = 7, respectively; Figure 6A,D, Figure S5). CDDO-Me
reduced the p-Src-Y416 level (F(3,24) = 108.3, p < 0.00001 vs. vehicle, one-way ANOVA, n = 7,
respectively; Figure 6A,C, Figure S5) and its ratio (F(3,24) = 46.7, p < 0.00001 vs. vehicle, one-
way ANOVA, n = 7, respectively; Figure 6A,D, Figure S5) in the epileptic hippocampus, but
not the normal hippocampus. In addition, Src family-Y527 phosphorylation was decreased
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in the epileptic hippocampus (t(12) = 9.1, p < 0.00001 vs. control animals, Student t-test,
n = 7, respectively; Figure 6A,E) and p-Src-Y527 ratio (t(12) = 6.5, p = 0.00003 vs. control
animals, Student t-test, n = 7, respectively; Figure 6A,F). However, CDDO-Me did not
affect p-Src-Y527 level (t(12) = 0.5, p = 0.65 vs. vehicle, Student t-test, n = 7, respectively;
Figure 6A,E, Figure S5) and its ratio (t(12) = 0.4, p = 0.68 vs. vehicle, Student t-test, n = 7,
respectively; Figure 6A,F) in the epileptic hippocampus. These findings indicate that
CDDO-Me may activate PTEN by inhibiting the Src family-CK2 signaling pathway.
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Figure 6. Effects of CDDO-Me on Src and p-Src levels in the CA1 region of control and epileptic rats. As compared
to control animals (Cont), Src-Y416 and Y527 phosphorylation was reduced in the CA1 region of epileptic rats without
altering its expression level. CDDO-Me treatment decreased Src-Y416, but not Y527, phosphorylation in epileptic rats.
(A) Representative Western blot for Src and p-Src in the CA1 regions. (B–F) Quantitative values (mean ± SEM) of protein,
phosphorylation and phosphorylation ratio concerning Src (n = 7, respectively). Open circles indicate each value. Horizontal
bars indicate the mean value. Significant differences are *,# p < 0.05 vs. control animals and vehicle-treated animals.

3.6. CDDO-Me Decreases Seizure Duration, But Not Seizure Frequency or Its Intensity

Since conventional anti-epileptic drugs protect CA1 astrocytes from clasmatodendritic
degeneration [16], it seems that clasmatodendrosis is relevant to spontaneous seizure
activity. Therefore, we evaluated the effect of CDDO-Me on spontaneous seizure activity
in epileptic rats over a 4-day period. Under basal (vehicle-treated) conditions, the total
seizure frequency was 7.9 ± 1.3/recording session and the total seizure duration was
874.4 ± 227.6 s. The seizure severity (behavioral seizure core) was 3.7 ± 0.5 (Figure 7A–D).
CDDO-Me did not affect total seizure frequency (7.6 ± 2.5; Figure 7B). However, the total
seizure duration was reduced to 499.6 ± 178.7 s (t(6) = 3.27, p = 0.02 vs. vehicle, Student
t-test, n = 7, respectively; Figure 7C). The seizure severity (3.4 ± 0.7) was unaffected by
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CDDO-Me (Figure 7D). These findings indicate that CDDO-ME may decrease seizure
duration, but not its frequency and severity, in chronic epileptic rats.
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Figure 7. Effects of CDDO-Me on spontaneous seizure activity in epileptic rats. CDDO-Me treatment reduces seizure
duration, but not seizure frequency and its severity in epileptic rats. (A) Representative EEG traces obtained from control
and epileptic rats. (B–D) Quantitative values of total seizure frequency (B), total seizure duration (C) and seizure severity
(D) over a 4-day period. Open circles indicate each individual value. Horizontal bars indicate mean value. Error bars
indicate SD (* p < 0.05 vs. vehicle (Veh)-treated animals; Mann–Whitney U-test for seizure frequency and seizure severity;
Student t-test for seizure duration; n = 7).

4. Discussion

The major findings in the present study were that CDDO-Me attenuated HSP25-
induced clasmatodendrosis through Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN- PI3K-AKT-
GSK3β-Bif-1-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me
ameliorated spontaneous seizure duration, but not seizure frequency and behavioral
seizure severity (Figure 8).
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Figure 8. Schematic depiction representing the effects of CDDO-Me on astroglial autophagy
(clasmatodendrosis). CDDO-Me activates Nrf2-mediated antioxidant defense mechanisms and SP1
suppression, which inhibit further ROS synthesis and HSP25 induction, respectively. In addition,
CDDO-Me facilitates ERK1/2-SP1-mediated HSP25 suppression that abrogates PI3K/AKT activation.
CDDO-Me also abolishes the PI3K-AKT-Bif-1 signaling pathway by repressing Src-CK2-mediated
PTEN inhibition.

