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Abstract: Background: Interleukin (IL)17A is a member of the IL17 cytokine family, which is released
by both immune and non-immune cells such as tumor and stromal cells into the tumor microenviron-
ment. IL17 receptors are also widely expressed in different type of cells. Among all the members,
IL17A is the most controversial in regulating tumor immunity. Here, we investigated how IL17A
inhibition modulated macrophage differentiation and metabolism in the presence or absence of
gemcitabine. Gemcitabine is the gold standard drug for treating pancreatic cancer and can increase
macrophage antitumoral activities. Results: We observed some unique features of macrophages
polarized in the absence of IL17A, in terms of RNA and protein expression of typical phenotypic
markers, and we demonstrated that this paralleled specific changes in their metabolism and functions,
such as the induction of an antitumor response. Interestingly, these features were almost maintained
or enhanced when macrophages were treated with gemcitabine. We also demonstrated that the
anti-IL17A antibody effectively reproduced features of macrophages derived from IL17A knock-out
mice. Conclusion: Overall, we provide a proof-of-concept that combining an anti-IL17A antibody
with gemcitabine may represent an effective strategy to modulate macrophages and enhance the
anti-tumor response, especially in pancreatic cancer where gemcitabine is widely used.

Keywords: Interleukin 17A (IL17A); macrophages; metabolism; pancreatic cancer; chemo-immunotherapy

1. Introduction

While T helper (Th)17 cells play a well-established role in inflammation and autoim-
mune diseases, their role in tumor immunity remains controversial. Th17 cells have been
implicated in protective immunity and disease outcome, as well as in the amplification of
the inflammatory response that favors tumor initiation, progression and resistance [1] and
allergic diseases, especially asthma [2]. Interleukin (IL)17A is the founding member of the
IL-17 family, which has five other members, designated IL-17A–F. IL17A can either exist as
homodimers or as IL17A-IL17F heterodimers, which bind IL17 receptor A and C (RA/RC)
heterodimer receptors [3]. Both receptors are present on many immune and non-immune
cells, including tumor epithelial cells such as transformed acinar and ductal pancreatic
cells [4].

IL17A plays a role in neutrophils, but has also been implicated in the activation of dif-
ferent immune cells including macrophages. Macrophages are crucial players in inflamed
tissues as well as in tumors where, based on their cytokine-dependent differentiation
status, can limit or support tumor evasion from immunosurveillance. A well-accepted
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dichotomous classification defines macrophages (especially when differentiated in vitro)
as M1, which are “classically activated” (when stimulated by Toll Like Receptor (TLR)
ligands and Interferon (IFN)γ), or M2, which are “alternatively activated” (when stimu-
lated by Interleukin (IL)4/IL13) [5,6]. M1 macrophages are also regarded as inflammatory
due to the high production of pro-inflammatory cytokines, reactive nitrogen and oxygen
species (ROS) and strong tumoricidal activity. Conversely, M2 macrophages are considered
immunosuppressive due to their immunoregulatory functions; they mainly foster tissue
remodeling and tumor progression [7].

The effect of IL17A on the macrophage population is not fully known, probably
because different macrophage subpopulations modulate IL17R expression in response to
several inflammatory stimuli [8]. Moreover, most published studies report an in vivo effect
of IL17A on macrophages isolated from inflamed tissues. Erbel and colleagues observed
that IL17A caused atherosclerotic macrophages to assume an M1-like phenotype [9], while
Nishikawa et al. described the central role of IL17A in inducing an M2-like population to
regulate intestinal inflammation [10]. We previously demonstrated that IL17A, released by
macrophages after treatment with taxol, contributes to render them more suppressive [11].

In addition to the phenotypical features, M1 and M2 macrophages display differ-
ences in many metabolic pathways. The current classification defines M1 macrophages as
characterized by an activated glycolytic pathway, pentose phosphate pathway (PPP) and
fatty acid synthesis (FAS), while M2 macrophages are characterized by activated fatty acid
oxidation (FAO) and oxidative phosphorylation (OXPHOS) [12]. However, recent studies
have demonstrated that glycolysis is induced in both M1 and M2 macrophages, but only
M1 macrophages also have increased PPP [13], and FAO is still controversially involved
in both M1 and M2 macrophages [12]. Here, we report that IL17A neutralization was
shown to modulate in vitro macrophage polarization per se, both in terms of metabolism
activation and of RNA and protein expression of typical markers. In particular, IL17A
neutralization opposed IL4 in driving the M2 phenotype and metabolic polarization, but
some features typical of M2 macrophages were maintained, together with those associated
with M1 macrophages, suggesting the acquisition of a unique phenotype. We also report
that these features still remained in the presence of gemcitabine, a chemotherapy drug
widely used in pancreatic cancer treatment (alone or in combination with other drugs),
whose effects on macrophages are under debate [14,15]. In addition, it has been already
proven to indirectly influence macrophages in vitro and in vivo [15,16].

In conclusion, we demonstrate that IL17A neutralization represents a novel strategy
to shape tumor-associated macrophages and might potentiate the gemcitabine effect on
these cells.

2. Materials and Methods
2.1. In Vitro Generation of Murine Bone Marrow-Derived Macrophages (BMDM)

Whole bone marrow was harvested from 10- to 12-week-old female mice by flushing
RPMI medium through femurs and tibias using a 27-gauge needle. Animal use for bone
marrow collection has been authorized by the Italian Ministry of Health, Animal and
Veterinary Office (authorization No. 597/2019-PR). Following red blood cell lysis, cells
were cultured overnight in 10% RPMI in 10-cm plates. Non-adherent cells were collected
and seeded in Petri dishes in medium containing 20 ng/mL macrophage colony-stimulating
factor (M-CSF) (PeproTech, supplied by Tebu-Bio S.r.l., Magenta MI, Italy). After 3 days of
culture, cell media were replenished with fresh medium and M-CSF. BMDM were harvested
on day 4, and used for all in vitro assays. Polarization was obtained by culturing BMDM
with medium containing IL4 (20 ng/mL; PeproTech) and M-CSF (20 ng/mL; PeproTech),
or 100 ng/mL LPS (PeproTech) for 24 h. Hereinafter, IL4+ M-CSF-stimulated macrophages
will be referred to as M2-like, and LPS-stimulated macrophages as M1-like cells. When
specifically indicated, gemcitabine (1 mg/mL), or anti-IL17A antibody (20 µg/mL; BE0173,
BioXCell, supplied by D.B.A. Italia S.r.l., Segrate MI, Italy) or its isotype control (BE0083,
BioXCell), or recombinant IL17A (PeproTech) were added parallelly to the polarizing
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stimuli for 24 h. If not differently specified, all metabolic and molecular biology assays
were performed at 24 h after treatment.

2.2. Quantitative RT-PCR (qPCR)

RNA was isolated using the Nucleospin RNA Plus kit (Macherey-Nagel, supplied
by Carlo Erba Reagents S.r.l., Cornaredo MI, Italy), and reverse transcribed using the
iScript cDNA Synthesis kit (Bio-Rad, Segrate MI, Italy) according to the manufacturer’s
instructions. qPCR was performed using SYBR Green primers (Applied Biosystems, sup-
plied by Thermo Fisher Scientific, Monza, Italy). Mouse glyceraldehyde 3-phosphate
dehydrogenase (gapdh) was used as a housekeeping gene; the relative mRNA expression
was calculated using M0 cells, each time, as controls to compare the effect of genotype in
polarization, and each untreated M1 or M2 to compare the effect of gemcitabine on the
polarization of both wild-type (WT) and IL17A−/− cells. All primer sequences are listed
in Table 1.

Table 1. List of primers.

Gene Accession Number Forward Reverse

Gapdh 14433 CATCACTGCCACCCAGAAGACTG ATGCCAGTGAGCTTCCCGTTCAG
Nos2 18126 CTTTGCCACGGACGAGAC TCATTGTACTCTGAGGGCTGAC
Ifng 15978 ATCTGGAGGAACTGGCAAAA TTCAAGACTTCAAAGAGTCTGAGGTA

Cd86 12524 GAAGCCGAATCAGCCTAGC CAGCGTTACTATCCCGCTCT
Il12b 16160 AAGGAACAGTGGGTGTCCAG GTTAGCTTCTGAGGACACATCTTG
Arg1 11846 GAATCTGCATGGGCAACC GAATCCTGGTACATCTGGGAAC
Ym1 12655 AAGAACACTGAGCTAAAAACTCTCCT GAGACCATGGCACTGAAC G

2.3. ELISA

Supernatants from differently stimulated BMDM were assessed for the presence
of IFNγ (eBioscience 88-7314-88, supplied by Thermo Fisher Scientific, Monza, Italy),
IL10 (R&D Systems, supplied by Bio-Techne, Milan, Italy), IL6 (Biolegend, supplied by
Campoverde S.r.l., Milan, Italy) and TNFa (R&D Systems) through an Enzymatic-Linked
Immunosorbent Assay (ELISA) following the manufacturer’s instructions. Optical Density
values were measured at 450 nm with the VICTOR Nivo Multimode Microplate Reader
(PerkinElmer, Milan, Italy).

