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Abstract: Non-alcoholic fatty liver disease (NAFLD), as a consequence of overnutrition caused
by high-calorie diets, results in obesity and disturbed lipid homeostasis leading to hepatic lipid
droplet formation. Lipid droplets can impair hepatocellular function; therefore, it is of utmost
importance to degrade these cellular structures. This requires the normal function of the autophagic-
lysosomal system and the ubiquitin-proteasomal system. We demonstrated in NZO mice, a polygenic
model of obesity, which were compared to C57BL/6J (B6) mice, that a high-fat diet leads to obesity
and accumulation of lipid droplets in the liver. This was accompanied by a loss of autophagy
efficiency whereas the activity of lysosomal proteases and the 20S proteasome remained unaffected.
The disturbance of cellular protein homeostasis was further demonstrated by the accumulation of
3-nitrotyrosine and 4-hydroxynonenal modified proteins, which are normally prone to degradation.
Therefore, we conclude that fat accumulation in the liver due to a high-fat diet is associated with a
failure of autophagy and leads to the disturbance of proteostasis. This might further contribute to
lipid droplet stabilization and accumulation.
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1. Introduction

Overnutrition as a result of high-calorie diets induces obesity, metabolic stress, insulin
resistance and beta-cell failure [1]. One major health problem associated with diet-induced
obesity is non-alcoholic fatty liver disease (NAFLD) as a result of disturbed lipid homeosta-
sis and increased lipid accumulation in the liver [2], leading to hepatocellular dysfunction.
The phenomenon of lipotoxicity plays a significant role in the pathogenesis of liver fail-
ure [3], even if the exact mechanism remains to be elucidated. Excess lipids are stored in
lipid droplets, organelles containing a core of neutral lipids surrounded by a phospholipid
bilayer, and regulated by inclusion proteins [4]. Perilipins are lipid droplet-associated pro-
teins and in NAFLD perilipin 2 (plin2) is the dominant form [2,5], exerting a multitude of
functions in hepatocytes [4–7]. Autophagy, particularly lipophagy, has been found to be re-
sponsible for the degradation of bulky amounts of lipid droplets. The autophagy-lysosomal
system (ALS) is a complex degradation machinery involving more than 30 autophagy-
related (Atg) proteins, including several regulatory and lysosomal membrane proteins as
well as hydrolases [8]. Degradation is often limited by substrate uptake via autophagy
rather than by the efficiency of lysosomal degradation [8]. Proteins such as the microtubule-
associated proteins 1A/1B light chain 3B (LC3-I/LC3-II), Atg5, Atg5-Atg12 complex, and
p62 are proteins that monitor autophagic activity [8,9]. However, levels of these proteins
must be interpreted with caution, as they may be the result of reduced protein expression
or increased autophagy flux [10].
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On the other hand, the ubiquitin-proteasomal system (UPS) comprises the ubiquiti-
nation targeting machinery and final proteasomal degradation [11,12]. While the 20S pro-
teasome, the catalytic core of the UPS, is responsible for the degradation of slightly to
moderately oxidized and unfolded proteins, the 26S proteasome (a 20S proteasome capped
with the 19S regulator complex) degrades ubiquitin-tagged proteins in an ATP-dependent
manner. However, the 20S proteasome is the core of the UPS and therefore, it is responsible
for the catalytic degradation [11].

Decreased degradation capacity or increased oxidative stress due to a high-fat diet can
disturb the balance in proteostasis, which leads to the accumulation of modified proteins
and aggregates. Two markers of lipoxidative stress and protein damage are protein-bound
3-nitrotyrosine (3-NT) [13] and 4-hydroxynonenal (4-HNE) [14], which play a causal role
in lipoxidation-derived damage and accelerated aging [15].