Clasmatodendrosis was first described by Alzheimer and was postulated to reflect
irreversible injury of astrocytes [10]. Clasmatodendrosis is a pathological substrate, linked
to white matter hyperintensities, as seen on brain T2-weighted magnetic resonance imaging
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associated with stroke, Alzheimer’s disease and vascular dementia [53,54]. In addition,
influenza-associated encephalopathy [55], traumatic brain injury [56], methamphetamine
abuse [57], neuromyelitis optica [58], explosive blasts [59] and osmotic demyelination
syndrome [19] induce clasmatodendrosis in the brain gray matter as well as the white
matter. Although recent reports have demonstrated that clasmatodendrosis is a corollary
of senescence, autophagy, metabolic dysfunction, endoplasmic reticulum (ER) stress or
nuclear factor-κB (NFκB) activation [12,18,60,61], the role or the underlying mechanism of
this pathological change are not well-defined.

In the present study, clasmatodendritic CA1 astrocytes showed a reduced Nrf2 level
in chronic epilepsy rats, and CDDO-Me (an Nrf2 activator) attenuated this astroglial de-
generation. Clasmatodendrosis is initiated by acidosis (~pH 5) and energy failure induced
by mitochondrial inhibition [62], which are induced by oxidative stress [63–65]. This is
because ROS reduce glycolysis, leading to intracellular acidosis by the inhibition of Na+-H+

exchangers and Na+-HCO3
− cotransporters [63], which subsequently impairs the enzy-

matic steps of glutathione (GSH, an endogenous antioxidant) synthesis [65]. Considering
the Nrf2-mediated regulation of γ-glutamyl cysteine ligase and of cystine/glutamate trans-
porters (xCT or SLC7a11), which facilities the up-take of cystine (a GSH precursor) [66],
our findings indicate that the dysfunction of Nrf2-mediated antioxidant system may be
involved in the initiation of clasmatodendrosis.

Oxidative stress also induces HSP25 (a murine/rodent homologue of human HSP27)
that elevates proteasome activity and prevents ROS-induced apoptosis [67–70]. HSP25
is an inducible HSP that is prominently expressed in astrocytes, and not in neurons, in
response to seizure activity [71,72]. In addition, HSP25 is a sensitive and reliable rep-
resentative marker of the early astroglial energy-consuming events [72,73]. However,
impaired clearance of HSP25 reduces astroglial viability via endoplasmic reticulum (ER)
stress-induced astroglial autophagy [24,74], although HSP25 facilitates protein folding
and the removal of aberrant proteins [75,76]. In previous studies [24,25], sustained HSP25
expression lead to clasmatodendrosis. During this process, the reduced ERK1/2-mediated
SP1 phosphorylation induces the prolonged HSP25 upregulation [25], since SP1 phospho-
rylation inhibits HSP25 transactivation by reducing the SP1 DNA-binding ability [77,78].
In the present study, clasmatodendritic CA1 astrocytes demonstrated HSP25 accumulation
with LAMP1 positive vacuoles. Furthermore, CDDO-Me attenuated clasmatodendrosis in
CA1 astrocytes concomitant with enhanced ERK1/2 phosphorylation. Since CDDO-Me
decreased SP1 expression [79] and increased ERK1/2 activity [35], our findings suggest
that CDDO-Me may ameliorate clasmatodendrosis by abrogating prolonged HSP25 up-
regulation through the repression of SP1 transcription and/or ERK1/2-mediated SP1
phosphorylation, accompanied by Nrf2 activation.

On the other hand, HSP25 binds and forms a new complex with AKT, securing
AKT’s natural conformation and enzymatic activity [80]. In addition, HSP25 increases
AKT-S473 phosphorylation, which exerts a mechanistic target of rapamycin (mTOR)-
independent astroglial autophagy by GSK3β-mediated Bif-1 accumulation [25,81]. Indeed,
HSP25 siRNA attenuates clasmatodendrosis by inhibiting the AKT-GSK3β-Bif-1 signal-
ing pathway [24,25,82]. In addition, HSP25 over-expression sustains AKT-S473 phospho-
rylation by inhibiting the pleckstrin homology domain and leucine-rich repeat protein
phosphatase (PHLPP) 1 and 2-binding to AKT (Lee and Kim, 2020). Since HSP25–AKT
interaction is not required to promote AKT activation and HSP25 does not interact with
PI3K [83,84], it is likely that HSP25 may function as a chaperone to maintain AKT activity
rather than an indispensable factor for AKT activation. In the present study, CDDO-Me
reduced p-HSP25, p-AKT and Bif-1 levels in the epileptic hippocampus. Regarding the
aforementioned role of HSP25 in AKT phosphorylation [82–86], these findings suggest that
CDDO-Me-induced HSP25 downregulation may prevent AKT hyper-phosphorylation by
diminishing the HSP25 function as a chaperone for AKT.