2.4. MTT Assay

Cell viability was assessed by the MTT assay. Cells were seeded in 96-well plates at
1.5 × 103 cells/well, and 20 µL of 5 mg/mL MTT solution (Sigma-Aldrich, Milan, Italy)
was added to each well, and incubated at 37 ◦C for a further 4 h every 24 h. Plates were
centrifuged for 10 min at room temperature and medium was removed. The insoluble
formazan product was dissolved in 200 µL of dimethyl sulfoxide (Sigma-Aldrich) for
10 min at room temperature on a platform shaker. Optical Density values were measured
at 570 nm with the VICTOR Nivo Multimode Microplate Reader (PerkinElmer).

2.5. The Pentose Phosphate Pathway (PPP) and Tricarboxylic Acid (TCA) Cycle

After washing in PBS, cells were detached with PBS containing 2.5% v/v FBS and
2 mmol/L EDTA, rinsed with PBS, and resuspended in 1 mL Hepes buffer (145 mmol/L
NaCl, 5 mmol/L KCl, 1 mmol/L MgSO4, 10 mmol/L Hepes, 10 mmol/L glucose, 1 mmol/L
CaCl2, pH 7.4). 50 µL were taken up, sonicated and used to measure the protein content.
In each remaining sample, 2 µCi of [6-14C] glucose (55 mCi/mmol, PerkinElmer) or 2 µCi
of [1-14C] glucose (58 mCi/mmol, PerkinElmer) were added. The labelled cell suspension
was incubated for 1 h in a closed tube to trap the 14CO2 produced from the [14C] glucose.
After this incubation time, the metabolic flux was interrupted by adding 0.5 mL 0.8 N
HClO4 [17]. [1-14C] glucose metabolized through PPP or TCA and [6-14C] glucose me-
tabolized through the TCE only produced 14CO2. The amount of glucose producing CO2
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through the PPP was obtained by subtracting the amount of [6-14C] glucose (TCA cycle)
from [1-14C] glucose (TCA + PPP cycles), as described [17]. Results were expressed as nmol
CO2/h/mg cell proteins.

2.6. Lactate

The determination of the lactate levels in the cell culture medium was performed with
the L-Lactate Assay Kit (Abcam, supplied by Prodotti Gianni S.p.a., Milan, Italy), according
to the manufacturer’s instructions. Results were expressed as nmol/mL.

2.7. Fatty Acid β-Oxidation

Cells were rinsed twice with PBS, detached with 0.05/0.02% v/v trypsin/EDTA and
centrifuged at 13,000× g for 5 min. Protein quantification was performed on 50 µL of the
sample after sonication. The remaining samples were re-suspended in culture medium
containing 0.24 mmol/L fatty acid-free bovine serum albumin (BSA), 0.5 mmol/L L-
carnitine, 20 mmol/L Hepes, 2 µCi [1-14C] palmitic acid (3.3 mCi/mmol, PerkinElmer) [18]
and transferred into tightly closed tubes. For each experiment, a negative control was
performed on cells incubated with the carnitine palmitoyltransferase inhibitor etomoxir
(1 µmol/L) for 30 min, a positive control was performed on cells incubated with the AMP-
kinase activator 5-aminoimidazole-4-carboxamide ribonucleotide AICAR (1 mmol/L) for
30 min. Samples were incubated 2 h at 37 ◦C, 1:1 v/v phenylethylamine/methanol (0.3 mL)
and 0.8 N HClO4. (0.3 mL) were added. Samples were incubated for an additional 1 h at
room temperature, then centrifuged at 13,000× g for 10 min. The supernatants, containing
14CO2, and the precipitates, containing 14C-acid soluble metabolites (ASM), were subjected
to liquid scintillation count. Results were expressed as pmol of [14CO2] or 14C-ASM/h/mg
cell proteins.

2.8. Mitochondrial Respiratory Chain Measurement

Cells were rinsed twice in ice-cold PBS, lysed with 0.5 mL buffer A (50 mmol/L Tris,
100 mmol/L KCl, 5 mmol/L MgCl2, 1.8 mmol/L ATP, 1 mmol/L EDTA, pH 7.2) containing
the protease inhibitor cocktail III [100 mmol/L AEBSF, 80 mmol/L aprotinin, 5 mmol/L
bestatin, 1.5 mmol/L E-64, 2 mmol/L leupeptin and 1 mmol/L pepstatin (MerckMillipore,
Milan, Italy) 1 mmol/L PMSF, 250 mmol/L NaF]. Samples were centrifuged at 650× g
for 3 min at 4 ◦C, supernatants were transferred into a new tube series and centrifuged
at 13,000× g for 5 min at 4 ◦C. The supernatants were discarded, the pellets containing
mitochondria, after a washing step with 0.5 mL buffer A, were re-suspended in 0.25 mL
buffer B (250 mmol/L sucrose, 15 µmol/L K2HPO4, 2 mmol/L MgCl2, 0.5 mmol/L EDTA,
5% w/v BSA). 50 µL were sonicated and used for protein quantification. The activity
of mitochondria respiration complexes was evaluated according to [18]. Results were
expressed as nmol red cit c/min/mg mitochondrial proteins.

2.9. ATP Detection

ATP levels in mitochondrial extracts were evaluated with the ATP Bioluminescent
Assay Kit (Sigma-Aldrich), using a Synergy HT Multi-Mode Microplate Reader (Bio-Tek
Instruments, supplied by Thermo Fisher Scientific, Monza, Italy). Results as relative light
units (RLU) were expressed as nmol ATP/mg mitochondrial proteins, according to the
titration curve previously prepared.

2.10. Glutamine Catabolism

Glutamine catabolism was measured as described in [19], with minor modifications.
Cells were rinsed with PBS, detached, centrifuged at 13,000× g for 5 min at 4 ◦C, re-
suspended in 250 µL of buffer A (150 mmol/L KH2PO4, 63 mmol/L Tris/HCl, 0.25 mmol/L
EDTA; pH 8.6) and sonicated to measure the protein content. In the first sample series,
100 µL of each lysate were incubated at 37 ◦C for 30 min in 850 µL of buffer B (80 mmol/L
Tris/HCl, 20 mmol/L NAD+, 20 mmol/L ADP, 3% v/v H2O2; pH 9.4) and 50 µL of
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20 mmol/L L-glutamine. NADH absorbance at 340 nm was followed with a Lambda 3
spectrophotometer (PerkinElmer) and was linear during the whole assay. Results, ex-
pressed as µmol NADH/min/mg cell proteins, corresponded to the activity of glutaminase
(GLS) plus L-glutamic dehydrogenase. In the second sample series, 20 µL of the GLS
inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide BTPES (30 µmol/L,
i.e., a concentration that inhibited GLS activity at 100%, data not shown), was added
after 15 min and NADH absorbance was followed for 15 min. Results, expressed as µmol
NADH/min/mg cell proteins, indicated the L-glutamic dehydrogenase activity. GLS activ-
ity was obtained by subtracting the rate of NADH production in second assay from the
rate of the first assay.