However, the role of high-fat diet (HFD) and lipid droplet accumulation in the activity
of the proteolytic systems in the liver remains obscure, although several mechanisms
have been proposed [16,17]. Therefore, we investigated the effect of prolonged high-fat
diet-induced lipid accumulation on the activity of proteolytic systems in the liver of New
Zealand obese mice (NZO), which develop severe obesity, compared to the widely used
standard C57BL/6J (B6) mouse as a normal, healthy wildtype control.

2. Methods
2.1. Animal Experimental Procedure

All animal procedures were performed in accordance with the guidelines of the
German Law on the Protection of Animals and the experimental protocol was reviewed
and approved by the local authorities (Landesamt für Arbeitsschutz, Verbraucherschutz
und Gesundheit Brandenburg, Germany, Brandenburg, approval number: V3-2347-21-
2015). The animal experiments are partially described in [18]. Briefly, male C57Bl/6J
and male NZO mice (C57Bl/6J (B6) and NZO/HIBomDIfE, German Institute of Human
Nutrition, Potsdam-Rehbruecke, Germany) were housed in open cages of 4–5 animals in
a controlled environment (20 ± 2 ◦C, 12/12 h light/dark cycle) with ad libitum access to
diet and water. Seven-week old mice received a standard diet (SD; V1534-300 Ssniff, Soest,
Germany) or a carbohydrate-free, high-fat diet (HFD, #C105789, Altromin, Lage, Germany)
for 15 or 32 weeks. Mice were sacrificed by acute isoflurane exposure and blood/tissue
samples were collected. Tissue was collected for either histological analysis, samples were
fixed in 4% para-formaldehyde or molecular biological analysis, and immediately frozen
by liquid nitrogen. Body and liver weight were measured with an electronic scale. The
triglyceride (TG) content in liver tissues in HB buffer (10 mM NaH2PO4·H2O, 1 mM EDTA,
pH 7.4, 1% Polyoxyethylene (10) tridecyl ether) was quantitatively determined by using
ABX Pentra Triglycerides CP kit (Horiba; A11A01640, Axon Lab AG, Stuttgart, Germany)
on an autoanalyzer Cobas mira (Roche).

2.2. Immunoblotting

Liver tissue was lysed with HB buffer and homogenized. The lysate was subsequently
centrifugated for 30 min (23,100× g, 4 ◦C). The supernatant was collected and centrifuged.
The supernatant was collected and stored at −20 ◦C, while a part was used to determine
protein concentration by the Lowry protein assay.

Proteins were separated by a 10% or 15% SDS-PAGE gel electrophoresis and trans-
ferred to nitrocellulose membrane by semi-dry blotting and detected by indirect fluores-
cence through the Odyssey imaging system. Procedures were performed according to the
manufacturer’s instructions. As primary antibodies were used: perilipin 2 (R&D Systems;
MAB7634); Atg5 (nanotools; #0262), p62 (abcam; ab56416), LAMP1 (cell signaling; #3243),
LC3A/B (cell signaling; #12741S), 3-nitrotyrosine (abcam, ab110282), 4-hydroxynonenal
(abcam, ab46545). The membranes were then probed with fluorescent-labeled secondary
antibodies. Both primary and secondary antibodies were diluted in LI-COR Odyssey
Blocking Buffer/PBS (1:2) containing 0.1% Tween-20. Detection and quantification of im-
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munoblots were performed in a linear range with the LI-COR Odyssey® imaging system.
Proteins were normalized to total protein amount via Ponceau S staining.

2.3. Immunohistochemistry: H/E Staining

Liver slides (paraffin sections 2µm) were deparaffinized using Roti®-Histol (Carl Roth,
6640) and rehydrated by ethanol gradient (100–40%). H&E staining was performed by
firstly adding hematoxylin solution (Sigma-Aldrich, GHS316, MerckKGaA, Darmstadt,
Deutschland) for 45 s followed by 10 s tap water and incubation of eosin (Sigma-Aldrich,
HT110232, MerckKGaA, Darmstadt, Deutschland) for 1 min. After staining, samples were
mounted with Entellan® (VWR, 1079610500, MerckKGaA, Darmstadt, Deutschland). Liver
sections were scanned using a MIRAX Scanner from Zeiss and software MIRAX Viewer.

