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Abstract: Data accumulation in public databases has resulted in extensive use of meta-analysis, a
statistical analysis that combines the results of multiple studies. Oxidative stress occurs when there is
an imbalance between free radical activity and antioxidant activity, which can be studied in insects
by transcriptome analysis. This study aimed to apply a meta-analysis approach to evaluate insect
oxidative transcriptomes using publicly available data. We collected oxidative stress response-related
RNA sequencing (RNA-seq) data for a wide variety of insect species, mainly from public gene
expression databases, by manual curation. Only RNA-seq data of Drosophila melanogaster were found
and were systematically analyzed using a newly developed RNA-seq analysis workflow for species
without a reference genome sequence. The results were evaluated by two metric methods to construct
a reference dataset for oxidative stress response studies. Many genes were found to be downregulated
under oxidative stress and related to organ system process (GO:0003008) and adherens junction
organization (GO:0034332) by gene enrichment analysis. A cross-species analysis was also performed.
RNA-seq data of Caenorhabditis elegans were curated, since no RNA-seq data of insect species are
currently available in public databases. This method, including the workflow developed, represents
a powerful tool for deciphering conserved networks in oxidative stress response.

Keywords: insect; meta-analysis; oxidative stress; public database; RNA-seq; transcriptome

1. Introduction

With increasing data collection, a statistical analysis called meta-analysis, which
combines the results from multiple studies, is being widely used. By the end of 2020, over
200,000 records could be retrieved from PubMed by searching the keyword “meta-analysis”.
This non-typical data analysis especially designed for the collected data is now more often
employed, with scientists becoming more aware of its potential and usefulness, paving the
way for new findings that could not be achieved with standard hypothesis-driven research
methods [1]. Despite its useful analytical power, performing a meta-analysis can also be
challenging owing to difficulties in collecting data from public databases and analyzing
them. Nonetheless, this approach has been often used for investigating human-related
subjects, allowing us to overcome major setbacks in human research, such as limited
primary sample collection and small patient cohorts.

In the life sciences, several datasets have been archived in public databases that can
be freely accessed and reused; this is particularly true for nucleotide sequence data. The
database for nucleotide sequence, the Sequence Read Archive (SRA), now contains over
20 Petabases of open access nucleotide sequences (https://www.ncbi.nlm.nih.gov/sra/
docs/sragrowth/ (accessed on 1 February 2021)). For example, chromatin immunopre-
cipitation sequencing (ChIP-seq) data in the SRA database were collected, curated, and
pre-calculated for re-use in the ChIP-Atlas database [2]. An increasing number of meta-
analyses can be found that re-use the public sequence data on a large scale, especially for
coronavirus disease 2019 (COVID-19) studies. A tool for gene set enrichment analysis
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re-using biomedical data for COVID-19, named Coronascape, makes it possible to analyze
the functional features of a gene list, specifically for COVID-19 studies [3]. However, few
studies re-use those resources when considering the amount of available data. In particular,
transcriptomes exposed to stress are a very interesting target for data meta-analysis. For
example, hypoxic transcriptomes could be collected from public gene expression data from
human and mouse cell lines and integrated with ChIP-seq data of transcription factors
related to hypoxic stress by using the ChIP-Atlas database [4].

Reactive oxygen species (ROS), including peroxides, superoxides, and hydroxyl rad-
icals, are highly reactive chemical molecules formed due to the electron acceptability of
oxygen. ROS are generated as natural byproducts of energy metabolism and have crucial
roles in cell signaling and homeostasis. Oxidative stress is a state of imbalance between
the production of ROS and the ability of the biological system to directly detoxify ROS or
repair the damage caused by them. When the normal redox state of a biological system
is disturbed, peroxides and free radicals can damage proteins, lipids, and DNA, thereby
resulting in the impaired function of various intercellular mechanisms/organelles. In
humans, oxidative stress is believed to be involved in the development of cancer and
Parkinson’s disease, among other pathological conditions [5]. We have explored the po-
tential of silkworm (Bombyx mori) as a new model organism for investigating Parkinson’s
disease [6] and superoxide dismutases [7,8]. Therefore, we focused on various effects of
oxidative stress on B. mori instead of using cultured cells.