In the canonical pathway, AKT is dephosphorylated by PTEN [87], which is down-
regulated by seizure activity [41,42]. Mutation or inactivation of PTEN contributes to
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seizures in human patients and animal models [88–90]. Indeed, PTEN mRNA and its
protein expression are downregulated in the rat hippocampus following pentylenetetrazol
or kainic acid injection [41,42]. We have also reported that PTEN expression level is lower
in the rat epileptic hippocampus than that in the normal hippocampus [39]. In the present
study, p-PTEN ratio was similarly observed between the control and the epileptic hip-
pocampus, although PTEN phosphorylation level was lower in the epileptic hippocampus
than the normal hippocampus. In addition, CDDO-Me decreased PTEN phosphorylation
only in the epileptic hippocampus. Considering that PTEN phosphorylation represents
its inactivation [43], these findings indicate that CDDO-Me may increase PTEN activity,
and that CDDO-Me may mitigate clasmatodendrosis by facilitating PTEN-mediated AKT
inhibition in the epileptic hippocampus.

On the other hand, Src family-Y416 phosphorylation level is significantly decreased in
human symptomatic epileptic tissues, as compared to control tissues [91]. Consistent with
this previous report, the present study reveals the reduced Src family-Y416 phosphorylation
level in the epileptic hippocampus, accompanied by increased AKT phosphorylation.
Furthermore, CDDO-Me diminished phosphorylation of Src family-Y416 and CK2-Y255,
which are signaling molecules acting as PTEN kinases [44–47]. Thus, our findings indicate
that CDDO-Me may increase PTEN activity by inhibiting Src and CK2 phosphorylation.
ERK1/2 also phosphorylates CK2 primarily at T360/S362, subsequently enhancing CK2
activity. Indeed, the level of catenin (a substrate of CK2) phosphorylation correlates
with levels of ERK1/2 activity in human glioblastoma [47]. Therefore, it is presumable
that CDDO-Me-induced ERK1/2 activation is involved in CK2 activation. However, the
present data demonstrate that CK2 T360/S362 phosphorylations were unaltered in the
epileptic hippocampus, and unaffected by CDDO-Me. Therefore, it is likely that CK2-Y255
phosphorylation may be involved in PTEN phosphorylation. With respect to CDDO-
Me-induced Src and AKT inactivations [51,52], thus, our findings suggest that CDDO-
Me may mitigate clasmatodendrosis by regulating the Src-CK2-PTEN-AKT-GSK3β-Bif-1
signaling pathway.

In a previous study, we reported that clasmatodendritic changes might be a conse-
quence of prolonged recurrent seizures induced by hyperexcitability of the temporoam-
monic path, and not a cause of epileptogenesis. This is because anti-epileptic drugs
(valproate, carbamazepine and vigabatrin) prevent clasmatodendrosis in the epileptic
hippocampus [16]. However, it could not be excluded the possibility that clasmatoden-
drosis could affect ictogenesis in the epileptic hippocampus. In the present study, we
found that CDDO-Me diminished seizure duration, but not its frequency and severity, in
chronic epileptic rats. Astrocytes play an important role in K+ buffering [92]. In addition, α-
aminoadipic acid (an astroglial toxin) and 4-aminopyridine (a K+ channel blocker) synchro-
nize reverberant epileptiform discharges [16,93]. Thus, our findings indicate that clasmato-
dendrosis may influence seizure duration in the epileptic hippocampus. Indeed, 4,5,6,7-
tetrabromotriazole (TBB), a CK2 inhibitor, prevents acute epileptiform discharges [94].
Furthermore, we recently reported that α-amino-3-hydroxy-5-methylisoxazole-4-propionic
acid receptor (AMPAR) antagonists decreased CK2 Y255 phosphorylation, but not its
T360/S362 phosphorylation levels in chronic epilepsy rats, accompanied by reduced seizure
activity [37]. However, they reduced Src-Y416 phosphorylation level, but increased Src-
Y527 phosphorylation level [37], unlike CDDO-Me in the present study. Although the
direct experimental evidence for a role of clasmatodendrosis in seizure activity is currently
limited, it is plausible that clasmatodendrosis may be considered an epiphenomenon affect-
ing seizure duration rather than a primary ictogenic factor in the epileptic hippocampus.
In clasmatodendritic astrocytes, aquaporin-4 (AQP4; a water channel) expression is de-
creased and aggregated in dense peripheral cellular deposits at the edge of rounded or
swollen astrocytes in the human brain [54,55]. Similarly, AQP4 expression is negligible in
clasmatodendritic CA1 astrocytes in the hippocampus of chronic epileptic rats [17]. Inter-
estingly, astrocytes lacking AQP4 increase seizure duration, since AQP4 deletion delays
clearance of K+ from extracellular space [95]. With respect to these previous reports, it is
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likely that clasmatodendritic astrocytes may lead to the slow clearance of K+ and water
from extracellular space in the ictal stage, which could be involved in the duration and
propagation of synchronous discharges in the epileptic hippocampus. Further studies are
needed to elucidate the underlying mechanisms concerning the role of clasmatodendrosis
in ictogenesis.

5. Conclusions

In the present study, we demonstrated, for the first time, that CDDO-Me ameliorated
HSP25-induced astroglial autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K-
AKT-GSK3β-Bif-1-mediated signaling pathways in chronic epilepsy rats. In addition,
CDDO-Me shortened seizure duration. Therefore, our findings suggest that autophagic
astroglial degeneration may play an important role in the maintenance of spontaneous
seizure activity, which could be one of the therapeutic targets for TLE medications.
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