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Abstract: Over the last several decades, hydrogen sulfide (H2S) has gained attention as a new
signaling molecule, with extensive physiological and pathophysiological roles in human disorders
affecting vascular biology, immune functions, cellular survival, metabolism, longevity, development,
and stress resistance. Apart from its known functions in oxidative stress and inflammation, new
evidence has emerged revealing that H2S carries out physiological functions by targeting proteins,
enzymes, and transcription factors through a post-translational modification known as persulfidation.
This review article provides a critical overview of the current state of the literature addressing the
role of H2S in obesity-associated metabolic disturbances, with particular emphasis on its mechanisms
of action in obesity, diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases.
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1. Introduction

Gasotransmitters are small molecules of endogenous gas that have the noticeable
ability to diffuse into cells to interact with their targets, inducing an array of intracellular
signaling and pathophysiological responses [1,2]. Hydrogen sulfide is the most recent
addition to the gasotransmitters family, the first two being nitric oxide (NO) and carbon
monoxide (CO) [3].

Instead of binding to plasma membrane receptors, the high solubility of gasotrans-
mitters in lipids allows them to penetrate cell membranes without requiring a specific
transporter or receptor. Gasotransmitters are generated endogenously by specific enzymes
and can generate various functions at physiologically relevant concentrations by targeting
specific cellular and molecular targets [4]. A gaseous substance is not readily stored in
vesicular structures and so must be resynthesized as needed. This implies that the biosyn-
thetic enzymes must be subject to tightly regulated mechanisms [5]. Abnormal generation
and metabolism of these gasotransmitters have been extensively demonstrated to affect
diverse biological processes, such as vascular biology, immune functions, cellular survival,
metabolism, longevity, development, and stress resistance [4].

Perhaps the most remarkably unique feature of gasotransmitters relates to the molecu-
lar mechanisms whereby they signal to their targets. Gasotransmitters chemically modify
intracellular proteins, thus affecting cellular metabolism in a more immediate fashion than
other signal transduction mechanisms [5].

H2S has been traditionally considered only as a toxic agent for living organisms [6].
Nowadays, it is considered a gaseous mediator that plays important regulatory roles in
innate immunity and inflammatory responses, impacting the development of cardiovascu-
lar and metabolic disorders [7–11]. Dysfunctional tissue H2S metabolism is increasingly
implicated in different pathologies, from cardiovascular [12,13] and neurodegenerative
diseases [14–16] to cancer [17,18]. There is emerging evidence supporting the importance
of H2S in the pathophysiology of obesity, type 2 diabetes, NAFLD, and cardiovascular
diseases. Understanding the precise mechanisms that control H2S homeostasis and their
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dysregulation is a major research focus. Despite decades of molecular and cellular studies
on the enzymatic systems involved in H2S synthesis and breakdown, it appears at times
that this field of biology is still in its infancy, with new targets of H2S and related species
constantly being identified and new mechanistic details being revealed. In this review, we
provide an overview of the current state of the literature about H2S in the context of obesity,
diabetes, NAFLD, and cardiovascular diseases.

2. Biosynthesis of H2S

Hydrogen sulfide biosynthesis has been identified in a variety of mammalian tis-
sues via enzymatic and non-enzymatic pathways [17]. In enzymatic biosynthesis, the
endogenous generation of H2S from L-cysteine in the cytosol of cells is mainly medi-
ated by two pyridoxal-5′-phosphate (PLP)-dependent enzymes known as cystathionine
β-synthase (CBS) [19] and cystathionine γ-lyase (CTH or CSE) [20]. H2S is also produced
by L-cysteine aminotransferase (CAT) and 3-mercapto-pyruvate sulfurtransferase (MPST)
in the cytosol and mitochondria [21]. The expression of these enzymes is tissue-specific; in
some tissues, CBS, CTH and MPST are all needed for the generation of H2S, whereas in
others one enzyme serves this function. A small portion of endogenous H2S is derived via
non-enzymatic reduction sulfur species, which are present in certain metabolites [17].

2.1. Enzymatic Synthesis of H2S

The transsulfuration pathway plays a central role in sulfur metabolism and redox
regulation in cells. The pathway leads to the generation of several sulfur metabolites,
which include L-cysteine, glutathione (GSH), taurine, and the gaseous signaling molecule
hydrogen sulfide [22]. In mammals, the pathway involves the transfer of sulfur from
homocysteine to cysteine via cystathionine and is the only route for the biosynthesis
of cysteine. Homocysteine, which is derived from dietary methionine, is converted to
cystathionine by cystathionine β-synthase (CBS), which is acted on by cystathionine γ-lyase
(CTH) to generate L-cysteine [22] (Figure 1).

In addition to its essential role in protein synthesis, cysteine is also a component
of the major antioxidant GSH and is a potent antioxidant itself [23]. Disruption of cys-
teine and GSH metabolism has been frequently linked to aberrant redox homeostasis and
neurodegeneration [23,24]. Both CTH and CBS play important roles in the regulation of
redox balance. It has been reported that approximately 50% of the cysteine generated
by the transsulfuration pathway is utilized for GSH biosynthesis in hepatic cells [25,26].
Cysteine is also the precursor of the gaseous signaling molecule hydrogen sulfide and
other sulfur metabolites [27,28]. In addition to GSH and H2S, cysteine is converted to
the sulfur-containing molecule taurine by the action of the enzyme cysteine dioxygenase
(CDO) to form cysteinensulfinic acid, which can then be decarboxylated to hypotaurine
by cysteine sulfinic acid decarboxylase, and the hypotaurine generated can be oxidized
to taurine [29]. Since CDO acts directly on cysteine, it can modulate H2S production by
influencing substrate availability. Mice lacking CDO show an elevated cysteine and H2S
production capacity [30,31]. Taurine plays a role in osmoregulation, immunomodula-
tion, neuromodulation, Ca2+ homeostasis, and ocular function and possesses antioxidant
and anti-inflammatory effects [32]. The transsulfuration pathway is intimately linked to
the transmethylation pathway via homocysteine, which can be remethylated to generate
methionine or can be irreversibly converted to cysteine (Figure 1).
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Figure 1. Overview of the transsulfuration pathway. There are four enzymatic pathways for the biosynthesis of H2S,
including CBS, CSE, MPST coupled with CAT, and MPST coupled with DAO. Non-enzymatic H2S generation occurs
in the presence of reducing equivalents such as NADPH and NADH, reactive sulfur species in persulfides, thiosulfate,
and polysulfides that are reduced into H2S and other metabolites. The transsulfuration pathway intersects with the
transmethylation pathway at homocysteine. Methionine is an indispensable amino acid and is transmethylated intracellu-
larly via S-adenosylmethionine (SAM), an important methyl donor for most biological methylation reactions, producing
S-adenosylhomocysteine (SAH) in this process, and is then hydrolyzed to homocysteine. Homocysteine can be remethylated
back to methionine by N5,N10-methylenetetrahydrofolate reductase (MTHFR). The cysteine generated by the pathway can
be conducted into GSH synthesis by the action of the enzymes γ-glutamyl cysteine synthetase (γ-GCS) and glutathione
synthetase (GS) or converted to other sulfur-containing molecules such as taurine. Taurine is generated by the action of
three enzymes, CDO, cysteine sulfinic acid decarboxylase (CSAD), and hypotaurine dehydrogenase (HTAU-DH).