Based on the abovementioned information, the present study aimed to apply a meta-
analysis approach to shed light on the oxidative transcriptomes of insects based on publicly
available data. We first collected oxidative stress response-related RNA sequencing (RNA-
seq) data from a wide variety of insect species. The collected gene expression data were
manually curated and then systematically analyzed using a new RNA-seq workflow
designed specifically for insects. The results were evaluated by two metric methods to
construct a reference dataset for oxidative stress response studies. This study provides a
method, including the workflow developed, that can be a powerful tool for deciphering
conserved networks in oxidative stress response.

2. Materials and Methods
2.1. Curation of Public Gene Expression Data

Several public databases for gene expression data are available, whereas only one
repository archives nucleotide sequence data under the International Nucleotide Sequence
Database Collaboration. This makes it difficult to re-use gene expression data available in
public repositories. Therefore, we initially used the All Of gene Expression (AOE) online
tool [9] to acquire oxidative stress-related gene expression data from public databases. AOE
integrates metadata, not only from the Gene Expression Omnibus (GEO) database of the
U.S. National Center for Biotechnology Information (NCBI) [10] but also from ArrayExpress
of the European Bioinformatics Institute (EBI) [11] and Genomic Expression Archive (GEA)
from the DNA Data Bank of Japan (DDBJ) [12]. Moreover, AOE covers RNA-seq data
archived only in the SRA [13].

Conventional search using the keywords ‘oxidative’ and ‘insect’ yielded no hits
because the metadata for those were not rich enough for the given query. Therefore,
extensive searches using additional keywords (for example, ‘paraquat’ and ‘rotenone’ and
others) were manually performed to populate the dataset. Detailed search in the NCBI
GEO web interface was also used to assess records for insect species because some entries
were not found by the AOE.

2.2. Retrieval and Quality Control of Sequence Data

For data retrieval from the SRA database and file conversion to FASTQ, we used
the prefetch and fasterq-dump tools from the SRA Toolkit (v2.9.6) respectively [14]. A
parallel implementation of gzip (pigz) was used to compress FASTQ files and reduce the
time required for this process. For the trimming and quality control of reads from the
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SRA database, Trim Galore! (v0.6.6) [15] with Cutadapt (v1.18) [16] was applied to filter
reads with unsatisfactory quality. This step is time-consuming, but it is indispensable for
biologists to re-use reads archived in SRA, as the quality of reads is not uniform.

2.3. Gene Expression Quantification

Salmon was used for quantifying the expression of transcripts using RNA-seq data [17].
For the reproducibility of data analysis, Common Workflow Language (CWL) was intro-
duced [18]. In the shell scripts to run Salmon, we deployed the CWL definition files
of Salmon (indexing and quantification of single-end and paired-end reads) in Pitagora
Workflows (v0.1.0) maintained by Pitagora Network, also known as Galaxy Community
Japan [19]. Computer programs to run gene expression quantification, including retrieval
and quality control of sequence data, were freely accessible in the GitHub repository [20].

The ratio of all gene pairs (termed ON-ratio) was calculated by pairing oxidative stress
and normal states Equation (1). A small number (in this case, 0.01) was added for avoiding
the calculation of logarithm of zero.

ON-ratio = log(gene expressionoxidative stress + 0.01) − log(gene expressionnormal state + 0.01) (1)

ON-ratio values for all paired samples can be classified into three groups: upregulated,
downregulated, or unchanged. When the ON-ratio was over the threshold for upregula-
tion, the gene was treated as “upregulated.” Similarly, when the ON-ratio was under the
threshold for downregulation, the gene was treated as “downregulated.” If the gene was
treated as neither “upregulated” nor “downregulated,” it was classified as “unchanged.”
The numbers of counts for upregulated, downregulated, and unchanged were calculated
for all genes. Several thresholds were tested to optimize the calibration, and we adopted a
10-fold threshold for upregulation and 0.1-fold threshold for downregulation.

An oxidative stress-normal state score (ON-score) was then calculated, as shown in
Equation (2). A detailed description of the ON-score is provided in the Result section.

ON-score = count numberupregulated − count numberdownregulated (2)

ON-ratio and ON-score were formally introduced as HN-ratio and HN-score in the
meta-analysis of the hypoxic transcriptomes [4].

2.4. Functional Annotation and Gene Set Enrichment Analysis

Ensembl Biomart as used to extract the list of transcript stable identifiers (IDs) and
gene names and corresponding Gene Ontology annotations for Drosophila melanogaster
and Caenorhabditis elegans from the Ensembl database (v101) [21]. The orthologous gene
relationship between these two species was also retrieved from Ensembl Biomart.