2.11. Formalin-Fixed and Paraffin-Embedded (FFPE) Dissociation and Flow Cytometry Analysis

To analyze tumor-associated macrophages (TAMs) and tumor-infiltrating immune
lymphocytes from orthotopic PDAC arose in IL17A knock out mice or in wild-type mice
treated or not with an anti-IL17A mAb, two 50 µm sections from a FFPE block were
transferred into a gentle MACS C tube to be dissociated while preserving intact cells with
the FFPE Tissue Dissociation Kit (130-118-052, Miltenyi Biotec, Bologna, Italy) following the
manufacturer’s instructions. Five mice per group were analysed. Single cell suspensions
were resuspended in PBS containing 0.5% BSA and 0.01% NaN3, and unspecific binding
sites were blocked by 10 min incubation with anti-CD16/CD32 mAb (BioLegend, clone 93).
Staining was performed using the following antibodies: FITC anti-CD11b (Miltenyi Biotec,
clone M1/70.15.11.5), PerCP anti-CD45 (Miltenyi Biotec, clone 30F11), FITC anti-CD4
(Miltenyi Biotec, clone REA604), Per-CP anti-CD8 (eBioscience, clone 53-6.7), AF647anti-
Granzyme-B (51-8898-82 eBioscience, clone NGZB), APC anti-CD206 (141712 BioLegend,
clone C068C2), APC anti-FoxP3 (17-5773-82 eBioscience, clone FJK-16s) and APC anti-
IFNγ (17-7311-82 eBioscience, clone XMG1.2). Cells were washed again with 0.5% BSA
plus 0.01% NaN3 in PBS. For IFNγ, Granzyme-B and FoxP3 staining, cells were stained
for surface markers, then fixed and permeabilized at 4 ◦C for 30 min with the Fixation
Permeabilization kit (eBioscience) after several washes with 0.5% BSA plus 0.01% NaN3 in
PBS. After washing with permeabilization buffer, antibodies against IFNγ, Granzyme-B
and FoxP3 were added for 20 min at 4 ◦C. All flow cytometry data were acquired using
the Accuri™ C6 cytometer (BD Biosciences, Milan, Italy) and analyzed with FlowJo_vX.0.7
software (Tree Star from BD Biosciences).

2.12. ROS Measurement

To measure intracellular ROS, 2 × 105 BMDM were incubated with either 300 nM
DCF-DA (C6827, Invitrogen, supplied by Thermo Fisher Scientific, Monza, Italy) or 5 µM
MitoSOX (M36008, Invitrogen) for 10 min at 37 ◦C. Fluorescence signals were acquired with
an Accuri™ C6 cytometer (BD Bioscience), and data were analyzed using FlowJo_vX.0.7
software (BD Bioscience).

2.13. Macrophage Uptake Activity

BMDM were seeded onto glass coverslips in 12-well plates (0.5 × 105 cells per well).
Cells were co-cultured with carboxyfluorescein succinimidyl ester (CFSE)-labelled (V12883,
Invitrogen) K8484 cells pretreated with gemcitabine (1 mM for 24 h), for 2 h, 18 h or 48 h.
Cells were incubated with blocking buffer containing anti-CD16/32 Ab in 0.5% BSA in
PBS at 4 ◦C for 10 min, and then incubated with the primary antibody anti-I-A/Eb (107608
BioLegend; clone M5/114.15.2) at 0.2 µg/mL for a further 30 min. Cells were fixed with
paraformaldehyde (2% PFA) at room temperature for 10 min, and then washed twice
with PBS. Cells were then permeabilized with 0.05% Triton-X in PBS at room temperature
for 10 min and stained with TO-Pro3 (T3605, Invitrogen)—a nucleophile dye—at room
temperature for 30 min. Coverslips were washed twice in 0.05% Triton-X in PBS and
mounted with VectaShield (20 µL/coverslip; Vector Laboratories, supplied by D.B.A Italia
S.r.l., Segrate MI, Italy). Images were acquired with a confocal microscope (sp8, Leica,
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Milan, Italy) using LAS X software v.3.4.2 (Leica), and processed with Adobe Photoshop
CS5. Data were reported as percentage of cells with CFSE positivity inside per total number
of cells. MHC class II staining was used as a control.

2.14. Immunoblotting

Untreated mouse WT and IL17A-depleted M1- and M2-like macrophages, or those
treated with gemcitabine, were collected and resuspended in lysis buffer (TBS, 0.5% Triton
X-100, 0.5% NP-40, 1mM PMSF, 1mM Na3VO4, 1% DTT and protease inhibitor cocktail).
Protein concentration was evaluated using the Bio-Rad Protein Assay (Bio-Rad). Samples
were resuspended in 4× Bolt LDS Sample Buffer and 10× reducing agent, and incubated at
70 ◦C for 10 min before loading on precast Bolt 4–12% Bis-Tris Plus gels (all from Thermo
Fisher Scientific, Monza, Italy). Immunoblotting was performed with the following primary
Abs: anti-NOS2 (Cell Signaling, supplied by Euroclone, Pero Mi, Italy), anti-ARG1 (Cell
Signaling) and anti-HSP90 (Cell Signaling) following the manufacturer’s instructions. Anti–
rabbit HRP-conjugated secondary Abs (diluted 1:10,000) were obtained from Thermo
Fisher Scientific. Membranes were developed for chemiluminescent detection, and images
were acquired using a ChemiDoc MP Imaging System and Image Lab 6.0.1 Software (Bio-
Rad). Immunoblots were quantified by ImageJ 1.45 software (National Institutes of Health,
Bethesda, MD, USA).

2.15. Statistical Analyses

Data in bar graphs are reported as means ± SEM, with p values calculated using the
Student’s t test (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Means were calculated based on a
minimum of n = 3 replicates in each independent experiment. Data were analyzed either
by Microsoft Excel (Microsoft, Redmond, WA, USA) or GraphPad Prism 8 (GraphPad, San
Diego, CA, USA).

3. Results
3.1. The Absence of IL17A Induces Unique Features in Both M1- and M2-Like Macrophages

We firstly evaluated if the absence of IL17A affected the ability of macrophages
to polarize in vitro in dichotomic M1- and M2-like cells. BMDM derived from WT or
IL17A−/− mice were stimulated for 24 h with LPS, to induce an inflammatory phenotype
(M1-like), or with M-CSF + IL4, to induce an anti-inflammatory phenotype (M2-like).
mRNA, supernatants and whole cells were collected to be analyzed as listed in Figure 1.
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Macrophages were evaluated for the protein and/or transcript expression of mark-
ers typically associated with the M1-phenotype, namely mannose receptor C type 1
(MRC1/CD206), inducible nitric oxide synthase (iNOS), Interferon gamma (IFNγ), CD86,
and Interleukin (IL)12b, or markers associated with the M2-phenotype, namely Arginase
(ARG)1 and Ym1 (Figure 2a–g).
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Figure 2. The absence of IL17A induces unique features in both M1- and M2-like macrophages and renders them differently
responsive to gemcitabine. Flow Cytometry (FACS) analysis of fluorescence intensity for Mannose Receptor C type 1
(CD206) (a) on wild-type (WT) and Interleukin (IL)17A−/− bone marrow derived macrophages (BMDM) polarized toward
the M1 or M2 phenotype. Nos2, Ifng, Il12b, Cd86, Arg1 and Ym1 mRNA levels in BMDM obtained from WT (white bars)
or IL17A−/− mice (blue bars). Relative untreated M0 cells were used as reference for evaluating the fold-change (b–g).
interferon (IFN)γ (h) and IL10 (i) were quantified by enzyme-linked immunosorbent assay (ELISA) in the supernatants of



Antioxidants 2021, 10, 422 8 of 22

BMDM derived from WT (white bars) or IL17A−/− mice (blue bars). WT and IL17A−/− BMDM polarized M1- and M2-like
cells were untreated or treated with gemcitabine for 24 h and analyzed for the expression of Nos2, Ifng, Cd86, Il12b, Arg1 and
Ym1. Relative untreated M1- or M2-like cells were used as a reference for evaluating the fold-change (j–o). IFNγ (p) and IL10
(q) were quantified by ELISA in the supernatants of BMDM derived from WT (white bars) or IL17A−/− mice (blue bars)
treated with gemcitabine. Data are represented as means± SEM (means± standard error) of biological replicates. * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001 values from IL17A−/− macrophages were significantly different from those of corresponding WT
cells; $ p ≤ 0.05, $$ p ≤ 0.01, $$$ p ≤ 0.001 values from gemcitabine-treated macrophages were significantly different from
those of M1- or M2-like untreated cells.