Recently, an alternative enzymatic pathway to the transsulfuration pathway has been
identified for the enzymatic generation of H2S within mitochondria, known as the 3-
mercaptopyruvate pathway. The pathway requires two enzymes, 3-mercaptopyruvate
sulfurtransferase and the PLP-dependent enzyme cysteine aminotransferase (CAT). 3-
mercaptopyruvate (3MP) is produced by CAT from L-cysteine and α-ketoglutarate [21].
Thereafter, MPST transfers a sulfur atom from 3MP onto itself, which leads to the formation
of a persulfide, MPST-SS. H2S and MPST are then released from the persulfideof MPST-SS
in the presence of reductants such as thioredoxin (TRX) and dihydrolipoic acid (DHLA) [33].
Recently, another source of 3MP was found in mammals by Shibuya et al.: D-cysteine [34].
Specifically, D-cysteine is transformed into 3MP by peroxisome-located d-amino acid
oxidase (DAO). Metabolite exchanges between peroxisome and mitochondria can import
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3MP into mitochondria, where it is further catalyzed into H2S by MPST. Because of the
exclusive location of DAO in the brain and kidney, this H2S-generating pathway is currently
believed to exist only in these two organs [17].

2.2. Non-Enzymatic Synthesis of H2S

Several cases of the non-enzymatic production of H2S have been reported, and these
are suspected to represent a small proportion of all generated endogenous H2S. It is
postulated that coordinated activities of PLP and iron (Fe3+) catalyze the generation of
H2S using cysteine as a substrate, in a non-enzymatic manner in specific circumstances.
Regulation of H2S production via this pathway may contribute to the pathophysiology
of conditions with iron dysregulation such as hemolysis, iron overload, and hemorrhagic
disorders [35].

H2S can also be generated from sulfane sulfur via non-enzymatical reduction in
the presence of an endogenous reductant, such as nicotinamide adenine dinucleotide
phosphate (NADPH) and nicotinamide adenine dinucleotide (NADH), which are supplied
by oxidation of glucose via glycolysis or from phosphogluconate via NADPH oxidase [36].
In the presence of such reductants, reactive sulfur species in persulfides, thiosulfate, and
polysulfides can be reduced into H2S and other metabolites [37]. Essentially, all the
components of this non-enzymatic route are available in mammals, including reducible
sulfur, suggesting the necessity of this pathway in mammalian systems. In accordance
with this, hyperglycemia is demonstrated to promote H2S generation by enhancing this
pathway [38].

3. The Relationship between H2S and Obesity

Obesity is characterized by the excessive accumulation and storage of fat in the body
(regionally, globally, or both) that may be harmful to health and is defined by a body mass
index (BMI) of 30 kg/m2 or greater, being considered morbidly obesity when BMI is over
35 kg/m2.

The epidemic of obesity presents a serious threat to human health around the world.
The worldwide prevalence of obesity has increased dramatically over the past 30 years,
fueled by economic growth, industrialization, mechanized transport, urbanization, an
increasingly sedentary lifestyle, and a nutritional transition to processed foods and high-
calorie diets [39]. According to the World Health Organization (WHO), 30% of Americans
and 10%–20% of Europeans are obese, and on estimate more than 1.9 billion adults world-
wide are overweight. High body mass carries with it an increased risk of the development
of a number of serious cardiovascular and metabolic diseases, such as type 2 diabetes,
hypertension, dyslipidemia, stroke, osteoarthritis, as well as several different forms of
cancer [40]. There is emerging evidence supporting the importance of H2S in the patho-
physiology of obesity.

3.1. The Importance of H2S in Obesity

Few studies have evaluated circulating sulfide in humans, with discrepant results.
Whiteman et al. were the first ones to demonstrate the involvement of H2S in obesity [41].
These authors found that plasma H2S levels were significantly decreased in non-obese indi-
viduals with type-2 diabetes and in overweight participants with altered glucose [41]. How-
ever, the mechanisms that mediate the loss of H2S were not elucidated in that early study.

Additionally, other animal studies have demonstrated that exogenous H2S administra-
tion led to increased insulin sensitivity and improved glucose tolerance after a high-fat diet
was fed to mice in parallel to weight gain [42,43]. Supplementation with H2S donors or in-
creasing endogenous H2S biosynthesis was sufficient to stimulate fat mass accumulation in
mice and fruit flies, whereas the depletion of endogenous H2S biosynthesis prevented high
fat diet-induced fat mass (HFD-induced fat mass) [43,44]. Later, Alkhouri et al. reported
that the H2S concentration in exhaled air was higher by 1/3 in obese children compared to
lean children [45].
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Recently, Comas and colleagues demonstrated that serum sulfide concentrations were
increased in subjects with morbid obesity in proportion to fat mass [46]. Longitudinally,
weight gain resulted in increased serum sulfide concentration, whereas weight loss had
opposite effects, being the percent change in serum sulfide positively correlated with the
percent change in BMI and waist circumference [46]. Ren and colleagues demonstrated that
a milk protein concentrate diet prevents obesity induced by HFD in Sprague Dawley rats.
This protection against obesity was associated with increased transsulfuration pathway
and plasma H2S levels, which in turn maintained redox homeostasis and reduced lipid
disorders induced by HFD [47].

Due to the lack of standardized methodology and variation in models and study
cohorts, we see contradicting reports about H2S in obesity (Table 1). Depending on the
technique used to measure sulfide, reported circulating levels of sulfide vary widely in
obese and lean individuals. Furthermore, more human and animal studies are needed to
fully comprehend the physiological and pathophysiological roles of H2S in obesity.