Metascape was used for gene set enrichment analysis [3]. In the enrichment analysis,
the functional annotation provided by Metascape was used for the queried genes.

2.5. Visualization

In addition to joining two sets of data column by ID, we used TIBCO Spotfire Desktop
(v7.6.0; TIBCO Software Inc., Palo Alto, CA, USA) to produce scatter plots and histograms.

3. Results
3.1. Data Collection

The overall procedure of our study is depicted in Figure 1. We first pursued oxidative
stress-related transcriptome data from insect species in public databases using the AOE tool.
Because the conventional keyword search by ‘oxidative’ and ‘insect’ in AOE yielded no
hits, we manually curated the search results for ‘oxidative’ by limiting the species to insects.
Most data only contained the word ‘oxidative’ in corresponding metadata without gene
expression results for oxidative stress. Although several datasets in the public databases
were quantified by microarrays, we limited the transcriptome data to RNA-seq data for the
comparative study in the meta-analysis.
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Figure 1. Schematic view of insect oxidative transcriptome meta-analysis. Public databases were searched, oxidative
stress-related RNA sequencing data were manually curated, and a meta-analysis was performed.

Currently, only RNA-seq data for Drosophila melanogaster can be found when using
‘insects’ as a keyword in the public databases. Therefore, we also explored potential data
based on names of oxidative stress-related reagents in the NCBI GEO web interface. After
curating all candidate data, pair sets (oxidative stress and control) were defined (Table 1).

Table 1. Dataset generated by the curation

SRA Project ID Oxidative Stress Control Source of Stress (Reagent) Conc. (mM) Time (h)

SRP005712 SRR1509509 SRR1509506 1 Rotenone NA NA
SRP005712 SRR1509508 SRR1509506 1 Rotenone NA NA
SRP005712 SRR124259 SRR1509506 1 Paraquat 5 NA
SRP005712 SRR103718 SRR1509506 1 Paraquat 5 NA
SRP005712 SRR103721 SRR1509506 1 Paraquat 10 NA
SRP005712 SRR103722 SRR1509506 1 Paraquat 10 NA
SRP132308 SRR6677984 SRR6677982 Paraquat 50 6
SRP132308 SRR6677985 SRR6677983 Paraquat 50 6
SRP132308 SRR6677986 SRR6677982 Paraquat 50 12
SRP132308 SRR6677987 SRR6677983 Paraquat 50 12
SRP136174 SRR6874835 SRR6874832 Paraquat 10 24
SRP136174 SRR6874836 SRR6874833 Paraquat 10 24
SRP136174 SRR6874837 SRR6874834 Paraquat 10 24
SRP136174 SRR6874841 SRR6874838 Paraquat 10 24
SRP136174 SRR6874842 SRR6874839 Paraquat 10 24
SRP136174 SRR6874843 SRR6874840 Paraquat 10 24
SRP060444 SRR2088914 SRR2088913 Paraquat NA NA
SRP044035 SRR1505749 SRR1505771 UVA NA 0.5
SRP044035 SRR1505750 SRR1505771 UVA NA 1

1 SRR1509506, SRR1509507, SRR1509516, SRR1509517. Abbreviations: NA, not available; UVA, ultraviolet A radiation.
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3.2. Quantification of Transcripts Using RNA-seq

For analyzing human and mouse RNA-seq data, there exists a pipeline centered on
Salmon called ikra [22]. Ikra not only automates the RNA-seq data analysis process but
also makes it easy to re-use data from public databases for meta-analysis. Currently, no
such pipeline exists for insect species. Therefore, we created a new generic pipeline for
quantifying RNA-seq data called Systematic Analysis for Quantification of Expression
(SAQE), which consists of the following steps:

1. Retrieval of RNA-seq reads from the SRA database
2. Conversion of data format and compression
3. Trimming and quality control of reads
4. Transcriptome assembly by Trinity
5. Expression quantification by Salmon

Step 4 (transcriptome assembly) was not used in this study because well-curated
transcriptome sequences were available for the target organisms. Nonetheless, this step is
important for insects whose genome sequences are not available for data analysis.

For reproducibility of the study, Docker containers with fixed versions were employed
in the last two steps. Furthermore, a script language, CWL, was partly employed in SAQE
to call Docker containers, which is an open standard for describing analysis workflows and
tools in scientific computing. Using CWL, one can replicate the analysis without installation
of software, regardless of the type and version of operation system used (MacOS, Linux,
and Windows). CWL enables the use of the workflow very easily, without installing Trinity,
which users often find difficult to install on their computers. All codes of SAQE are freely
available from GitHub [20].