2.4. Proteasomal Activity

For maximum proteasome activity, liver tissue samples were homogenized with a
tissue lyser (Qiagen, Hilden, Germany) in lysis buffer (250 mM sucrose, 25 mM HEPES,
1 mM EDTA, 10 mM magnesium chloride and freshly added 1.7 mM DTT, pH 7.8), followed
by passing lysates through a 27-gauge needle, freeze-thaw cycles and centrifugation at
13,400× g rpm, for 10 min, at 4 ◦C. Supernatants were used for protein determination
(Bradford assay) and proteasome activity assay. Samples were adjusted to 1 mg/mL
protein and incubated with proteasome incubation buffer (containing 225 mM Tris buffer
(pH 7.8), 7.5 mM magnesium acetate, 45 mM potassium chloride, 7.5 mM magnesium
chloride and freshly added 1 mM DTT). To measure 20S proteasome activity, ATP was
depleted by adding 15 mM 2-deoxyglucose and 0.1 mg/mL hexokinase to the incubation
buffer. Chymotrypsin-like proteasome activity was measured using fluorogenic peptide
suc-Leu-Leu-Val-Tyr-7-AMC (Enzo, #BML-P802-0005, final concentration 166 µM/well).
AMC liberation was determined in a black 96-well plate at 37 ◦C using a fluorescence
microplate plate reader (excitation: 360 nm, emission: 460 nm). Proteolytic activity was
calculated using free 7-amino-4-methylcoumarin (AMC) as the fluorogenic calibration
standard and verified using proteasome inhibitor lactacystin (Enzo Life sciences GmbH,
BML-PI104-1000, Loerrach, Germany).

2.5. Lysosomal Activity

For measuring the lysosomal activity, here, the cysteine cathepsin activity, liver tissue
was homogenized in 500 µL of 1 mM DTT/PBS, shaken for 1 h at 4 ◦C, sonicated on ice for
2 min at 50% amplitude and subsequently centrifuged for 20 min at 14,000 rpm. Further,
10 µg of lysates were incubated with lysosome incubation buffer (containing 24 mM L-
Cysteine hydrochloride (L-Cys-OH HCl), 150 mM Na-Acetate, 3 mM EDTA Dihydrate,
pH 4.0) for 10 min. To measure cysteine cathepsin activity, OmniCathepsin fluorogenic
substrate Z-FR-AMC, Z-Phe-Arg-AMC (Enzo #BML-p-139) was used, with a final substrate
concentration of 166 µM, to determine AMC liberation, which was monitored every 3 min
for 90 min using a fluorescence microplate reader (excitation: 360 nm, emission: 460 nm).
Proteolytic cathepsin activity was calculated using free 7-amino-4-methylcoumarin (AMC)
as the fluorogenic calibration standard and proteolytic activity was verified using a protease
inhibitor cocktail (Sigma-Aldrich, P8340, diluted according to manufacturer’s instructions).

2.6. Statistics

Statistical analysis was performed using GraphPad Prism (GraphPad Software, San
Diego, USA; v. 8.0.0). Initially we tested for normal distribution using a Shapiro–Wilk
or Kolmogorov–Smirnov test. If the values were normally distributed, either two-way-
ANOVA, comparing NZO diet and age (samples shown after the dashed line in the figures
below), unpaired t-test (indicated with *) or one sample t-test (indicated with #), comparing
two selected samples, were applied. Statistical significance was considered and indicated
at p < 0.05 and results are presented as mean values ± standard deviation.
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3. Results