Table 1. Findings present in the literature related to the reported circulating levels of sulfide in obesity.

Subjects Sample Methodology Sulfide Levels (Mean) Reference

Lean (n = 11) vs Overweight
(n = 16) Plasma Zinc trap

spectrophotometry 38.9 µM vs 22 µM Whiteman et al. (2010)

Lean (n = 55) vs
overweight/obese
(n = 60) children

Exhaled breath
Selected-Ion

Flow-Tube Mass
Spectrometry

0.35 ppb vs 0.49 ppb Alkhouri et al. (2014)

Non-obese (n = 54) vs Obese
(n = 85) Serum

Naphthalimide-
based fluorescence

probe
5.67 µM vs 10.08 µM Comas et al. (2020)

Non-obese (n = 42) vs Obese
(n = 40) Serum

Naphthalimide-
based fluorescence

probe
7.35 µM vs 10.31 µM Comas et al. (2020)

3.2. Persulfidation Might Prevent the Negative Effects of Obesity-Associated Oxidative Stress

Signaling by H2S is proposed to occur via persulfidation, a posttranslational modifica-
tion of cysteine residues (RSH) to persulfides (RSSH) [48], thought to be one of its main
beneficial mechanisms of action [28]. Like other posttranslational modifications, persulfi-
dation potentially alters a protein’s structure, function, stability, and/or macromolecular
interactions [48–50]. Nonetheless, due to their enhanced nucleophilicity, persulfides react
readily with reactive oxygen species (ROS), whereas H2S itself is a poor ROS scavenger.
When exposed to ROS, proteins undergo oxidation to form sulfenic acids (P-SOH), sulfinic
acids (P-SO2H), and sulphonic acids (P-SO3H), which cause the irreversible inactivation of
the protein [51].

The detrimental actions of ROS are well-known. ROS are physiologically important,
acting as second messengers in cell signaling, and they also play a pivotal role in cellular
homeostasis [52,53] and are associated with cellular damage by oxidizing cellular con-
stituents such as proteins, lipids, and DNA [54]. These physiological effects are mainly
mediated by changes in the redox state of crucial intracellular and/or surface thiols. In
the last few years, several studies have shown a strong association between obesity and
altered redox state, consistent with the idea that an increased caloric intake and/or obesity
are associated with a pro-oxidant environment and increased oxidative damage [55–59]. A
lot of evidence has shown that obesity is a state of chronic oxidative stress, although it is
not completely understood if the alteration in redox balance is a trigger rather than a result
of obesity [57,60–63].

Given the fact that adipose tissue expansion during the progression of obesity can
result in the excess production of toxic radical species that can cause the generation of
oxidative stress through ROS, it is tempting to speculate that increased ROS in obesity leads
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to reduced persulfidation, resulting in cysteine thiol overoxidation, altering the integrity
and activity of relevant adipose-tissue-related proteins (Figure 2).
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Figure 2. Proposed mechanism that occurs in thiols in obesogenic conditions. In obesity, adipose tissue hypertrophy
is associated with increased ROS levels, which oxidizes protein thiols to sulfenic acids. The decreased expression of
H2S-synthesizing enzymes and H2S production in adipose tissue avoids the formation of persulfides by sulfenic acid. The
oxidizing environment of obesity mediates the conversion of sulfenic acids to sulfonate, altering the integrity and activity of
relevant adipose-tissue-related proteins.

Aside from decreased persulfidation in obesity due to ROS, alternative mechanisms
have also been proposed. Dietary restriction (DR) regimens are known to reduce adiposity.
Hine et al. reported that dietary restriction of sulfur amino acids (SAAs) methionine (Met)
and cysteine (Cys) and decreased mTORC1 activation led to the increased expression of
CTH, resulting in increased H2S production in the liver, and an increased lifespan [9].
Methionine and cysteine are considered to be the principal SAAs in the diet because they
are incorporated into proteins. Elevation of plasma SAAs is generally associated with an
unfavorable lipid profile, and plasma total cysteine is independently associated with body
mass index [64]. Another study reported that higher plasma total cysteine was associated
with an increased risk of obesity and IR in Hispanic children and adolescents [65]. These
studies suggest that a pro-oxidant environment and increased oxidative damage, paired
with increased SAAs in obesity, lead to decreased transsulfuration pathway (TSP) activity
and decreased H2S, which could result in decreased persulfidation in obesity.

Aging is known to be associated with decreased persulfidated protective pools, associ-
ated with the loss of protein expression of the three H2S-producing enzymes [66]. Hine
et al. showed that hepatic-produced H2S was elevated in long-lived hypopituitary mouse
models, and that the thyroid hormone (TH) and growth hormone (GH) negatively regulate
hepatic H2S via the repression of CTH [67]. In addition to the onset of age-related diseases
in senior adults, there are some conserved aging phenotypes in human and animals—redox
imbalance, mitochondrial dysfunction, increased apoptosis, cellular senescence, insuffi-
cient autophagy, and increased inflammation [68]. Similar to aging, obesity and excess
calorie intake appear to perpetuate the onset of age-related diseases through similar mech-
anisms [69]. These findings indicate that obesity accelerates aging, allowing for cysteine
overoxidation and reduced persulfidation.

Supporting the importance of H2S and persulfidation in the physiology of adipose
tissue (Figure 2), Comas et al. recently demonstrated that proteins required for an appro-
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priate adipogenesis and adipose tissue functionality present higher persulfidation levels
in adipocytes in comparison to preadipocytes, sustaining the idea that persulfidation
preserves the function of adipogenesis-related proteins [70].

Altogether, the evidence collectively suggests that obesity might be associated with
reduced protein persulfidation, paving the way to cysteine overoxidation and impairing
the activity and function of adipogenesis-related proteins.

4. H2S in Adipose Tissue

Adipose tissue is one of the most abundant organs in the human body, but for a long
time it has been given little importance and it was considered only as a passive energy
storage site [71]. The worldwide epidemic of obesity and type 2 diabetes has greatly
increased interest in the biology and physiology of adipose tissues. It is now known that
apart from the energy reservoir function, adipose tissue functions as a thermal insulator,
mechanical shock absorber, and more importantly as an endocrine organ [72].