As an output, SAQE yields the matrix for quantified expression data in transcript
per million (TPM). This expression matrix was uploaded to figshare and is publicly
available [23].

Using the expression matrix, hierarchical clustering for sample direction was per-
formed. A dendrogram revealed that RNA-seq data from the same project clustered
together (Figure S1), suggesting the need for analysis of differences in gene expression
profile between samples subjected to oxidative stress and those in the normal state.

3.3. Differentially Expressed Genes under Oxidative Stress

We tried to evaluate differentially expressed genes under oxidative stress. By pairing
oxidative stress and normal state samples, we calculated the ratio of all gene pairs (termed
ON-ratio). The ON-ratio was previously introduced as HN-ratio (Hypoxia vs. Normoxia)
in meta-analysis of hypoxic transcriptomes [4]. After detailed investigation of data, we
employed in this study a smaller value (0.01, previously 1) for genes with weak expression.
ON-ratio was calculated for all sample pairs (Table 1). The complete list of ON-ratio is
publicly available [24].

For meta-analysis of these values, the simplest way is to use ‘averaged’ ON-ratio
for all samples. The histogram of the averaged ON-ratio showed a skewed distribution
curve (Figure 2A), with few genes having high ON-ratios and more genes with negative
ON-ratios.
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To evaluate oxidative stress-inducible genes, an oxidative stress-normal state score
(ON-score) was calculated for all genes, as described in the Materials and Methods. The
complete list of ON-score is also publicly available [25]. In contrast to ON-ratio, ON-score
is quantal because it is calculated by subtracting the number of counts of upregulated from
that of downregulated genes (Figure 2B). ON-score also showed skewed distribution curve,
with more genes having ON-scores below zero. These results showed that several genes
were downregulated under oxidative stress.

We then performed gene set enrichment analysis using Metascape [3]. The analysis
revealed that the genes upregulated in many samples with high ON-scores were related to
the cellular component morphogenesis (GO:0032989) and blood circulation (GO: 0008015)
(Figure 3A). Metascape also uncovered the functions of downregulated genes with low
ON-scores (Figure 3B), being related to organ system process (GO:0003008) and adherens
junction organization (GO:0034332).

We then investigated ON-scores for genes annotated with GO:0006979 (response to
oxidative stress), since the initial analyses did not show functional enrichment for oxidative
stress-related annotated genes. In addition to GO:0006979, child terms of this GO group
were included in the new differentially expressed gene analysis (Table 2).
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Figure 3. Histogram of gene set enrichment analysis for (A) upregulated (ON-score > 6) and (B) downregulated (ON-score
< −7) genes under oxidative stress.

Table 2. Child terms (direct descendants) of the Gene Ontology term GO:0006979 (response to oxidative stress).

Child GO ID Child GO Term Relationship to GO:0006979

GO:0001306 age-dependent response to oxidative stress is_a
GO:0033194 response to hydroperoxide is_a
GO:1902882 regulation of response to oxidative stress regulates
GO:1902883 negative regulation of response to oxidative stress negatively_regulates
GO:0070994 detection of oxidative stress is_a
GO:1902884 positive regulation of response to oxidative stress positively_regulates
GO:0000302 response to reactive oxygen species is_a
GO:0080183 response to photooxidative stress is_a
GO:2000815 regulation of mRNA stability involved in response to oxidative stress part_of
GO:0034599 cellular response to oxidative stress is_a

Original source: [26].

Among the identified oxidative stress-related genes, many more genes had negative
ON-scores (Figure 4).
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3.4. Cross-Species Analysis of Transcriptomes under Oxidative Stress

For the cross-species study, we collected RNA-seq data from C. elegans because no
RNA-seq data of insect species can be currently found in public databases. Similar to
the approach used before, transcriptome sequencing data were curated for C. elegans and
RNA-seq data were manually collected from the public databases (Table 3). In this dataset
for C. elegans, rotenone was the most dominant reagent to cause oxidative stress, whereas
paraquat was the most dominant reagent in the dataset for D. melanogaster.