LPS and M-CSF + IL4 stimuli polarized WT and IL17A−/− BMDM with few differ-
ences, already evident in M0 cells. IL17A−/− M0 macrophages, indeed, displayed the
tendency to increase Nos2 and Ifng transcripts, and expressed significantly less Arg1 and
Ym1 than WT M0 cells (Supplementary Figure S1a–f). No significant differences in polar-
ization were observed in the M1-like cells. By contrast, IL17A−/− M2-like cells expressed
less CD206, commonly defined as a marker of pro-tumorigenic or “alternatively activated”
macrophages, but more Cd86, Arg1 and Ym1 markers than WT cells (Figure 2a,e–g). We
also tested supernatants for the presence of IFNγ and IL10 24 h after polarization. Despite
the absence of significant gene induction (Figure 2c), IFNγ was produced by WT M1-like
macrophages but not by the IL17A−/− counterparts (Figure 2h). As expected, LPS also
elicited IL10 secretion by M1-like cells, but the absence of IL17A further increased its
production by both M1- and M2-like macrophages significantly (Figure 2i).

Overall, the absence of IL17A did not impair the in vitro generation of M1-like
macrophages, but it induced an atypical M2-like phenotype in which Cd86 expression
reached levels similar to those observed in M1-like macrophages.

3.2. IL17A Absence Renders Macrophages Differently Responsive to the Gemcitabine-Induced
M2-to-M1-Switch

We previously demonstrated that breast cancer-infiltrating immunosuppressive
macrophages released a large amount of IL17A, especially when treated with taxan [11].
Similarly, gemcitabine, a chemotherapy drug with a different mechanism of action from
taxan, induced IL17A secretion by both M1- and M2-like in vitro generated cells (Supple-
mentary Figure S1m). We firstly assessed if the tumor-cytotoxic dose of gemcitabine that
we used in all the experiments affected macrophage viability. The MTT assay revealed
that both WT and IL17A−/− M1- or M2-like macrophages were less active compared to
untreated cells, even if they remained viable at 24 h and 48 h after chemotherapy treatment
(Supplementary Figure S1n,o). In addition, both IL17A−/− M1- and M2-like untreated
macrophages displayed an increased viability compared to WT cells. We assessed the
mRNA levels of IL17 receptor family. Il17ra transcript was significantly reduced in both
WT and IL17A−/− M1- and M2-like macrophages. On the other hand, only minor changes
were observed for Il17rc, Il17rd and Il17re, and no Il17rb transcript levels were detected
(Supplementary Figure S1p, upper panels). Gemcitabine greatly increased the expression of
Il17ra in WT M1- and M2-like macrophages, but not in IL17A−/− macrophages. In addition,
it increased the expression of Il17rc, Il17rd and Il17re in both WT and IL17A−/− M1- and
M2-like macrophages. This suggests that M1 and M2 macrophages are more responsive to
IL17 family than unstimulated M0 even if IL17A−/− macrophages express lower levels of
the IL17RA common chain. Again, Il17rb expression was no detectable in both WT and
IL17A−/− M1- and M2-like macrophages treated with gemcitabine (Supplementary Figure
S1p, lower panels).

Gemcitabine has been demonstrated to induce in vivo and in vitro polarization of
macrophages towards an M1-phenotype (Di Caro Gut 2014). We treated macrophages
with gemcitabine during their polarization, and analyzed for the expression of genes typi-
cally associated with M1- and M2-like phenotypes by qRT-PCR. As expected, gemcitabine
induced a significant upregulation of M1-associated markers both in M1- and M2-like
cells compared to the relative untreated ones, with differences between WT and IL17A−/−

macrophages. Nos2 and Ifng were significantly up-regulated in M2-like cells to a greater ex-
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tent in the absence of IL17A (Figure 2j,k and Supplementary Figure S1q). However, Ifng and
Il12b were greatly increased in WT M1-like macrophages and to a lesser extent in IL17A−/−

M1-like cells (Figure 2k,l). Chemotherapy had opposing effects on Cd86 expression in
M2-like macrophages, as it significantly enhanced Cd86 expression in WT cells but not in
IL17A−/− cells (Figure 2m). Finally, gemcitabine significantly decreased the expression of
both Arg1 and Ym1 in both WT and IL17A−/− M1- and M2-like macrophages, again to a
greater extent in IL17A−/− M2-like cells (Figure 2n,o and Supplementary Figure S1q).

Gemcitabine reduced IFNγ secretion by WT cells, but caused enhanced IFNγ secretion
by IL17A−/− M1-like cells (Figure 2p). Notably, gemcitabine significantly enhanced IFNγ

production by both WT and IL17A−/− M2-like cells, confirming the up-regulation of gene
transcripts (Figure 2p). Conversely, gemcitabine significantly reduced IL10 secretion by
both WT and IL17A−/− M1-like and M2-like macrophages (Figure 2q).

In conclusion, gemcitabine enhanced the expression of M1-associated genes in both
M1- and M2-like macrophages, and simultaneously reduced those associated with the M2
phenotype to a greater extent in the absence of IL17A (Supplementary Table S1).

3.3. The Absence of IL17A Attenuates Metabolic Fluxes of M1- and Particularly
M2-Like Macrophages

Since phenotype is a direct reflection of intracellular metabolism [20], we investigated
if the absence of IL17A could rewire the metabolic demand of macrophages.

We represented the raw data of each metabolic pathway as heat maps. Color codes
represent values evaluated in each WT and IL17A−/− macrophage populations. We
considered values obtained from untreated (UT) M0 cells from each genotype as the basal
condition (black values) to set the relative color scale.

The PPP and glycolysis are two of the first utilizers of glucose, and are key metabolic
events in M1-like macrophages [21]. In IL17A−/− M0 cells, the basal PPP rate was lower
than that of WT cells (3.13 ± 0.2 vs. 5.61 ± 0.19; p = 0.0009) (Figure 3a), while the lactate
production was higher than in WT cells (2.05 ± 0.04 vs. 1.38 ± 0.15; p = 0.0142) (Figure 3b).
WT M1-like cells displayed a trend of an increase in PPP activity (6.67± 0.64 vs. 5.61± 0.19),
and—more significantly—in lactate production (2.43 ± 0.15 vs. 1.38 ± 0.15; p = 0.0079),
one of the by-products of glycolysis (Figure 3a,b). By contrast, the PPP did not change
in IL17A−/− M1-like cells (3.54 ± 0.19 vs. 3.13 ± 0.2) whereas lactate production was
significantly reduced (0.97 ± 0.02 vs. 2.05 ± 0.04; p = 0.0001) (Figure 3b).

As expected, both WT and IL17A−/− M2-like macrophages displayed a significant
reduction of the PPP (3.06 ± 0.18 vs. 5.61 ± 0.19; p = 0.006 and 1.99 ± 0.11 vs. 3.13 ± 0.2;
p = 0.0079 respectively) and glycolysis (0.96 ± 0.06 vs. 1.38 ± 0.15 p = 0.062 and 0.49 ± 0.04
vs. 2.05 ± 0.04; p < 0.0001 respectively).