Feng et al. first identified the endogenous CTH and CBS gene expression pathways in
adipose tissue, and suggested CTH as the primary pathway of H2S generation in adipose
tissue [73]. The same year, Fang et al. also demonstrated that CTH protein expression and
endogenous H2S production in rat perivascular adipose tissue were detectable and that the
endogenous H2S generated was predominantly CTH-catalyzed [74]. Subsequent studies
confirmed that CBS, CTH, and MPST genes were expressed in adipose tissue depots [75,76],
and suggested that H2S affects diverse metabolisms that take place in the adipose tissue, such
as lipid, glucose, and mitochondrial metabolism. H2S is also involved in the regulation of
inflammatory and oxidative stress-associated responses in adipose tissue through adipokine
and antioxidant control [77]. Studies of an in vitro 3T3-L1 mouse cell line model pointed to
a possible role of H2S in adipocyte differentiation through the modulation of peroxisome
proliferator-activated receptor gamma (PPARγ) activity [43,44,78]. The overexpression
of the H2S generation enzyme CTH and the administration of the H2S donor sodium
hydrosulfide (NaHS) to 3T3-L1 cells in an environment of high glucose restored adiponectin
secretion and decreased the secretion of proinflammatory cytokines [79]. Recently, Comas
et al. first reported the relevance of H2S and human adipose tissue physiology in the
context of obesity [70]. Experiments in human adipose tissue explants and in isolated
preadipocytes demonstrated that exogenous H2S or the activation of endogenous H2S
biosynthesis resulted in increased adipogenesis, insulin action, sirtuin deacetylase, and
PPARγ transcriptional activity, whereas inhibition through chemical compound or gene
knockdown of one of the H2S-generating enzymes (CTH, CBS, MPST) led to altered
adipocyte differentiation, cellular senescence, and increased inflammation. In morbidly
obese subjects, reduced gene expression of H2S-synthesising enzymes in visceral and
subcutaneous adipose tissue depots was reported, whereas weight loss interventions
improved the expression of these enzymes. In human preadipocytes, the expression of CTH,
CBS, and MPST genes and hydrogen sulfide production were dramatically increased during
adipocyte differentiation [70]. In addition, a recent study demonstrated the relevance of
selenium-binding-protein 1 (SELENBP1) in 3T3-L1 adipocyte differentiation through the
modulation of cellular H2S levels and the expression of H2S-producing enzymes [80].

4.1. H2S and Lipid Metabolism

The effect of H2S on the regulation of lipid metabolism in adipose tissue is controver-
sial. In primary adipocytes, inhibition of the CTH/H2S system was achieved with stimu-
lated adipocyte lipolysis by means of increased activation of the PKA-perilipin1/hormone
sensitive lipase (HSL) pathway, whereas GYY4137 or L-cysteine reversed this effect. In adi-
pose tissue of normal chow and HFD mice, the CTH inhibitor DL-propargylglycine (PAG
or PPG) increased lipolysis, evidenced by elevated serum glycerol, whereas H2S donors
lowered lipolysis only in HFD mice [42]. Different studies have reported the use of slow
hydrogen sulfide-releasing agents derived from garlic with effects on lipid metabolism.
In isolated human adipocytes and Wistar rats, diallyl sulfide (DAS) downregulated the



Antioxidants 2021, 10, 633 8 of 23

mRNA and protein expression of lipolytic genes like hormone-sensitive lipase (HSL) and
adipose triglyceride lipase (ATGL), whereas it upregulated the expression of lipogenic gens
like PPARγ [81]. Aged black garlic (AGB) extract suppressed lipogenesis by reducing the
expression of PPARγ, whereas it enhanced lipolysis by upregulating HSL phosphorylation
at Ser563 and downregulating perilipin in mature 3T3-L1 adipocytes [82].

On the other hand, infusing Na2S in adipose tissue of rats resulted in increased glycerol
and cAMP release in control and obese rats, whereas PAG partially reduced glycerol levels
in obese rats, suggesting an H2S-cAMP-PKA lipolysis mechanism [77].

A mechanistic way by which hydrogen sulfide could regulate lipid metabolism is
persulfidation. Ding et al. showed that H2S post-translationally modified perilipin 1
(Plin-1) via cysteine persulfidation, resulting in increased Plin1 activity, which blocks HSL
translocation to lipid droplets, resulting in decreased lipolysis and promoting adipocyte
lipid accumulation [83].

4.2. H2S and Adipose Tissue Inflammation

Obesity predisposes patients to a pro-inflammatory state via increased inflammatory
mediators interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), as well as reduced
levels of adiponectin, which has a totally anti-inflammatory function [84]. In recent years,
substantial basic scientific research has led to a reasonably clear understanding of the role
of H2S as an inflammatory mediator implicated in different inflammatory conditions, such
as acute pancreatitis, sepsis, joint inflammation, and chronic obstructive pulmonary disease
(COPD) [85]. Nevertheless, our understanding of the molecular mechanisms by which
adipose tissue H2S contributes to inflammation in the obesity context is still scarce.

Adipose tissue macrophages (ATMs) are able to adopt either a proinflammatory (M1)
or an anti-inflammatory (M2) phenotype. During obesity, the proinflammatory M1 phe-
notype is predominant. Store-operated calcium entry (SOCE), causing an influx of Ca2+,
occurs in macrophage polarization to the M1 phenotype [86]. Increased amounts of CSE
mRNA and protein and reduced H2S concentrations were found in ATMs isolated from
obese mice and RAW264.7 macrophages under inflammatory conditions. Nonetheless, the
H2S production capacity was found to be markedly increased in the previous conditions,
leading to the increased consumption of H2S and reducing its bioavailability in proinflam-
matory conditions. This decrease in the concentration of H2S was associated with increased
Ca2+ entry through the amplification of SOCE activity, facilitating the proinflammatory M1
phenotype in obese adipose tissue [87].

Recently, we examined the role of H2S in the regulation of inflammation during
adipogenesis. Treatment with slow-releasing H2S donor GYY4137 attenuated the negative
effect of inflammation on adipogenesis in 3T3-L1 during differentiation [88].

Active research on the role of H2S in inflammation will unravel the pathophysiology
of its actions in adipose tissue inflammatory conditions and may help to develop novel
therapeutic approaches.