NZO mice are a well-established model to study type II diabetes and obesity [18]. A
number of different feeding strategies are known to induce an obesity-related phenotype
in this mouse strain, even though these mice already gain weight on a standard diet (SD).
To better understand and interpret the results in the NZO mice, we additionally added
data for B6 mice as a normal, healthy wildtype control. Compared to C57BL/6J (B6), NZO
mice gained weight on a SD at 22 weeks of age, while the HFD resulted in them being
severely overweight during the same feeding period. (Figure 1A). Continuation of high-fat
feeding in NZO mice resulted in further, but less pronounced weight gain (Figure 1A).
Weight gain was accompanied by an increase in liver weight until week 22 in NZO mice
(Figure 1B). In addition, we measured liver TGs and plin2, a major lipid droplet protein
(Figure 1C,D,F). Both parameters revealed an enhanced lipid accumulation. This could be
observed by H&E staining of the liver, which showed an increase in lipid droplet size and
content (Figure 1E).
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Figure 1. High-fat diet leads to enhanced liver lipid accumulation in NZO mice. B6 and NZO mice were fed by a standard 
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Figure 1. High-fat diet leads to enhanced liver lipid accumulation in NZO mice. B6 and NZO mice were fed by a standard
diet (SD) or a high-fat diet (HFD) until the indicated age of 22 or 39 weeks. Body weight (panel A), liver weight (panel B),
triglycerides (TG) (panel C) and plin2 content (panel D) were measured as described in the Methods section. Plin2 (panel D)
was determined by immunoblotting and data were normalized towards 22w SD B6 (set as ‘1’). A representative blot is
shown in panel F. Representative H&E staining of liver slices to visualize the lipid droplets are shown in panel E. Statistical
analysis was performed either by two-way ANOVA comparing NZO mice by diet and age or by unpaired t-test (indicated
by *), comparing selected samples directly. Statistical significance means: a—versus 22w B6; b—vs. 39w B6; c—vs. 22w Nzo
SD; and d—vs. 22w NZO HFD. The data presented are the mean ± standard deviation, n = 5–8.

Since our aim was to investigate the effects of lipid droplet accumulation on liver
proteostasis, we next determined the parameters of the ALS and UPS. Regarding the ALS,
we initially analyzed the relative protein expression of autophagy-related proteins SQSTM1
(p62), Atg5, Atg5-Atg12 as well as LC3-I and LC3-II in the liver tissue. As demonstrated in
Figure 2, LC3-I and Atg5 were decreasing in NZO mice on HFD, compared to NZO on SD.
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LC3-II levels of NZO SD are lower compared to B6 SD. Furthermore, LC3-II expression was
lower in 39w NZO HFD compared to 22w NZO HFD mice. The p62 protein expression was
increased in 39w B6 mice and is higher in NZO mice compared to the 22w B6. Prolonged
HFD slightly enhanced p62 protein in the 39w NZO HFD, compared to 22w NZO HDF
and 39w B6 SD, indicating that p62 turnover might be reduced over time and by HFD
(Figure 2D). Autophagy-related protein Atg5-Atg12 tends to decline in 22w NZO HFD
compared to 22w NZO SD, but were more distinctly decreased by prolonged HFD in
NZOs (Figure 2E). Since Atg5 and Atg5-Atg12 conjugate play an important role in the
lipidation of LC3-I to LC3-II, reduced levels of both would support the assumption of
reduced autophagy in the liver tissue of high-fat fed mice, which further contributes to
lipid droplet accumulation.
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Figure 2. Autophagy-related protein expression in liver of high-fat diet exposed mice. B6 and NZO mice were fed by a
standard diet (SD) or a high-fat diet (HFD) as described above. Panel A and panel B shows LC3-I and LC3-II protein amount,
whereas p62 (panel D), Atg5 (panel E) and Atg5-Atg12 (panel F) are presented together with respective immunoblots and
ponceau staining. Panel C is showing a representative LC3 staining with the relative ponceau staining. All data were
normalized towards 22w SD B6 (set as ‘1’). Statistical analysis was performed by one sample t-test (indicated by #) or
unpaired t-test (indicated by *), directly comparing two selected samples. Statistical significance means: a—versus 22w B6;
b—vs. 39w B6; c—vs. 22w Nzo SD; and d—vs. 22w NZO HFD. The data presented are the mean ± standard deviation,
n = 5–8.
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Besides analysis of autophagy proteins, we also analyzed lysosomal enzyme activity
to estimate changes in the ALS. Thus, we measured the maximal cysteine cathepsin activity
in the liver tissue of all groups (Figure 3A). Interestingly, the activity of the lysosomal
cysteine proteases seems to be generally lower in the NZO mice compared to B6 mice,
but was unaffected by HFD (Figure 3A) whereas the content of lysosomes, quantified via
LAMP1 protein expression, seems to increase as a compensatory measure (Figure 3B). So,
it seems that the limiting process in the ALS is declining autophagy rather than lysosomal
degradation. Furthermore, we tested the 20S proteasome activity as the catalytic core of
the UPS, but could not detect any changes within the groups (Figure 3C).
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Figure 3. Protein degradation systems in liver of high-fat diet exposed mice. Lysosomal (panel A) and 20S proteasomal
(panel C) activities were determined as described in the Methods section. Panel B shows the amount of the LAMP-1 protein
together with a representative blot and the corresponding ponceau staining. Data in Panel A and B were normalized
towards 22w SD B6 (set as ‘1’). Statistical analysis was performed by one sample t-test (indicated by #) or unpaired t-test
(indicated by *), directly comparing two selected samples. Statistical significance means: a—versus 22w; b—vs. 39w B6 and
c—vs. 22w NZO SD. The data presented are the mean ± standard deviation, n = 5–8.