In addition, pro-inflammatory M1-like macrophages usually display low activity of the
tricarboxylic acid cycle (TCA), fatty acid oxidation (FAO) and glutaminolysis, as they em-
ploy glycolysis and the PPP to meet their ATP demand. The opposite is mainly true for M2
macrophages that obtain ATP through active oxidative phosphorylation (OXPHOS) [12]. In-
deed, FAO and TCA were lower and unchanged in WT M1-like cells compared to untreated
M0 respectively (1.31 ± 0.03 vs. 1.48 ± 0.09 and 1.58 ± 0.1 vs. 1.57 ± 0.16), while electron
transport chain (ETC) activity (2.1 ± 0.03 vs. 3.44 ± 0.1). ATP production (1.36 ± 0.04
vs. 2.33 ± 0.13) and glutaminolysis (1.28 ± 0.04 vs. 2.88 ± 0.12) were significantly down-
modulated (p = 0.0001 for all). Conversely, all these pathways were greatly increased in
WT M2-like macrophages compared to UT M0 cells (FAO: 2.68 ± 0.06 vs. 1.48 ± 0.09, TCA:
3.4 ± 0.09 vs. 1.57 ± 0.16, ETC: 5.61 ± 0.23 vs. 3.44 ± 0.1, ATP: 4.27 ± 0.06 vs. 2.33 ± 0.13,
glutaminolysis: 4.86 ± 0.08 vs. 2.88 ± 0.12; p < 0.002 for all) (Figure 3d–f heat map).
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Figure 3. The absence of IL17A attenuates metabolic fluxes of macrophages and differently modulates gemcitabine-induced
metabolic changes. WT- and IL17A−/−-derived BMDM were polarized toward the M1 or M2 phenotype and analyzed for
metabolic activities. Heatmaps represents values evaluated in each WT and IL17A−/− macrophage population. Unpolarized
(M0) cells were used as baseline, and are represented as black boxes. Analysis of [1-14C] glucose flux through the Pentose
Phosphate Pathway (PPP) assessed by 14CO2 release (a); quantification of lactate levels (b); analysis of fatty acid beta
oxidation (FAO) expressed as amount of [1-14C] palmitic acid metabolized to produce 14CO2 (c); analysis of oxidative
phosphorylation measured as Tricarboxylic Acid (TCA) cycle rate, evaluated by measuring CO2 emission after radiolabeling
cells with [1-14C] acetyl-coenzyme A (d); analysis of mitochondria electron transport chain activity (e) and ATP production
(f), analysis of glutaminase activity (g). IL6 (h) and TNFα (i) production was quantified by ELISA in supernatants from
WT- and IL17A−/− M1- or M2-like macrophages (white and blue bars, respectively). WT- and IL17A−/− BMDM (white
and blue bars, respectively) were polarized toward the M1 or M2 phenotype and untreated (UT) or treated for 24 h with
gemcitabine. Bar graphs represent the fold-change calculated for gemcitabine-treated M1- or M2-like macrophages versus
corresponding UT samples: PPP (j), lactate production (k), FAO (l), TCA flux (m), Electron Transport Chain (ETC) (n), ATP
production (o) and glutaminase activity (p). IL6 (q) and TNFα (r) production was quantified by ELISA in supernatants
from WT- and IL17A−/− M1- or M2-like macrophages treated with gemcitabine for 24 h. Data are represented as means ±
SEM of biological replicates. * p ≤ 0.05, ** p ≤ 0.01, values from IL17A−/− macrophages were significantly different from
those of corresponding WT cells; $ p ≤ 0.05, $$ p ≤ 0.01, $$$ p ≤ 0.001 values from gemcitabine-treated macrophages were
significantly different from those of untreated M1- or M2-like cells.

In the absence of IL17A, M0 cells displayed lower basal levels of all these pathways
compared to WT M0 cells (FAO: 0.72 ± 0.05 vs. 1.48 ± 0.09, TCA: 0.91 ± 0.14 vs. 1.57
± 0.16, ETC: 1.96 ± 0.05 vs. 3.44 ± 0.1, ATP: 1.06 ± 0.05 vs. 2.33 ± 0.13, glutaminolysis:
1.23 ± 0.07 vs. 2.88 ± 0.12; p values < 0.05 for all). However, in IL17A−/− cells, FAO was
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enhanced in M2-like macrophages (0.95 ± 0.05) but, interestingly, much more in M1-like
cells (1.02 ± 0.04; more than 30% and 40%, respectively). Levels of TCA (1.35 ± 0.5), ETC
(2.42 ± 0.12) and ATP (1.55 ± 0.11) were less increased in M2-like macrophages compared
to that observed in WT M2-like cells (50% vs. 120%, 20% vs. 63% and 46% vs. 90%,
respectively) (Figure 3c–f heat maps). Lastly, glutaminolysis was increased in IL17A−/−

M2-like (2.03 ± 0.06) similarly to that evaluated in WT cells (Figure 3g heat maps).
We also evaluated the presence of IL6 and TNFα in the supernatants from WT and

IL17A−/− polarized macrophages, as it has been demonstrated that both cytokines cor-
related with an increased glycolysis and PPP activity [12]. Indeed, M1-like macrophages
released both IL16 and TNFα to a much greater extent compared to M2-like cells, regardless
of the presence or absence of IL17A (Figure 3h,i). This is in line with what is known in
literature about the regulation of pro-inflammatory cytokine and TNFα production by
glycolytic enzymes. Indeed, glyceraldehyde 3-phospate dehydrogenase is known to be a
post-transcriptional regulator of TNFα mRNA, which is suppressed when the enzyme is
not engaged with the glycolysis. In addition, enolase seems to contribute to the production
of TNFα [12].

Overall, IL17A absence not only reduced the basal metabolic rate, but also differently
impacted the typical metabolic changes associated with macrophage polarization (e.g.,
lactate production downregulation and FAO upregulation in M1-like macrophages).

3.4. IL17A Absence Differently Modulates Metabolic Changes Induced by Gemcitabine

To highlight differences induced by gemcitabine, we represented fold-changes in the
graphs by using untreated M1- or M2-like macrophages of each genotype as a reference.
Gemcitabine treatment increased glucose use through the PPP and glycolysis pathways,
as they were enhanced in both M1- and M2-like macrophages to a greater extent in the
absence of IL17A (Figure 3j,k).

Gemcitabine mostly reduced the M2-associated pathways, namely FAO, TCA flux,
ETC, ATP production and glutaminolysis, in both WT and IL17A−/− M1- and M2-like
macrophages, but to a lesser extent for TCA and ATP, and to a greater extent for the ETC in
IL17A−/− M1-like macrophages compared to WT M1-like cells (Figure 3l–p). In addition,
in the absence of IL17A, gemcitabine significantly increased glutaminolysis in M1-like
macrophages (Figure 3p). However, gemcitabine did not increase IL6 and TNFα production
in M2-like cells while decreasing their release in M1-like cells to a greater extent in the
absence of IL17A (Figure 3h,i). This result was quite unexpected as an increase in glycolysis
would have correlate with an increase in both cytokines. On the other hand, even ATP did
not parallel the increase in PPP and lactate production in M1. Therefore, more mechanisms
can be involved in the regulation of cytokine secretion after gemcitabine treatment.

Overall, gemcitabine was confirmed to enhance pro-inflammatory polarization by
further up-regulating (PPP and lactate production) and down-regulating (FAO, TCA, ETC,
ATP and glutaminolysis) elevated pathways in the M1 and in M2 conditions, respectively.
IL17A absence buffered some of those metabolic changes; it allowed a reduced increase
of PPP and lactate production in M2-like cells and a reduced decrease of TCA and ATP
production in M1-like cells (see also Supplementary Table S1).

3.5. IL17A Neutralization Combined with Gemcitabine Shapes Macrophages towards a “Peculiar”
M1-Like Phenotype

To obtain a proof-of-concept that treatment with an anti-IL17A mAb reproduces the
phenotype and metabolic changes observed in IL17A−/−-derived macrophages, we treated
WT macrophages with an anti-IL17A blocking antibody (or its isotype control) during the
stimulation with polarizing factors. In a second set of experiments, we treated IL17A−/−

BMDM with recombinant IL17A (rIL17A) together the polarizing stimuli. We evaluated
lactate production and FAO as metabolic pathways, and Nos2 and Arg1 transcripts as M1-
and M2-associated markers, respectively.

Adding the anti-IL17A neutralizing mAb decreased lactate production in both M1
(1.32 ± 0.06 vs. 2.25 ± 0.14) and M2 (0.535 ± 0.095 vs. 0.73 ± 0.04) conditions, and
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decreased FAO in M2-like macrophages (1.055 ± 0.115 vs. 2.83 ± 0.08) compared to
control M1- and M2-like cells (Figure 4a,b), similarly to that observed in IL17A−/− cells
(Figure 3b,c). Unlike what was observed in IL17A−/− macrophages, IL17A pharmacologi-
cal neutralization significantly increased Nos2 and decreased Arg1 transcription in M1- and
in M2-like cells, respectively (Figure 4c,d).
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Figure 4. IL17A neutralization combined with gemcitabine shapes macrophages towards a “peculiar” M1-like phenotype.
WT M1- and M2-like macrophages were treated with isotype control or anti-IL17A antibody, and either left untreated
(heat maps) or treated for 24 h with gemcitabine (bar graphs). Analysis of lactate production (a) and Fatty Acid Oxidation
(FAO) activity (b) relative to the unpolarized M0 macrophages treated with isotype control (first black box of each column).
mRNA expression levels of Nos2 (c) and Arg1 (d) are represented as fold-change versus isotype control-M0 cells. White bars
represent WT BMDM treated with isotype control antibody while blue bars represent the anti-IL17A-treated BMDM. Lactate
production (e) FAO activity (f) of WT M1-like and M2-like BMDM in the presence of isotype control or anti-IL17A mAb, and
treated with gemcitabine. Fold-change was evaluated by considering relative gemcitabine untreated M1- and M2-like cells
as references. mRNA expression levels of Nos2 (g) and Arg1 (h) represented as fold-change versus gemcitabine untreated
M1- and M2-like cells in the presence of isotype control or anti-IL17A mAb. * p ≤ 0.05, ** p ≤ 0.01; values from IL17A-Ab
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treated WT macrophages were significantly different from those of corresponding isotype control-treated WT cells; $ p ≤ 0.05,
$$ p ≤ 0.01, $$$ p ≤ 0.001 values from gemcitabine-treated macrophages were significantly different from those of M1-
or M2-like gemcitabine untreated cells. Heat maps represent lactate production (i) and FAO activity (j) of IL17A−/−