5. The Possible Role of H2S on Glucose Metabolism

Most human cells utilize glucose as the primary substrate, with cellular uptake requir-
ing insulin. Insulin signaling is therefore critical for these tissues. However, a decrease
in insulin sensitivity due to the disruption of various molecular pathways causes insulin
resistance (IR) [89]. Insulin resistance is one of the main characteristics of pathological
manifestations associated with type 2 diabetes mellitus. In general, several intrinsic and
extrinsic cellular mechanisms have been identified, which display a cause-effect relation-
ship between weight gain and peripheral insulin resistance [90]. Intrinsic cell-signaling
pathways include mitochondrial dysfunction, oxidative stress, and endoplasmic reticulum
(ER) stress, whereas alterations in adipokines and fatty acids levels and the presence of
inflammation in metabolic tissue are the dominant extrinsic mechanisms that modulate
insulin’s peripheral actions [90].
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H2S has emerged as a regulator of glucose metabolism and energy homeostasis,
through different mechanisms targeting the pancreas, liver, adipose tissue, and skeletal
muscle (Figure 3).
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5.1. H2S and the Pancreas

The pancreas is a complex gland, active in digestion and metabolism through the se-
cretion of digestive enzymes, including the secretion of the blood sugar-lowering hormone
insulin by β-cells and its opponent glucagon via the secretion of α-cells [91].

Insulin release from pancreatic β-cells is tightly regulated and allows the sensitive
response of insulin levels to calorigenic nutrients in the body. Glucose, free fatty acids, and
amino acids serve as fuel stimuli for insulin release, promoting insulin granule exocytosis.
Additional hormonal factors influence the regulation pathway [92]. Insulin therapy is
the most effective method of lowering blood glucose, thus pharmacological agents that
augment insulin release are a key part of the treatment of diabetes.

All three enzymes, CBS, CTH, and MPST, are reported to be present at detectable
mRNA and protein levels in rat pancreatic tissues or in cloned rat pancreatic β-cell lines
(HIT-T15, INS-1E, and MIN6) [93–95].

At the start of the century, the pathophysiological implications of the CTH/H2S
system in diabetes were reported. Yusuf et al. first demonstrated that CBS mRNA and H2S
synthesis were increased in the pancreas from streptozotocin-induced diabetic rats [96].
Later, CSE and CBS gene expression were reported in mouse pancreatic acini [97]. In
HIT-T15, a hamster insulin-secreting cell line, low levels of CBS were reported and no CTH
mRNA transcripts were found [94]. In Zucker diabetic fatty (ZDF) rats, both CSE and
CBS transcripts were detected in pancreatic islet tissues, with the expression level of CSE
being significantly higher than that of CBS [98]. The expression of CBS protein in mouse
pancreatic islets and a mouse β-cell line MIN6 was reported by Kaneko et al. [99,100].

http://smart.servier.com/
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INS-1E rat insulinoma cells expressed CTH, and DL-proparglycine mostly depleted H2S
synthesis, indicating that CTH was the principal enzyme for H2S in INS-1E cells [93].
No MPST protein expression was detected by Western blot pancreases from C57BL/6J;
however, later, strong levels of MPST protein were detected in the pancreas of C57/BL
mice via immunohistochemistry using anti-rabbit IgG conjugated with HRP polymer and
diaminobenzidine–hydrogen peroxide. Specifically, islets were strongly stained, whereas
acinar wells were not stained [101]. Interestingly, Bronowicka-Adamska et al. reported for
the first time the expression and activity of all enzymes involved in H2S production in the
pancreas and suggested the most important role of MPST in Wistar Kyoto rats [102]. More
human and animal studies are needed to elucidate the role of the interplay between H2S
synthesizing enzymes, which seems to be a species-specific system.

5.2. H2S and the Liver

The human liver possesses the remarkable ability to produce glucose that is released
to the systemic circulation and used by other tissues, particularly during periods of fasting.
Hepatic glucose production derives from glycogen breakdown (glycogenolysis) and de
novo synthesis of glucose (gluconeogenesis). In the fed state, plasma glucose is derived
from the ingestion of nutrients, and the liver maintains normal plasma glucose levels by
promoting glycogen synthesis and inhibiting gluconeogenesis [103]. All H2S-producing
enzymes are expressed in the liver, which plays an important role in glucose and lipid
homeostasis, xenobiotic metabolism, and antioxidant defense [104–107]. The published
literature regarding the role of H2S in regulating glucose metabolism is controversial.
Compared with non-diabetic rats, H2S production and CSE and CBS mRNA levels in
the liver were increased in STZ diabetic rats, whereas insulin treatment reversed these
effects [96]. Alternatively, H2S formation and CSE activity and protein expression in the
liver were suppressed in STZ-induced type 1 diabetic rats [108]. Livers taken from insulin-
sensitizer metformin-treated SJL mice (100 mg/kg b.w. per day) exhibited increased H2S
concentrations [109].

In HepG2 hepatocytes, H2S has been shown to downregulate glucose uptake and
glycogen storage, mediated through decreased AMP-activated protein kinase (AMPK)
activation, resulting in increased activity of the gluconeogenic enzyme known as phospho-
enolpyruvate carboxykinase (PEPCK), leading to hyperglycemia [110]. The same group
also reported a stimulatory effect of H2S on liver glucose production under physiologic con-
ditions [111]. On the other hand, Kundu et al. showed that H2S mitigates hyperglycemia
in the liver by remodeling kinase B1-adenosine monophosphate-activated protein kinase
signaling [112]. Another mechanism suggested by Guo et al. implies that CSE deficiency
promoted liver gluconeogenesis in HepG2 via forkhead Box O1 (FoxO1) accumulation [113].
Other hepatoprotective effects of H2S donors were correlated with Nrf2 translocation and
increased expression of antioxidant genes, which is regulated by kelch-like ECH-associated
protein 1 (Keap1) persulfidation [114,115].

Further study will be needed to explore the regulatory mechanism of diabetes mellitus
and its related conditions on the production of H2S in the liver.

5.3. H2S and Adipose Tissue

Adipose tissue plays a central role in regulating whole-body energy and glucose
homeostasis through its subtle functions at both organ and systemic levels. On one hand,
adipose tissue stores energy in the form of lipids and controls the lipid mobilization and
distribution in the body. On the other hand, adipose tissue acts as an endocrine organ
and produces numerous bioactive factors such as adipokines that communicate with other
organs and modulate a range of metabolic pathways [116]. As explained, previous studies
indicate that H2S plays an important role in adipose tissue, and all three enzymes are
expressed in human adipose tissue [70].