The same procedure for retrieval and quality control of sequence data and the
same gene expression quantification using SAQE as described above were used for this
dataset [27]. Using calculated differential values (ON-ratio) [28] and ON-score [29], tran-
scriptomes with oxidative stresses in D. melanogaster and C. elegans were compared and
visualized in scatter plots (Figure 5). The integrated lists for ON-ratio and ON-score are
publicly available [30,31]. There was no striking correlation observed between these two
organisms. Nonetheless, genes with correlated expression pattern could be useful for
candidate gene selection.
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Table 3. Caenorhabditis elegans oxidative transcriptome dataset generated by the curation.

SRA Project ID Oxidative Stress Control Source of Stress (Reagent) Condition

SRP070204 SRR3173735 1 SRR3173720 2 Sodium arsenite 10 mM, 5 h
SRP021083 SRR827426 SRR827423 Rotenone 100 nM
SRP021083 SRR827427 SRR827424 Rotenone 100 nM
SRP021083 SRR827428 SRR827425 Rotenone 100 nM
SRP021083 SRR827432 SRR827429 Rotenone 100 nM
SRP021083 SRR827433 SRR827430 Rotenone 100 nM
SRP021083 SRR827434 SRR827431 Rotenone 100 nM
SRP021083 SRR827438 SRR827435 Rotenone 100 nM
SRP021083 SRR827439 SRR827436 Rotenone 100 nM
SRP021083 SRR827440 SRR827437 Rotenone 100 nM
SRP021083 SRR827443 SRR827441 Rotenone 100 nM
SRP021083 SRR827444 SRR827442 Rotenone 100 nM
ERP117708 ERR3580218 ERR3580215 Gamma radiation 10 Gray
ERP117708 ERR3580219 ERR3580216 Gamma radiation 10 Gray
ERP117708 ERR3580220 ERR3580217 Gamma radiation 10 Gray
ERP117708 ERR3580221 ERR3580215 Gamma radiation 100 Gray
ERP117708 ERR3580222 ERR3580216 Gamma radiation 100 Gray
ERP117708 ERR3580223 ERR3580217 Gamma radiation 100 Gray
ERP117708 ERR3580224 ERR3580215 Gamma radiation 0.4 Gray
ERP117708 ERR3580225 ERR3580216 Gamma radiation 0.4 Gray
ERP117708 ERR3580226 ERR3580217 Gamma radiation 0.4 Gray

1 SRR3173735—SRR3173746. 2 SRR3173720—SRR3173734.
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We next looked into genes annotated with GO:0006979 (response to oxidative stress).
Upregulated experiments were dominant (ON-score positive) in nine genes (CanA1, GstS1,
Hsp22, Pde8, Sod2, foxo, per, ple, and rl) in both D. melanogaster and C. elegans, whereas
downregulated experiments were dominant (ON-score negative) in 13 genes (CG9314,
CG9416, CYLD, Ddc, Itp-r83A, ND-B17.2, Trap1, alph, bsk, mtd, park, ple, and whd) (Table 4).
More genes had distinct ON-scores but are not shown in Figure 5 because no C. elegans
orthologs for those genes could be assigned.
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Table 4. Drosophila melanogaster oxidative stress-related genes with ON-score feature (positive values (+) or not (−)) and
Caenorhabditis elegans ortholog (yes or no).

ON-Score C. elegans Ortholog Genes

+ yes CanA1, GstS1, Hsp22, Pde8, Sod2, foxo, per, ple, rl

+ no
CG10211, CG30487, CG31659, CG42331, CG6888, Chchd2, Daxx, GLaz, Gyc89Da,

Gyc89Db, Jafrac1, MTF-1, Mnn1, Mt2, Nf1, Pi3K92E, SelR, TFAM, Thor, TotX, inaE,
p38a, puc, scyl, srl

− yes CG9314, CG9416, CYLD, Ddc, Itp-r83A, ND-B17.2, Trap1, alph, bsk, mtd, park, ple, whd

− no
Akt1, CG31659, CG4009, CG42331, CG5948, Ccs, Daxx, GLaz, Gyc88E, Gyc89Da, InR,
Irc, Jafrac1, Jafrac2, Karl, Keap1, MTF-1, Mnn1, Mt2, NLaz, Nf1, Pi3K92E, Prx5, Pxd,

Ric, SelR, Sid, TotC, TotZ, cd, cnc, dec-1, fbl, inaE, mth, p38a, rut, spz, srl

The complete list of GO:0006979 (response to oxidative stress) annotated genes with
ON-scores in Table 4 is publicly available [32].