BMDM, unstimulated or stimulated with rIL17A. mRNA expression levels of Nos2 (k) and Arg1 (l) expressed as fold-change
versus unstimulated M0 cells. White and blue bars represent IL17A−/− BMDM unstimulated or stimulated with rIL17A,
respectively. Lactate production (m) and FAO activity (n) of IL17A−/− M1- and M2-like cells in the presence or absence
of rIL17A, and treated with gemcitabine. Fold-change was evaluated by considering relative M1- and M2-like cells not
treated with gemcitabine as references. White and blue bars represent IL17A−/− BMDM unstimulated or stimulated with
rIL17A, respectively. mRNA expression levels of Nos2 (o) and Arg1 (p) represented as fold-change versus M1- and M2-like
IL17A−/− macrophages not treated with gemcitabine. All data are represented as means ± SEM of biological replicates.
* p ≤ 0.05, values from rIL17A-treated IL17A−/− macrophages were significantly different from those of unstimulated
IL17A−/− cells; $$ p ≤ 0.01, $$$ p ≤ 0.001 values from gemcitabine-treated macrophages were significantly different from
those of M1- or M2-like untreated cells.

Gemcitabine treatment promoted lactate production and reduced the FAO rate by
both M1- and M2-like cells, and to a greater extent in M1-like cells treated with anti-IL17A
mAb (Figure 4e,f). Gemcitabine treatment increased Nos2 and decreased Arg1 mRNA levels
in M2-like cells condition regardless of the presence of anti-IL17A (Figure 4g,h). These
results confirmed that gemcitabine favored the shift towards an M1 phenotype, and that
IL17A neutralization mostly affected metabolic changes.

Of note, adding rIL17A to IL17A−/− BMDM restored lactate production (1.9 ± 0.03
vs. 1.205 ± 0.045) and FAO activity (1.475 ± 0.045 vs. 1.005 ± 0.115) in M1- and M2-like
macrophages, respectively, compared to the untreated cells (Figure 4i,j). Adding rIL17A
decreased Nos2 and Arg1 transcript levels in both M1- and M2-like IL17A−/− cells, and to
a greater extent in M1-like macrophages (Figure 4k,l).

Gemcitabine treatment increased lactate production and decreased the FAO rate in
M1- and M2-like macrophages to a similar extent as that of IL17A−/− cells (Figure 4m,n).
Adding rIL17A restored these pathways to levels similar to those evaluated in WT BMDM
(Figure 4m,n). Similarly, the presence of rIL17A during gemcitabine treatment restored Nos2
and Arg1 mRNA levels to a similar extent to that observed in WT polarized macrophages
(Figure 4n,p).

Overall, the pharmacological neutralization of IL17A mostly modulated the metabolism
of gemcitabine-treated polarized macrophages, similar to that observed in IL17A−/− cells.
Likely, adding the rIL17A to gemcitabine-treated macrophages rescued the wild-type
phenotype and behavior.

3.6. IL17A Depletion Increases the Phagocytosis Rate in Macrophages

To understand how the metabolic status may influence the functional activity of
macrophages, and particularly their ability to take-up damaged cells, we tested the phago-
cytosis of gemcitabine-treated Pancreatic Ductal Adenocarcinoma (PDAC) cells stained
with the cell-tracking CFSE in WT and IL17A−/−-derived cells. We analyzed the percentage
of CFSE-positive macrophages with a confocal microscope at an early (2 h) and a late time
point (48 h) from the co-culture with CSFE-stained tumor cells. IL17A−/− and anti-IL17A
mAb-treated WT BMDM showed a slight increase in CFSE positivity compared to control
WT cells, already at 2 h after pulsing (Figure 5a). Interestingly, 48 h after pulsing, only
anti-IL17A mAb-treated WT BMDM still showed the ability to take up CSFE+ tumor cells
(Figure 5a).



Antioxidants 2021, 10, 422 14 of 22
Antioxidants 2021, 10, x FOR PEER REVIEW 16 of 24 

 
Figure 5. IL17A depletion increases the phagocytosis rate in macrophages. Bar graphs represent the percentage of 
Carboxyfluorescein Succinimidyl Ester+ (CFSE) BMDM after 2 h and 48 h of co-culture with CFSE-stained/gemcitabine-
treated PDAC cells (confocal microscopy representative pictures on the right) (a). ** p ≤ 0.01 values from IL17A mAb-
treated WT macrophages were significantly different from those of corresponding WT cells treated with Ig isotype control. 
FACS analyses of 2′,7′-Dichlorofluorescin diacetate (DCF-DA+) (b–d) and MitoSOX+ (e–g) in untreated M0, M1- and M2-
like WT or IL17A−/− BMDM (histograms) or those treated with gemcitabine (white and blue bars, respectively). $ p ≤ 0.05, 
$$ p ≤ 0.01 values from gemcitabine-treated macrophages were significantly different from those of M1- or M2-like 
untreated cells. mRNA expression levels of Pdl1 detected in WT (white bars) or IL17A−/− (blue bars) in M1- and M2-like 
macrophages that were untreated or treated with gemcitabine (h,i). Fold-changes were calculated versus M0 (h) or M1- 
and M2-like untreated (i) macrophages. Data are represented as means ± SEM of biological replicates. ** p ≤ 0.01 values 
from IL17A−/− macrophages were significantly different from those of corresponding WT cells; $ p ≤ 0.05, $$ p ≤ 0.01, $$$ p ≤ 
0.001 values from gemcitabine-treated macrophages were significantly different from those of M1- or M2-like untreated 
cells. 

C
FS

E+  (
%

)

W
T 

+ 
Is

ot
yp

e

W
T 

+ 
an

ti-
IL

17
A

IL
17

A-
/-

0

10

20

30

40
2h

W
T 

+ 
Is

ot
yp

e

W
T 

+ 
an

ti-
IL

17
A

IL
17

A-
/-

a

CFSE MHC-II To-Pro3 Merged

0

10

20

30

40

C
FS

E+  
(%

)