Insulin exerts a critical control on anabolic responses in adipose tissue (AT) by stimu-
lating glucose and free fatty acid uptake, inhibiting lipolysis and stimulating de novo fatty
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acid synthesis in adipocytes. In addition, insulin regulates AT growth and differentiation
by enhancing the gene expression of various fat-specific transcription factors, including
sterol regulatory element-binding protein 1 (SREBP-1c) and PPARγ [117]. Insulin increases
glucose uptake in adipocytes by regulating the intracellular localization of glucose trans-
porter 4 (GLUT4), the main glucose transporter involved in the insulin-regulated glucose
transport from the cytosol compartment to the plasma membrane [118].

Various studies have shown that H2S regulates insulin sensitivity in adipocytes. In
the adipose tissue of fructose induced-diabetic rats, the CTH/H2S system was upregulated
and negatively associated with glucose uptake in AT, suggesting a pathological role of
H2S in insulin resistance [73]. Huang et al. reported that H2S mediated TNF-α-stimulated
insulin resistance, as the treatment of 3T3-L1 adipocytes with TNF-α lead to a deficiency in
insulin-stimulated glucose consumption and uptake and an increase in endogenous H2S
generation [119]. Chemical inhibition of CTH with PPG and β-cyano-L-alanine attenuated
TNF-α-induced insulin resistance in 3T3-L1 adipocytes [119].

Other findings have suggested a beneficial role of H2S in glucose metabolism. Manna
et al. showed a molecular mechanism in 3T3-L1 adipocytes by which H2S acts on
1,25-dihydroxyvitamin D3, upregulating GLUT4 protein levels and the translocation of
GLUT4, essential for normal glucose metabolism [120]. Through persulfidation of PPARγ
(Cys139) in 3T3-L1 cells and in the adipose tissue of HFD-mice, Cai et al. demonstrated
that the CSE/H2S system attenuates insulin resistance and promotes the conversion of
glucose into triglyceride storage through persulfidation [43]. Manna and Jain found that
the administration of exogenous H2S using Na2S donors or stimulating the synthesis of
H2S with L-cysteine increased phosphatidylinositol 3,4,5-trisphosphate (PIP3), which phos-
phorylated Akt and promoted glucose uptake and utilization in 3T3-L1 cells [121]. They
also showed that exogenous H2S or L-cysteine supplementation increased insulin receptor
substrate 1 (IRS1) phosphorylation and GLUT4 activation, resulting in upregulation of
the metabolic actions of insulin and an improvement in glucose metabolism [121]. In
another in vivo study, administration of exogenous H2S through NaHS or H2S gas solution
promoted adipocytes to uptake glucose, thus reducing fasting blood glucose levels and in-
creasing glucose tolerance [122]. H2S can protect adipocytes against high concentrations of
glucose-induced adipocyte dysfunction, evidenced by the restored monocyte chemotactic
protein (MCP)-1 and adiponectin secretion [79].

Recently Comas et al., showed that in ex vivo adipose tissue explants the stimulation
of H2S synthesis via L-cysteine and pyridoxal 5′-phosphate (PLP) enhanced the expression
of adipogenic genes in association with the insulin sensitivity, indicating a beneficial role of
adipose tissue H2S in insulin pathway. In different human cohorts, insulin sensitivity was
positively associated mainly with subcutaneous CTH and CBS, and weight loss resulted in
increased CTH, CBS, and MPST mRNA, in parallel with improved insulin sensitivity [70].
In line with this, it is known that subcutaneous adipose tissue, VAT, is associated with in-
sulin resistance, whereas SAT is associated with a decreased risk of insulin resistance [123].
In human adipocytes, exogenous administration of H2S using GYY4137 increased insulin
action, whereas chemical inhibition with PPG attenuated insulin-induced Ser473Akt phos-
phorylation. Altogether, these findings suggest a mechanism by which H2S increases
insulin action through the activation of PPARγ transcriptional activity in differentiated
adipocytes [70]. Further study will be needed to explore the regulatory mechanism of
adipose tissue H2S and glucose metabolism.

5.4. H2S and Skeletal Muscle

Skeletal muscle differentiation follows an organized sequence of events, including
commitment, cell cycle withdrawal, and cell fusion to form multinucleated myotubes [124].
The skeletal muscle is the largest organ in the body by mass. It is also the regulator
of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the
circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake
and its importance in exercise and metabolic disease [125]. Human skeletal muscles express
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significant amounts of CBS and CSE, whereas mouse skeletal muscles completely lack these
enzymes [126]. A recent report suggested that all the three enzymes (CBS, CSE, MPST)
were present in detectable levels in rat skeletal muscles [127]. Nonetheless, their expression
is very low when compared to that of the liver and kidney. Only human skeletal muscles
express CBS and CSE enzymes that are comparable to the expression levels in the liver in
relative abundance [128].

Xue et al. provided evidence of the insulin-sensitizing effect of exogenous H2S ad-
ministration (NaHS) in an in vitro model of myotubes (L6) and in vivo in Wistar Rats [122].
Using C2C12 mouse myotubes, exogenous H2S administration (NaHS) upregulated CSE
expression and genes involved in GSH biosynthesis in parallel to increased H2S and glu-
cose uptake and decreased ROS, whereas CSE knockdown had the opposite effects [129].
Chronic NaHS treatment (30µmol·kg−1·day−1) in Goto-Kakizaki diabetic rats decreased
fasting blood glucose, increased insulin sensitivity, and increased glucose tolerance with
increased phosphorylation of PI3K and Akt in muscles [122]. Expression of CSE was
declined at 20 weeks in skeletal muscle of db/db mice, compared to the control group,
whereas administration of NaHS restores the expression of CSE at 20 weeks. In C2C12
myoblasts high glucose and palmitate and oleate reduced H2S and expression of CSE
significantly [130]. It seems that H2S plays an important role in skeletal muscle, improving
glucose homeostasis and increasing glucose uptake.

6. Implication of H2S in NAFLD

Non-alcoholic fatty liver disease (NAFLD) has become the principal cause of chronic
liver disease worldwide, involving a spectrum of disturbances mainly characterized by
fatty acid infiltration and fat deposition in the liver parenchyma, which can further progress
to fibrosis, inflammation, and eventually develop into cirrhosis and hepatocellular carci-
noma [131]. Identifying altered molecular pathways that trigger the onset and progression
of the disease is a key point in ensuring early diagnoses and developing treatments.