Disturbances in protein degradation, starting here in the ALS, can consequently lead
to an accumulation of modified proteins, so we also measured the amounts of modified
proteins in liver samples. Therefore, we analyzed the amount of nitrated (Figure 4A) and
4-HNE-modified proteins (Figure 4B). Quantification of accumulated modified proteins
revealed a clear dependence on long-term high-fat feeding (Figure 4), indicating that lipid
droplet formation and decline in the ALS contributes to a general disbalance of proteostasis
in the liver.
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(indicated by *), directly comparing two selected samples. Statistical significance means: a—versus
22w B6; b—vs. 39w B6; c—vs. 22w NZO SD; and d—vs 22w NZO HFD. The data presented are the
mean ± standard deviation, n = 5–8.

4. Discussion

Metabolic syndrome and type II diabetes are associated with a number of compli-
cations including liver steatosis, which may lead to NAFLD [2]. Accumulation of lipids
in the liver might have serious effects on the metabolic performance of hepatocytes [19].
To investigate the impact of obesity and high-fat feeding on proteostasis in the liver, we
used NZO mice, an established model for polygenic obesity. NZO mice gain weight on a
standard diet compared to wildtype B6 mice, exhibit obesity and develop insulin resistance
when fed a HFD. However, if challenged with nutritional carbohydrates, a progressive loss
of beta-cells can be observed [18,20–24]. In our experiments 22w NZO SD mice already
showed a higher increase in body and liver weight as well as plin2 content, compared to
22w B6 on SD. These parameters are further increased if NZO are fed a HFD. In addition,
a prolonged HFD resulted in a gradual increase in lipid droplets and liver TGs. This is
in accordance with the work by Nocetti et al. [25], demonstrating the accumulation of fat
in lipid droplets. While it is generally assumed that the accumulation of lipid droplets in
liver is due to exposure to high nutritional fat [26], it can be expected that the liver has
some capacity to prevent unwanted lipid droplet accumulation by initiating the transport
of TGs to the adipose tissue. This would require a functional breakdown of lipid droplets,
among others, mediated either by the UPS or the ALS [27,28]. Autophagy has been shown
to contribute to the cellular energy balance, providing free amino and fatty acids as ener-
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getically essential components. However, cells not only activate lipolysis when they need
energy but also to prevent stores from becoming enlarged [29]. Although, mobilization
of lipid droplets by lipolysis has been attributed to cytosolic lipases, other studies have
reported a role for autophagy (lipophagy) [30]. A study in hepatocytes knocked down
for Atg5 provided the first evidence that lipid droplets are a substrate for autophagy [31].
Furthermore, Atg7 knockout in liver led to accelerated development of liver steatosis [32].