48h

** **

0

1

2

3

Pd
l1

 m
R

N
A 

fo
ld

 c
ha

ng
e

0

100

200

300

Pd
l1

 m
R

N
A 

fo
ld

 c
ha

ng
e 

vs
. U

T

**

M1 M2
Gem

M1 M2

WT

IL17A-/-

FL1A :: DCF-DA

unstained

WT M0

IL17A-/- M0

FL1A :: DCF-DA

WT M1 UT

WT M1 Gem

IL17A-/- M1 UT

IL17A-/- M1 Gem

WT M2 UT

FL1A :: DCF-DA

WT M2 Gem

IL17A-/- M2 UT

IL17A-/- M2 Gem

FL2A :: MitoSOX

unstained

WT M0

IL17A-/- M0

FL2A :: MitoSOX

WT M1 UT

WT M1 Gem

IL17A-/- M1 UT

IL17A-/- M1 Gem

FL2A :: MitoSOX

WT M2 UT

WT M2 Gem

IL17A-/- M2 UT

IL17A-/- M2 Gem

WT

IL17A-/-

WT

IL17A-/-

b

c

d

e

f

g

h i

$$

$$$

$$

$

$$$ $$

D
C

F-
D

A 
fo

ld
 c

ha
n g

e 
vs

.  U
T 

M
1

$

D
C

F-
D

A 
fo

ld
 c

ha
ng

e 
vs

. U
T 

M
2

Gem

M
ito

SO
X 

fo
ld

 c
ha

ng
e 

vs
. U

T 
M

1
Gem

M
ito

SO
X 

fo
ld

 c
ha

ng
e 

vs
. U

T 
M

2

Gem

D
C

F-
D

A 
fo

ld
 c

ha
ng

e

M
ito

SO
X 

fo
ld

 c
ha

ng
e

0

1

2

3
$

0.0

0.5

1.0

1.5

2.0

2.5

$
$

$$

0.0

0.5

1.0

1.5

2.0

2.5

Gem
0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

M1 M2
0.0

0.5

1.0

1.5

$$

M1 M2

Figure 5. IL17A depletion increases the phagocytosis rate in macrophages. Bar graphs represent the percentage of
Carboxyfluorescein Succinimidyl Ester+ (CFSE) BMDM after 2 h and 48 h of co-culture with CFSE-stained/gemcitabine-
treated PDAC cells (confocal microscopy representative pictures on the right) (a). ** p≤ 0.01 values from IL17A mAb-treated
WT macrophages were significantly different from those of corresponding WT cells treated with Ig isotype control. FACS
analyses of 2′,7′-Dichlorofluorescin diacetate (DCF-DA+) (b–d) and MitoSOX+ (e–g) in untreated M0, M1- and M2-like
WT or IL17A−/− BMDM (histograms) or those treated with gemcitabine (white and blue bars, respectively). $ p ≤ 0.05,
$$ p ≤ 0.01 values from gemcitabine-treated macrophages were significantly different from those of M1- or M2-like untreated
cells. mRNA expression levels of Pdl1 detected in WT (white bars) or IL17A−/− (blue bars) in M1- and M2-like macrophages
that were untreated or treated with gemcitabine (h,i). Fold-changes were calculated versus M0 (h) or M1- and M2-like
untreated (i) macrophages. Data are represented as means ± SEM of biological replicates. ** p ≤ 0.01 values from IL17A−/−

macrophages were significantly different from those of corresponding WT cells; $ p ≤ 0.05, $$ p ≤ 0.01, $$$ p ≤ 0.001 values
from gemcitabine-treated macrophages were significantly different from those of M1- or M2-like untreated cells.
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Another macrophage function affected by metabolism and related to phagocytosis is
ROS production. We stained WT and IL17A−/− BMDM with DCF-DA and MitoSOX to eval-
uate the presence of cytosolic and mitochondrial ROS, respectively. Both M0 macrophages
showed similar levels of cytosolic and mitochondrial ROS (Figure 5b,e histogram). How-
ever, the absence of IL17A caused M1- and M2-like macrophages to specifically accumulate
much more cytosolic ROS and less mitochondrial ROS than the corresponding WT cells
(Figure 5b,e graphs), confirming the hypothesis of higher FAO and OXPHOS activity in
IL17A−/− cells. Gemcitabine increased the production of both cytosolic and mitochondrial
ROS in all cells to a greater extent than cytosolic and mitochondrial ROS in IL17A−/− M2-
and M1-like cells (Figure 5c,d,f,g graphs).

In a previous study, we demonstrated that taxan-induced ROS increased PD-L1 ex-
pression in BMDM and isolated tumor-associated macrophages (TAM) from breast tu-
mors [11]. Here, we investigated Pdl1 gene expression in WT and IL17A−/− polarized
macrophages. As expected, both WT and IL17A−/− M2-like macrophages showed higher
levels of Pdl1 compared to M1-like cells (Figure 5h), but gemcitabine treatment significantly
increased Pdl1 expression in WT M1-like macrophages compared to M2-like cells by 10-
fold (Figure 5i). Of note, the absence of IL17A impaired this marked increase of the Pdl1
transcript in gemcitabine-treated macrophages (Figure 5i).

3.7. IL17A Depletion Decreases T Regulatory Cells Infiltrating Pancreatic Cancer

To assess if the phenotype and functional status of macrophages (differentiated in the
absence of IL17A) paralleled a different tumor microenvironment (TME) in vivo, we took
advantage of having FFPE pancreatic tumors excised from WT mice orthotopically injected
with PDAC cells, and untreated or treated with the anti-IL17A mAb. At the same time, we
also analyzed PDAC samples from IL17A−/− mice orthotopically injected with syngeneic
cells. After mechanical and enzymatical dissociation, samples were stained and analyzed
by flow cytometry (Supplementary Figure S2). Notably, there was a reduction of F4/80+

tumor-associated macrophages (TAM) and especially in F4/80+ CD206+ cells in tumors
from IL17A−/− mice and with a greater extent in tumors from WT mice treated with
the anti-IL17A mAb (Figure 6a). TAMs were decreased in the absence of IL17A and this
decrease was even greater in mice receiving the anti-IL17A mAb (Figure 6b). Conversely,
the percentage of F4/80+ TAMs producing IFNγ was almost doubled in the absence of
IL17A (Figure 6c).

We also observed a significant increase of CD8+ T-cells in mice depleted of IL17A,
both genetically and pharmacologically. Similarly, CD4+ T-cells were increased in the
absence of IL17A, although a statistically significant difference was only observed in
pharmacologically IL17A-depleted mice (Figure 6d). Regulatory T-cells (Tregs), instead,
were significantly reduced in both genetically and pharmacologically IL17A-depleted mice
(Figure 6e); indeed, the CD8/Treg ratio was significantly increased in the absence of IL17A
(Figure 6f).

In conclusion, the unique metabolic phenotype displayed by macrophages in the
absence of IL17A suggests their ability to recruit more effector T-cells into the tumor area,
and also potentially create an inflammatory microenvironment for antigen-presenting cells
that take-up dying tumor cells. Alongside macrophages, we have also demonstrated that
IL17A significantly affects cancer-associated fibroblasts by modulating their transcriptional
profile and secretome [22]. Indeed, they produced less myeloid/granulocytic recruiting
factors and favored a Th1 response. Therefore, the depletion of IL17A may have important
consequences in the tumor microenvironment targeting different cell populations.
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Figure 6. IL17A depletion decreases T regulatory cells infiltrating pancreatic cancer. FACS analyses of dissociated Formalin-
Fixed Paraffin-Embedded (FFPE) tumor masses of WT (untreated or treated with anti-IL17A) and IL17A−/− mice orthotopi-
cally injected with PDAC cells. Bar graphs represent the percentage of F4/80+ (a), F4/80+ CD206+ (b), IFNγ+ gated on the
F4/80+ cells (c), CD4+ and CD8+ (d), FoxP3+ gated among the CD4+ cells (e) and the CD8/Treg ratio (f) tumor-infiltrating
immune cells. Data are represented as means + SEM of biological replicates. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 values from
IL17A−/− or anti-IL17A mAb-treated WT mice were significantly different from those in WT mice.

4. Discussion

The present study was designed to characterize the role of IL17A in macrophage
polarization and in the response to gemcitabine. IL17A is an interesting pro-inflammatory
cytokine that has been recently proposed as a driver in PDAC progression [23,24]. It is
mainly produced by Th17 and γδT cells, but it has also been reported to be produced
by innate cells where it regulates activation and polarization [25,26]. Gemcitabine is
one of the most widely used chemotherapy agents in first- and second-line treatment of
PDAC, where the introduction of new chemotherapeutic drugs has led to relatively small
benefits. One of the reasons is the highly immunosuppressive TME that characterizes
PDAC. TAMs constitute one of the most abundant populations of PDAC, and can derive
from the differentiation of monocytes recruited by tumor-produced CCL2 and CCL5, or
from embryonic precursors [27]. After differentiation into macrophages, TAMs contribute
to forming a typical suppressive milieu [28], although some differences based on their
origin have been reported [27]. TAMs can suppress CD8+ activity, by secreting TGFβ and
IL10, which limit the production of perforin and granzymes, and also induce Tregs. These
CD4+CD25+Foxp3+ T cells can, indeed, originate in the thymus or from the conversion
of conventional T-cells upon T-cell receptor stimulation in the presence of TGFβ [29].
Recently, Halbrook et al. demonstrated that TAMs increase tumor chemoresistance, and in
particular, PDAC resistance to gemcitabine, by releasing pyrimidines such as deoxycytidine,
which directly compete with the drug and hinder its efficiency [14]. Of note, released
pyrimidine is a feature of alternatively activated macrophages. Therefore, precise regulation



Antioxidants 2021, 10, 422 17 of 22

of macrophage activation is crucial for controlling tumor progression. The importance of
TAMs has been demonstrated by the fact that either their depletion from the TME [27,30]
or their activation through the anti-CD40 antagonist [31] or PI3K inhibitor [32] was shown
to positively correlate with PDAC growth inhibition and gemcitabine efficacy [14].