In the liver, although the three H2S-generating enzymes are detectable, their roles in
endogenous H2S generation are differently described [108,132,133]. It was found that CTH
expression is about 60-fold greater than that of CBS in the murine liver [133]. Apart from
endogenous hepatic synthesis, the liver is likely exposed to high levels of H2S exogenous
sources as a consequence of its location, making the liver a key regulator of H2S levels by
maintaining a high capacity for H2S clearance from the circulation [134].

Pathological processes involved with NAFLD are linked with hepatic H2S pathways
and include lipid metabolism dysfunction, oxidative stress, insulin resistance, inflammation,
and mitochondrial dysfunction. Malfunction of hepatic H2S metabolism is involved in the
pathogenesis of many liver diseases, such as hepatic fibrosis and cirrhosis [135] (Figure 4).
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6.1. Mitochondrial and Lipid Metabolism Dysfunction

Since the first studies on NAFLD, many researchers have pointed out that it is primar-
ily characterized by the presence of mitochondrial dysfunction [136]. Mitochondria play
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a pivotal role in hepatocyte metabolism, being the primary site for the oxidation of fatty
acids and oxidative phosphorylation [137].

The CBS/CSE system, which may be regulated by several fatty acids, has been ac-
tively investigated in the pathogenesis of NAFLD and has been proposed as a potential
therapeutic target for NAFLD [138].

Impaired endogenous H2S synthesis was reported to be associated with fatty liver
induced by HFD feeding [106,139] or methionine and choline-deficient (MCD) diet feed-
ing [104]. Treatment with H2S donor sodium hydrosulfide (NaHS), prevented nonalcoholic
steatohepatitis (NASH) by reducing hepatic triglyceride and cholesterol levels in rodents
fed with the MCD diet through increasing peroxisome proliferator-activated receptor alpha
(PPARα) and reducing SREBP-1c gene expression in the liver, suggesting an antisteatogenic
effect of H2S through the prevention of oxidative stress and inflammation [104]. In fatty
livers of mice induced by HFD, administration of NaHS significantly reduced hypertriglyc-
eridemia and improved NAFLD by activating liver autophagy flux and the AMPK-mTOR
signaling pathway [139]. However, a recent study suggested that hepatic MPST promoted
hepatic steatosis in HFD fed mice and the knockdown of MPST-stimulated H2S production,
whereas overexpression of MPST markedly reduced the formation of H2S via inhibition of
CSE/H2S and subsequent upregulation of SREBP-1c, c-Jun N-terminal kinase phospho-
rylation, and oxidative stress [138]. In addition, that study also demonstrated that the
inhibition of MPST in L02 cells reduced free fatty acids (FFAs) and increased the expression
of CTH and H2S [138].

Garlic oil derivates diallyl trisulfide/disulfide (DATS/DADS), used as H2S donors in
mice, reduced fatty acid synthase (FAS) protein levels, which suppressed ethanol-induced
hepatic mitochondrial dysfunction, suggesting the regulation of SREBP1, PPARα, and
cytochrome p450 2E1 (CYP2E1) [140].

6.2. Oxidative Stress

Oxidative stress is an important pathophysiological mechanism in NAFLD pathogen-
esis. Growing evidence supports a key role for oxidative stress caused by the generation
of ROS in the progression of NAFLD [141]. Disturbances in lipid metabolism lead to
hepatic lipid accumulation, which affects various reactive oxygen species (ROS) generators,
including mitochondria, the endoplasmic reticulum, and NADPH oxidase [142].

Oxidative stress involves molecular or cellular damage, resulting from deficiency of
antioxidants and/or antioxidant enzyme systems, and disrupting the cellular reduction-
oxidation balance [143]. The human body is equipped with a variety of antioxidants that
serve to counterbalance the effect of oxidants, with H2S being one of the most important. In
fact, H2S protects cells in various diseases by acting as an antioxidant that reduces excessive
amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS) [144]. ROS
are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic
acids, lipids, and proteins, and alter their functions [145].

Several studies have highlighted the role of H2S in cellular redox homeostasis, which
can be summarized in two main mechanisms: (i) modulating levels and activity of classic
cellular antioxidants, such as glutathione (GSH) and thioredoxin (TRX) [146], and (ii)
increasing the activity or expression of the transcription nuclear factor (erythroid-derived
2)-like 2 (NRF2) and the histone deacetylase protein family of sirtuins (SIRTs), which in
turn increase the expression of antioxidant enzymes (AOE) [114,115].

7. H2S on Cardiovascular Disease

The epidemiological tendency in the 20th century was accompanied by an increase in
noncommunicable diseases, of which cardiovascular diseases (CVDs) are now the leading
cause of mortality and morbidity worldwide [147]. CVDs are a cluster of diseases and in-
juries that affect the cardiovascular system, including the heart and blood vessels. Multiple
factors are contributing to the epidemic of CVDs, including the rapid aging of the popu-
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lation, improved survival rate from other illnesses, progressive urbanization, increased
calorie consumption, decreased physical activity, mental stress, and air pollution [148–150].

The main condition underlying CVD is atherosclerosis, a chronic inflammatory condi-
tion that involves different cell types, and several cytokines and adhesion molecules.

Atherosclerosis is a chronic and slowly progressive cardiovascular disease that af-
fects arterial blood vessels by thickening and hardening as consequences of high plasma
cholesterol concentrations, especially cholesterol in the form of low-density lipoprotein
(LDL) [151]. In these processes, reactive oxygen species play a pivotal role, as they can
cause the oxidation of lipids such as low-density lipoprotein (LDL) and polyunsaturated
fatty acids that are deposited in the vascular wall, allowing plaque calcification, directly
damaging cellular components, and further promoting inflammation by activating several
pro-atherogenic transcriptional factors [152]. The accumulation of plaques consequentially
narrows the arterial lumen and restricts the blood supply, causing atherosclerotic lesions,
which through the action of several cytokines can rupture and lead to occlusion of the
vascular lumen. Depending on the area of rupture, these can manifest as acute myocardial
infractions or stroke or acute ischemia of any nearby organ [153].

Over the last few years, our understanding of atherosclerotic processes has vastly
improved; however, there are still many mechanisms that have not been fully elucidated.
One of the first reported physiological roles of H2S was its capacity to induce vasore-
laxation, acting as a K(ATP) channel opener, and displaying important antihypertensive
effects and cardioprotection properties [11,154–156]. In line with this, there is a grow-
ing body of evidence linking H2S with cardioprotection, including decreasing heart rate,
exerting inotropic and proangiogenic effects, decreasing blood pressure, and causing va-
sodilation [157]. Reduced levels of H2S have been found in patients with acute or stable
coronary artery disease [158], hypertension [159], and heart failure [160]. The impact
of H2S on cardiovascular disease has been extensively updated and reviewed in recent
studies [161–165].