4. Discussion

In the present study, we collected transcriptome data specific to oxidative stress re-
sponses from public databases, such as the NCBI GEO, EBI ArrayExpress, DDBJ GEA, and
the SRA, using the AOE web tool. Although RNA-seq is now widely used for transcrip-
tomic studies in a wide variety of insect species, RNA-seq data specific for oxidative stress
conditions (with a normal control) were only found for D. melanogaster, in spite of extensive
manual curation. In most cases, the dataset only contained oxidative stress RNA-seq data
specific for knockdown (or knockout) conditions. Hence, continuous efforts should be
made to collect data from public databases.

Collecting data is a critical and laborious step because there are many “oxidative”
descriptions in the metadata of public databases. Moreover, many of these are “noise,”
which do not contain any transcriptome data for oxidative stress responses. To overcome
this handicap, we must re-organize public databases for semantic queries. Currently, there
is no computational method to filter these ‘noise’ events, and manual curation by experts
with domain knowledge is indispensable. The lack of information in databases can be
addressed by searching published manuscripts (even supplemental materials in some
cases). Deciphering metadata to collect the needed information from English texts also
requires professional knowledge on sample preparation. Though a major hurdle, manual
curation and creation of datasets are crucial for conducting this type of meta-analysis.

As a new generic pipeline for quantifying RNA-seq data, SAQE was developed for
insect species without reference genome sequences [20]. Herein, SAQE was applied for
insect species with reference transcriptomes in the public database. Only the transcriptome
sequences of D. melanogaster and C. elegans were used, since both organisms are typical
experimental models and their transcriptome sequence sets are well-curated. Moreover, as
it uses transcriptome assembly obtained from the execution of Trinity, SAQE can also be
applied for non-model organisms without reference transcriptomes. Technically, SAQE
is not pure ‘workflow’ in CWL currently. It is a group of shell scripts making full use of
CWL command line tools and workflows for practical use in insect study. Continuous
development of SAQE itself is also needed.

The gene set enrichment analysis by Metascape for upregulated and downregulated
genes showed interesting functional enrichments but is difficult to be interpreted in the
context of oxidative stress. These results contrasted with those from the analysis for
hypoxic transcriptomes in human cultured cells, which identified HIF1 TFPATHWAY,
GO:0001666 response to hypoxia, and GO:0005996 monosaccharide metabolic process as
being enriched. This is due to the various sources of oxidative stress and transcriptomic
responses to oxidative stress, which are also not yet well-studied. Additionally, in insect
species, functional annotation of genes is still underdeveloped, as compared with that in
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humans and mice. In other words, there are chances of making important discoveries from
meta-analysis of these data.

Herein, the collected datasets were relatively small and biased. Only 19 pairs of
oxidative stress and normal condition samples were collected compared with over hundred
pairs of hypoxic and normoxic transcriptomes meta-analyzed in a previous study. In
addition, the most represented stress source was paraquat (Table 1). Hence, more data and
more species are needed for a better meta-analysis. Nevertheless, interesting genes could
be found in this meta-analysis. Knockdown of Sod2 in Tribolium castaneum was reported
to impair its sensitivity to paraquat [33], and Sod2 was one of the genes with positive
ON-scores in both D. melanogaster and C. elegans (Table 4). Therefore, we believe that this
meta-analysis provides a repository for future studies.

Our future work will gather oxidative stress-related transcriptome data for insect
species to continuously update this meta-analysis. This approach will potentially uncover
conserved mechanisms at the molecular level.

5. Conclusions

In this study, we tried to collect oxidative stress-related transcriptomic data in a wide
variety of insect species from public databases. To date, such transcriptomes are only
available for D. melanogaster; however, around 20 pairs of oxidative stress and normal
state transcriptomes were listed. For analyzing such transcriptomes, an RNA-seq analysis
workflow for species without reference genome sequences was developed. No distinct
features were retrieved from enrichment analyses of upregulated and downregulated gene
sets, but enrichments for other functional groups provided interesting new insights. We
focused on genes annotated with oxidative stress-related Gene Ontology terms in the
comparative analyses of C. elegans oxidative stress transcriptomes using the same curation
process as that for D. melanogaster. This method, including the workflow developed,
represents a powerful tool for deciphering conserved networks in oxidative stress response.

Supplementary Materials: The following is available online at https://www.mdpi.com/2076-3921/
10/3/345/s1, Figure S1: Hierarchical clustering of all data (samples) in transcript per million (TPM).
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