

Supplemental Figure 1. Role of *DWARF* in cold tolerance in tomato.

(A-C) The relative electrolyte leakage (REL, A), the maximum quantum efficiency of photosystem II (Fv/Fm, B) and the relative expression level of COR47-like (C) in dwf mutant, wild type (WT) and DWARF -overexpressing transgenic plants (DWF: OE) with or without cold treatment. For cold treatment, plants were exposed to 8°C for 24 hours and subsequently exposed to 4°C for another six days. COR47-like was detected from leaf samples collected at 8 h after a cold at 8°C. Data are the means of three biological replicates (\pm SD) (A, C) or eight replicates (B). Different letters indicate significant differences according to Tukey's test at 0.05% level.

B

Α

Supplemental Figure 2. Silencing efficiency and the cold tolerance of *CBF1* and *CBF1/2/3* gene silenced plants in response to EBR treatment.

(A) The relative expression levels of *CBF1* and three *CBFs* in *CBF1* silenced (pTRV-*CBF1*) and *CBF1/2/3*-cosilenced (pTRV-*CBF1/2/3*) plants respectively. Relative gene expression was calculated using the control (pTRV) plants as 1. (B) The phenotypes of pTRV-*CBF1* and pTRV-*CBF1/2/3* plants with or without cold treatment. For cold treatment, plants were exposed to 8°C for 24 hours and subsequently exposed to 4°C for another six days. 24 hours before cold treatment, the plants were pre-treated with 200 nM 24-epibrassinolide (EBR) or distilled water as the control.

Supplemental Figure 3. The relative expression of *BZR1* from tomato leaves exposed to 25° or 8° for different periods of time.

Data are the means of three biological replicates $(\pm SD)$ shown by vertical error bars.

(A-C) The phenotypes (A), relative electrolyte leakage (REL, B) and maximum photochemical efficiency of PSII (Fv/Fm, C) in bzr1 mutant, wild type (WT) and 35S:BZR1-3HA-overexpression plants (BZR1:OE) with and without cold treatment. For cold treatment, plants were exposed to 8°C for 24 hours and subsequently exposed to 4°C for another six days. 24 hours before cold treatment, the plants were foliar applied with 200 nM 24-epibrassinolide (EBR) or distilled water as the control. Data are the means of three biological replicates (\pm SD) (B) or eight replicates (C). Different letters indicate significant differences according to Tukey's test at 0.05% level.

Supplemental Figure 5. Yeast-one hybrid analysis of BZR1 binding to the promoters of *CBF1* and *CBF3* in tomato.

The 475 - and 388 bp fragments from *CBF1* and *CBF3* promoter sequences indicated in (Figure 2D) were cloned into pAbAi vector respectively. Interaction was determined on SD medium lacking leucine in the presence of 100 ng/ml Aureobasidin A ($-Leu+AbA^{100}$). AD-empty and pAbAi-*CBFs* were used as negative controls.

Supplemental Figure 6. Silencing efficiency of *RBOH1* in *BZR1***:OE** plants. Relative gene expression was calculated using the pTRV plants as 1.

Supplemental Figure 7. Role of *RBOH1* in BR-induced cold tolerance.

(A-C) The phenotypes (A) relative electrolyte leakage (REL, B) and maximum photochemical efficiency of PSII (Fv/Fm, C) in the WT and *RBOH1*-RNAi plants with or without cold treatment. For cold treatment, plants were exposed to 8°C for 24 hours and subsequently exposed to 4°C for another six days. 24 hours before cold treatment, the plants were foliar applied with 200 nM 24-epibrassinolide (EBR) or distilled water as the control. Data are the means of three biological replicates (±SD) (B) or eight replicates (C). Different letters indicate significant differences according to Tukey's test at 0.05% level.

7

Supplemental Figure 8. The GSH and GSSG contents in WT and *RBOH1*-RNAi plants under cold condition.

(A and B) The GSH (A) and GSSG contents (B) in WT and *RBOH1*-RNAi plants exposed to 8°C for 12 hours. 24 hours before cold treatment, the plants were foliar applied with distilled water, 5 mM 6-aminonicotinamide (6-AN), 200 nM 24-epibrassinolide (EBR) or 5 mM 6-AN followed with 200 nM EBR, respectively. Data are the means of three biological replicates (\pm SD) shown by vertical error bars. Different letters indicate significant differences according to Tukey's test at 0.05% level.

Supplemental Figure 9. *RBOH1* plays a role in BR-induced cold tolerance by redox regulation.

(A-C) The phenotypes (A), relative electrolyte leakage (REL, B) and maximum photochemical efficiency of PSII (Fv/Fm, C) in wild type (WT) and *RBOH1*-RNAi plants with and without cold treatment. For cold treatment, plants were exposed to 8°C for 24 hours and subsequently exposed to 4°C for another six days. 24 hours before cold treatment, the plants were foliar applied with distilled water, 5 mM 6-aminonicotinamide (6-AN), 200 nM 24-epibrassinolide (EBR) or 5 mM 6-AN followed with 200 nM EBR, respectively. Data are the means of three biological replicates (±SD) (B) or eight replicates (C). Different letters indicate significant differences according to Tukey's test at 0.05% level.

Supplemental Figure 10. H₂O₂ and GSH treatment rescue the cold tolerance of *RBOH1*-silenced plants.