Our data suggest that a decrease in early autophagy initiation proteins is a starting
point for the decline in autophagy that is associated with increasing amounts of lipid
droplets and TGs in liver tissue of high-fat fed mice. It has already been demonstrated
that high fat conditions can time-dependently impair autophagy in liver cells by palmitate
treatment of HepG2 cells [33]. In addition to altered autophagy proteins, we also detected
changes in maximal lysosomal activity.

While lysosomal cathepsin activity was generally lower in NZO mice, it was not
affected by HFD. Interestingly, the lysosome content, measured by LAMP-1, increased in
liver of NZO on HFD, indicating a compensatory upregulation of lysosomes. Furthermore,
a study by Declèves et al., using electron microscopy, found that obese mice showed
increased LAMP-1 levels and enlarged lysosomes in kidneys, suggesting an overload of
the lysosomal system and accumulation of lysosomes [34].

On the contrary, the 20S proteasome activity was not changed. Since our data indi-
cate an incipient decline of autophagy in the liver through HFD, we also considered an
increase in modified proteins. We were able to show an accumulation of protein-bound
3-nitrotyrosine and 4-HNE modified proteins in the high-fat fed mice. This was also
observed in B6 mice on a HFD by Gutiérrez-Camacho et al. [35], although additional
challenges were applied in the study. Both protein modifications have been previously
shown in HFD-induced stress [36,37] and aging [14,38,39]. Interestingly, similar levels of
modified proteins were observed in liver tissue of 22w NZO on SD as in the older 39w B6
SD, which were additionally enhanced due to long-term HFD in 39w NZO HFD.

In conclusion, HFD feeding induces lipid droplet formation and leads to increased
TG levels, which are associated with reduced autophagy and accumulation of modified
proteins in the liver, indicating impaired protein turnover. Therefore, the activation of the
autophagy pathway might lead to a reduction of lipid accumulation in the liver, as demon-
strated in vitro by the use of punicalagin [33]. Another approach would be the reduction
of liver fat by nutritional means, as shown for a high protein diet in humans [40], which
might have effects on the autophagic flux in the liver, although the maximal autophagic
capacity seems to be reduced. Furthermore, an interesting approach would be to increase
the antioxidative defense mechanisms, which were also shown to result in a reduced load
on oxidative damage [41].

Moreover, it appears that obese 22w NZO mice on SD show more similarities to the
older 39w B6 mice, e.g., reduced autophagy and increased modified proteins, which are
further enhanced by HFD, suggesting accelerated aging in obese mice and through HFD.
To clarify whether HFD-reduced autophagy could lead to accelerated aging, further studies
are required, including additional controls.
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ALS Autophagy-Lysosomal System
AMC 7-amino-4-methylcoumarin
Atg Autophagy-Related Gene
B6 C57BL/6J Mouse
HFD High-Fat Diet
4-HNE 4-hydroxynonenal
LAMP Lysosomal-Associated Membrane Protein
LC3 Microtubule-Associated Proteins Light Chain 3
NAFLD Non-Alcoholic Fatty Liver Disease
NZO New Zealand Obese
plin2 Perilipin 2
RNS/ROS Reactive Nitrogen/Oxygen Species
SD Standard Diet
UPS Ubiquitin-Proteasomal System
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