7.1. Hypertension

In 2003, Zhang et al. demonstrated that H2S could exert beneficial effects on the
pathogenesis of hypoxic pulmonary hypertension in rats [166]. Later, other groups using
hypertensive experimental animal models showed that in rats which had spontaneous
hypertension (SHR), the level of hydrogen sulfide and the gene expression and activity of
CSE were reduced [167]. In SHR rats, reduced arterial pressure after systemic treatment
with NaHS or after intracerebroventricular NaHS treatment were also reported [168].

CSE levels are reduced in the vessel wall of spontaneously hypertensive rats and
both CSE and CBS are reduced in the resistance vessels of rats rendered hypertensive
after dexamethasone treatment [167,169,170]. In addition, animals with salt-sensitive
hypertension have lower levels of CBS [171]. A causal link between low CSE levels and
high blood pressure was established following the observation that CSE KO mice exhibit
hypertension [172].

Moreover, administration of sulfide salts or the slowly releasing H2S donor GYY4137
reduced blood pressure in a genetic model of hypertension, as well as in rats rendered
hypertensive by angiotensin-II or L-NAME administration [173–175].

Other naturally occurring H2S donors such as garlic-derived compounds or isothio-
cyanates present in vegetables also demonstrated cardioprotective effects [176]. Allicin,
a garlic-derived H2S donor, is known for lowering arterial blood pressure, among other
cardiovascular protection systems [177]. Isothiocyanates, which are abundant in cruciferae
like mustard and broccoli, are also considered important in the cardiovascular system. In
the rat aortic ring, H2S derived from isothiocyanates was responsible for observed vasore-
laxant effects [178]. Other synthetic H2S donors like thioamino acids, including thioglycine
and thiovaline, were found to induce significant relaxation of the pre-contracted mouse
aortic ring [179].
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A great number of studies have been carried on the investigation of the modulation of
blood pressure by means of exogenous and endogenous H2S. However, in humans, few
studies have measured plasma H2S levels in association with hypertension. In a small
cohort of patients with type 2 diabetes, lower plasma levels of H2S were associated with
higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) [41]. Reduced H2S
plasma levels have been confirmed in a human cohort of hypertensive patients [180,181].

7.2. Atherosclerosis

There are strong indications that the loss of H2S contributes to the establishment and
progression of the disease of atherosclerosis. Hydrogen sulfide shows an anti-atherosclerotic
action by attenuating oxidative stress, reducing blood platelet activation, reducing the inflam-
mation process, and preventing the proliferation of vascular smooth muscle cells [182–184].

Atherosclerosis is a lipoprotein-driven disease that leads to plaque formation at
specific sites of the arterial tree through intimal inflammation, necrosis, fibrosis, and
calcification [185]. H2S is known to reduce endothelial dysfunction by preventing plaque
formation by counteracting the main aspects of atherosclerosis, such as oxidation, adhesion,
proliferation, and calcification [165].

Increased oxidative stress can accelerate the development of atherosclerosis by means
of endothelial cell dysfunction, adhesion of molecules, vascular smooth muscle prolifera-
tion and migration, platelet activation, lipid oxidation, matrix metalloproteinase activation,
and alterations in vasomotor activity [186]. Several studies have highlighted the role of
H2S in cellular redox homeostasis, which can be summarized in two main mechanisms:
(i) modulating the levels and activity of classic cellular antioxidants, such as glutathione
(GSH) and thioredoxin (TRX), and (ii) increasing the activity or expression of transcription
nuclear factor (erythroid-derived 2)-like 2 (NRF2) and the histone deacetylase protein
family of sirtuins (SIRTs), which in turn increase the expression of antioxidant enzymes.

H2S can ameliorate vascular calcification by decreasing the activation of alkaline
phosphatase and reducing the gene expression of osteopontin [187].

Plasma H2S and aortic H2S levels were decreased in apolipoprotein E knockout
(ApoE(−/−)) mice. CSE expression was reduced in oxidized LDL (Ox-LDL)-stimulated hu-
man aortic endothelial cells (HAEC) and in the aorta of high-fat-diet-induced ApoE(−/−)
mice [188]. The expression of CSE is mainly upregulated in macrophages, foam cells, and
myofibroblasts from the atherosclerotic lesions of human patients with carotid specimens.
In mouse and human atherosclerosis, CSE expression is upregulated, but circulating and
plasma levels of H2S are reduced, a phenomenon that can be attributed to the inhibition of
CSE enzyme activity [189].

The main therapeutic strategy to lower or reverse atherosclerosis is statins, but the
clinical benefits of statins are somewhat limited [190,191]. Surprisingly, recent reports
have mentioned that treatment using statins can improve H2S production, but it is the
lipophilic atorvastatin, rather than the hydrophilic pravastatin, that increases the net H2S
production [192–196].

8. Conclusions

This review summarizes and discusses the literature concerning the roles and mecha-
nisms of H2S on obesity-associated metabolic disturbances, including insulin resistance,
NAFLD, and cardiovascular diseases. Impaired H2S metabolism is involved in obesity and
adipose tissue disturbances; however, scientific understandings of the role of H2S and the
mechanisms by which it is altered in obesity remain somewhat contradictory. Significant
progress has been made in this field during recent years, but more research is warranted to
address this discrepancy in the future. The majority of studies suggest that the deficiency
of endogenous H2S synthesis is associated with NAFLD, due to altered pathways that
include lipid metabolism dysfunction, oxidative stress, insulin resistance, inflammation,
and mitochondrial dysfunction. However, the mechanisms involved are complex and are
still incompletely understood. Based on the evidence, it is clear that H2S plays a protective
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role in cardiovascular diseases, including atherosclerosis. However, there are still many
controversies surrounding the signaling pathways, beneficial roles, and harmful effects
of H2S in cardiovascular diseases. H2S therapy has only entered a preliminary stage in
terms of basic medical research or preclinical research. Nevertheless, based on the existing
knowledge about the beneficial effects of H2S, the future of H2S as a potential therapy
against obesity-associated metabolic disturbances is expected to be promising and exciting.
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