(A-C) The phenotypes (A), relative electrolyte leakage (REL, B) and maximum photochemical efficiency of PSII (Fv/Fm, C) in wild type (WT) and *RBOH1*-RNAi plants with and without cold treatment. For cold treatment, plants were exposed to 8°C for one day and subsequently exposed to 4°C for another six days. 12 hours Before cold treatment, Plants were foliar applied with distilled water, 5 mM H₂O₂ and 5mM GSH respectively. Data are the means of three biological replicates (±SD) (B) or eight replicates (C). Different letters indicate significant differences according to Tukey's test at 0.05% level.

Supplemental Table 1. Primers used for VIGS constructs

Vector	Forward primer	Reverse Primer
pTRV2-CBF1	5'-CCGgaattcTATGCTACCTCCACCT-3'	5'-GCtctagaAACCCAACAAGTTTCT-3'
pTRV2-CBF1/2/3	5'-CGCggatccAGGGGAATCAGGAAGAGGAAT-3'	5'-GCtctagaGAAGATTTCGACGGCCTGAG-3'
pTRV2-RBOH1	5'-CGCgagctcCGTTCAGCTCTCATTACCATGG-3'	5'-CCGctcgagCCGAAGATAGATGTGTGTGTACCG-3'

Supplemental Table 2. Primers used for qRT-PCR analysis

gene	Accession number	Forward primer	Reverse Primer
CBF1	Solyc03g026280	5'-GTGACTTCGTGGATGAGGAG-3'	5'-AGGCATCAGTTTCCACACAA-3'
CBF2	Solyc03g124110	5'-TTCGATCGGAAGAAGTTTCA-3'	5'-CAAGTAATCCTGGCATGGAA-3'
CBF3	Solyc03g026270	5'-TGCCGGGTTTACTTACGAAT-3'	5'-TCAGCTTCCACATGATCTCC-3'
RBOH1	Solyc08g081690	5'-TCCAGCACAAGATTACCG-3'	5'-CCTCCATTGCGACGAT-3'
BZR1	Solyc04g079980	5'-TAGCCCGATTCCATCTTACC-3'	5'-TAATGGTGGTAGCGACAAGG-3'
COR47-like	Solyc04g082200	5'-TCTAGTAGCTCCAGTGATG-3'	5'-TCTCCTCTGTTTCCTCGT-3'
ACTIN	Solyc11g005330	5'-TGTCCCTATTTACGAGGGTTATGC-3'	5'-CAGTTAAATCACGACCAGCAAGAT-3'
UBI3	Solyc01g056940	5'-GCCGACTACAACATCCAGAAGG-3'	5'-TGCAACACAGCGAGCTTAACC-3'

Supplemental Table 3. Multiple reaction monitoring conditions used for LC-MS/MS analysis

Compound	Precursor (m/z)	Ion product (m/z)	Cone (V)	Collision Energy (eV)
brassinolide	708.43	160.96	70	50
[26- ² H ₃]-brassinolide	711.43	160.96	70	50
castasterone	692.5	160.96	75	45
[26- ² H ₃]-castasterone	695.5	160.96	75	45
28-norcastasterone	678.46	160.96	50	45
[28- ² H ₃]-norcastasterone	681.46	160.96	50	45

Supplemental Table 4. Primers used for	pAbAi-baits and AD-prey	constructs
--	-------------------------	------------

Vector	Forward primer	Reverse Primer
pAbAi-CBF1	5'-GGggtaccTACACATGTTTCTCAATTTTACA-3'	5'-CCctcgagTTGAAAAGATAGTGGAAGGT-3'
pAbAi-CBF3	5'-GGggtaccGAGATTTTACGTGTCGTTCTGTTGA-3'	5'-CCctcgagGGCCTGATCAATTGGTTAGGATG-3'
pGADT7-BZR1	5'-CCcatatgATGTGGGAAGGTGGAGGGTTG-3'	5'-CGCcccgggTCACATCCGAGCAGTCCCAC-3'

Supplemental Table 5. Triners used for Chill-qr Cix analysis			
DNA fragments	Forward primer	Reverse Primer	
CBF1	5'-GTTTCTCAATTTTACACGTG-3'	5'-GATATGCTTGGAATTGG-3'	
CBF2	5'-TAGAAAGTTTGCCACAT-3'	5'- CGGTATTACACGGAGTT-3'	
CBF3	5'-GTTAGACGCACGGAAGAT-3'	5'-GAACACGGAGTTAGAGGG-3'	
P1	5'-ATCCTGACTCCAACACGACT-3'	5'-GGTCACAAACTTAGCTTGAACG-3'	
P2	5'-CTTTTGTTTTGCTATTGGTA-3'	5'-CGTAAAGAAAACCATAAATC-3'	
P3	5'-CATCTGTTTCATTCTATACGAGTC-3'	5'-AATGGTGAGGAAGTGAGGGT-3'	

Supplemental Table 5. Primers used for ChIP-qPCR analysis

Supplemental Table 6. BR contents in tomato leaves under control and cold conditions
--

Treatment	Brassinolide (ng/g FW)	castasterone (ng/g FW)	28-norcastasterone (ng/g FW)
25°C	0.087 ± 0.008	0.257 ± 0.011	0.816 ± 0.033
8°C	0.191 ± 0.018	0.325 ± 0.017	0.900 ± 0.041