Metabolism is crucially important as a key hallmark, even in a tumor context. It has
been recently demonstrated that metabolic pathways not only provide energy, but also
regulate the phenotype and activities of macrophages. Therefore, metabolic reprogramming
could be an elegant way to skew suppressive macrophages towards anti-tumor cells.
Different stimuli, not only nutrients, act on macrophage metabolism and hence their
“activation status”; among these, are cytokines. We have recently developed a PDAC
mouse model lacking the IL17A gene, and we observed a unique TME that efficiently
supported the anti-tumor response induced by an anti-tumoral vaccine [22]. Indeed, IL17A,
besides the well-known IFNγ, IL4, IL6, IL10 and IL13 cytokines, can directly activate
macrophages [25]. Interestingly, IL17A has been described as eliciting atypical M2-like and
mixed M1 and M2 phenotypes in macrophages isolated from an inflammatory context,
such as atherosclerosis and psoriasis [9,25]. We observed that M0 IL17A−/− macrophages
displayed a different phenotype compared to WT counterparts in terms of higher expression
levels of Nos2 and Ifng, and lower expression levels of Arg1 and Ym1 transcripts. Similar
findings were obtained by Nakai et al. in a study regarding the role of IL17A in macrophage
activation [25]. They observed that the antibody anti-IL17A increased Nos2 in macrophages
in the skin of B6 mice. In addition, Nishikawa and colleagues observed that mice IL17A−/−

were characterized by lower mRNA levels of Arg1 and other M2-phenotype associated
genes in inflamed colon tissues [10]. Here we report that the absence of IL17A per se
did not impair in vitro macrophage polarization, but it attenuated the potency of IL4 in
skewing macrophages towards an M2-like phenotype and metabolism. It would be very
interesting to investigate if IL17A may affect gene transcription through the activation
of epigenetic regulators. This deserves a specific study. There are many evidences that
one of the downstream cytokine effects is modulating epigenetic regulators to determine
plasticity and functions of immune cells. Many studies, for example, highlighted how
different cytokines contribute to the Th17 plasticity [33], and even our group demonstrated
how the cytokines released by TAM influenced epigenetic regulation of Tbet, Il10 and Pdcd1
promoters in T cells [34].

Gemcitabine has been reported to indirectly affect macrophages in vitro when stim-
ulated with conditioned media from tumor cells pre-treated with chemotherapy. Our
results demonstrate a direct effect of gemcitabine on macrophages, which were strongly
pushed towards an inflammatory phenotype. These results partly confirmed those re-
ported by Di Caro et al. who described a positive correlation between CD68-TAM and the
chemotherapy response [15]. To explain this effect, in vitro experiments revealed the ability
of gemcitabine to improve cytotoxic activity as well promoting an M1-like phenotype in
macrophages. Indeed, we observed that adding gemcitabine to polarizing stimuli further
enhanced the expression of Ifng, Cd86 and Il12b genes in M1-like macrophages, but also
induced their expression in M2-like macrophages, where gemcitabine strongly inhibited
the expression of Arg1 and Ym1 genes. As a consequence, the absence of IL17A cooperated
with gemcitabine in reverting M2-like metabolism by buffering the FAO pathway and ATP
production through the OXPHOS. This paralleled the significant decrease of Arg1, Ym1 and
Pdl1 and increase in Ifng mRNA expression, together with ROS production. PDL1 expres-
sion, indeed, has been linked to higher OXPHOS activity induced by IL4 in alternatively
activated macrophages [12] and by chemotherapy-induced oxidative stress [11].

The different activation status is essential for controlling intruder attacks, anti-tumor
responses and maintenance of tissue homeostasis. In this context, the immuno-metabolism
recently highlighted differences between macrophage subtypes. Glycolytic enzymes are
responsible for HIF-1α stabilization, which, in turn, induces inflammasome activation and
IL1b production, STAT3-dependent IL6 secretion, TNFα production and finally, antivi-
ral and antibacterial responses by inflammatory macrophages [12]. M1-like macrophages
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display a disrupted TCA in two places [35,36], which leads to increased lipogenesis and pro-
duction of NO [37], which increases stabilization of HIF-1α and production of ROS [38,39].

In our study, WT M1-like macrophages displayed increased glycolysis, as supported
by the increased production of lactate and enhanced PPP, as expected [12]. In the absence
of IL17A M1-like macrophages did not, however, increase lactate production but only
PPP, and unexpectedly displayed a higher FAO rate compared to WT cells. Gemcitabine
treatment further increased both lactate production and the PPP. In addition, IL17A absence
strongly affected the metabolic changes induced by IL14-polarization. Indeed, IL17A−/−

M2-like macrophages displayed a slight increase of FAO, TCA, ETC, ATP production and
glutaminolysis compared to WT cells [12]. Of note, a lower production of lactate and an
increase in the FAO rate were also observed in WT-derived macrophages treated with
the anti-IL17A mAb. These results suggest that, in the absence of IL17A, macrophages
are not glucose “greedy” like WT cells. Therefore, in the TME, macrophages would not
participate in increasing acidification, and would favor myeloid-derived suppressor cell
induction and cytotoxic CD8 T and NK cell activity impairment [40,41]. Indeed, glucose
consumption by tumors and macrophages metabolically impairs T cells, leading to their
reduced mTOR activity, glycolytic capacity and IFN-γ production, thereby allowing tumor
progression [42]. Inhibition of glycolysis in TAM has also been reported to be sufficient in
limiting their pro-angiogenic function and the induction of the epithelial-to-mesenchymal
transition in tumor cells [43].

Another well-known mechanism for hindering the T-cell response is the upregulation
of immune-checkpoint molecules. As previously reported, gemcitabine increases the
expression of Pdl1 [44], which appears to be related to higher OXPHOS activity associated
with IL4 stimulation [12]. Here, we observed that the absence of IL17A significantly
reversed this phenomenon, and M2-like macrophages treated with gemcitabine expressed
5-fold less Pdl1 than the WT counterpart, despite the accumulation of cytosolic ROS
that support higher OXPHOS rate. M1-like macrophages treated with gemcitabine also
increased their Pdl1 expression, but again, in the absence of IL17A, the Pdl1 transcript was
decreased by 50%. It would be interesting to investigate if this effect in the absence of IL17A
is due to ROS-dependent activation of Nuclear Factor Kappa B (NFkB), as for taxan [11].

Originally FAS and FAO were thought to fuel OXPHOS and, therefore, an anti-
inflammatory phenotype. The absence of fatty acid transporter protein 1 (FATP1) was,
indeed, reported to increase glycolysis, which paralleled an increased Nos2 and a decreased
Arg1 expression, without changes in other surface macrophage markers [45]. However,
the lack of carnitine palmitoyl transferase (CPT1), which implies the absence of FAO,
did not impair the IL4-induced M2 polarization [46], suggesting that the role of FAO in
alternative macrophage activation remains a continuing debate. In the absence of IL17A,
M2-associated metabolic pathways did not increase at all, or only very slightly, while
glycolysis seemed to increase a little. A similar trend was observed in macrophages from
mice lacking FATP1 [45]. This could explain the enhanced transcription of Nos2 and the
decreased transcription of Arg1 observed in the absence of IL17A. Adding gemcitabine
decreased all these pathways, both in WT and IL17A−/− M2-like macrophages, again
supporting the idea of a shift towards an antitumoral phenotype. The higher expression
of Nos2 in the absence of IL17A supports the impairment of the ETC and FAO, probably
due to the increase in NO production, which impairs the mitochondrial ETC [47]. Of note,
adding recombinant IL17A to IL17A−/−-derived macrophages restored lactate production
and FAO activity in M1- and in M2-like macrophages, which were further increased and
decreased by gemcitabine treatment, respectively.

5. Conclusions

Overall, our results unveil a novel function of IL17A in modulating macrophage
metabolism by attenuating typical M1 and M2 metabolic pathways as schematically shown
in Figure 7. This implies the shift of macrophages towards a subset consuming less glucose
and producing less lactate, which may orchestrate a more effective antitumoral response.
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This occurred even after gemcitabine treatment and, therefore, the combination of an
anti-IL17A mAb with gemcitabine to modulate the function and activity of macrophages
in the TME could be envisioned.
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Figure 7. Schematic representation of the IL17A effects on macrophages in the presence or not of gemcitabine.
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Figure S2: Gating strategy for immune cells infiltrating pancreatic cancer. Table S1: Summary of
changes induced by gemcitabine treatment in macrophages in the presence or absence of IL17A.
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