SUPPLEMENTARY TABLES

S.No.	Gene	Forward primer (5' to 3')	Reverse primer (5' to 3')	T _a (°C)
1	RPL32	AGATTCAAGGGCCAGATCCT	CGATGGCTTTTCGGTTCTTA	57
2	SIRT1	TGACTTCAGATCAAGAGATGGT AT	TGGCTTGAGGATCTGGGAGAT	58
3	SIRT3	GCTGCCAGCAAGGTTCTTAC	CCTTTCCACACCCTGGACTA	57
4	NRF1	GCTCTTTGAGACCCTGCTTTC	GTGGAGTTGAGTATGTCCGAGT	56
5	NRF2	AACCAGAAGCACACTGAAGG	CCATTTCCGAGTCACTGAAC	57
6	PGC-1a	ATGTGTCGCCTTCTTGCTCT	ATCTACTGCCTGGGGGACCTT	57
7	TFAM	AGCTGATGGGCTTAGAGAAGG	ATTTCCCCTGAGCTGACTCAT	62
8	Mt-ND1	AAAGAACCCATACGCCCTCT	GGCTCATCCCGATCATAGAA	57
9	Mt-ND2	AAGCCCACGATCAACTGAAG	GTCAGTAGTGGAATGGGGCT	57
10	Mt-ND6	TACAACCAACATCCCACCCA	GTTGTCTAGGGTTGGCGTTG	57
11	Mt-CO-II	TTCCTCATCAGCTCCCTAGT	GTAGGGAGGGAAGGGCAATT	57
12	Mt-CO-III	ATGACCACTAACAGGAGCCC	GTGGTGGCCTTGGTATGTTC	57
13	Mt-ATP6	AGCAAACATTACAGCAGGCC	ACAGGCTGACTAGAAGGGTG	57
14	Mt-ATP8	GCCACAACTAGACACATCCAC	GGGGTAATGAAAGAGGCAAAT AG	57
15	Mfn1	GAGGGAAGACCAAATCGACA	CAAAACAGACAGGCGACAAA	58
16	Mfn2	AGGAAATTGCTGCCATGAAC	GTCTCTTCTCGGTGCAGGTC	58
17	Drp1	TCCCAATTCCATTATCCTTG	TCAATACATCCATGGCATCA	58
18	Opa1	AAAATCAGAAAAGCCCTTCC	TTTCGGATCCATGATCTGTT	57
20	MMP2	GGGTGGTGGTCACAGCTATT	CGGTGTGCAGTGAAGATTGT	57
21	MMP9	CCACCGAGCTATCCACTCAT	GTCCGGTTTCAGCATGTTTT	57
22	COLLAGEN-I	CTCAAGAGCGGAGAATAC	ATCTGTCCACCAGTGCTT	54
23	ANP	AGCGAGCAGACCGATGAAG	AGCCCTCAGTTTGCTTTTCA	57
24	BNP	GACCAAGGCCCTACAAAAGA	CCCAAAGCAGCTTGAACTATG	53
25	β-ΜΗC	TGGAGCTGATGCACCTGTAG	ACTTCGTCTCATTGGGGATG	55
26	β2- microglobulin	ACTGCTACGTGTCTCAGTTCC	CTCCTTCAGAGTGACGTGTTT	57

Table S1List of primers used for quantitative real-time PCR in our study.

 Table S2
 List of antibodies used for western blotting in our study

S.No.	Name of the antibody	Cat. No.	Dilution
1	Sirt1	9475S	1:1000
2	Sirt3	Ab189860	1:1000
3	PGC-1a	Ab191838	1:1000
4	TFAM	Ab131607	1:2500
5	NRF1	69432S	1:1000
6	NRF2	Ab137550	1:1000
7	SOD2	13141S	1:2500
8	Ac-SOD2	Ab137037	1:1000
9	Catalase	Ab52477	1:1000
10	OXPHOS	Ab110413	1:250

11	Mfn1	Ab104274	1:1000
12	Mfn2	Ab50838	1:1000
13	Drp1	8570S	1:1000
14	Opal	80471S	1:1000
15	GAPDH	8884S	1:5000
16	β-Actin	Ab8227	1:5000

 Table S3 Shown the composition of diets used in the study.

S No	Name of the	Quantity in Corn starch diet		Quantity in High fructose diet	
5.110.	ingredient	Gm	Kcal	Gm	Kcal
1	Casein	200	800	200	800
2	DL-Mthionine	3	12	3	12
3	Corn Starch	650	2600	0	0
5	Fructose	0	0	650	2600
6	Cellulose, BW200	50	0	50	0
7	Corn oil	50	450	50	450
8	Mineral Mix S1001	35	0	35	0
9	Vitamin Mix V1001	10	40	10	40
10	Choline bitartarate	2	0	2	0
11	FD&C Blue dye#1	0.2	0	0	0
12	FD& Red dye#40	0	0	0.2	0

SUPPLEMENTARY FIGURES

Figure S1. Twelve weeks of high fructose diet feeding induces cardiac hypertrophy without affecting cardiac functional parameters. A Heart weight to body weight ratio. B Body weight change. C Left ventricular internal diameter during systole (LVD_s). D Left ventricular internal diameter during diastole (LVD_d). E Posterior wall thickness during systole (PWT_s). F Posterior wall thickness during diastole (PWT_d). G Fractional shortening. H Ejection fraction. Data was represented as Mean \pm SEM, #p<0.05 vs Control, ##p<0.01 vs Control, (N=5).

Figure S2 Sirtuin activation reduces high fructose diet-induced blood pressure in rats. A Systolic, diastolic, and mean arterial blood pressure at 12 weeks of high fructose feeding. **B** Systolic, diastolic and mean arterial blood pressure after 8 weeks of treatment with sirtuin activators. Data was represented as Mean \pm SEM, #p<0.05 vs Control, ##p<0.01 vs Control, *p<0.05 vs HFD, **p<0.01 vs HFD, **p<0.001 vs HFD, (N=5).

Figure S3 Sirtuin activation ameliorates high fructose diet-induced cardiac hypertrophy in rats. A Heart weight to body weight ratio. B Heart weight to tail length ratio. C Fetal hypertrophic gene transcripts levels. D Body weight change. Data were represented as Mean \pm SEM, #p<0.05 vs Control, *p<0.05 vs HFD, **p<0.01 vs HFD, (N=5).

Figure S4 Sirtuin activation enhances mitochondrial content in palmitate-induced insulin resistant cardiomyoblast (H9c2) cells. Effect of sirtuin modulation on mitochondrial content. ###p<0.001 vs BSA, **p<0.01 vs PA, ***p<0.001 vs PA, (n=3).

Figure S5 Sirtuin activation ameliorates high fructose diet-induced perturbation of mitochondrial enzymatic activity in diabetic rat heart. A Citrate synthase activity. B β -hydroxy acyl CoA dehydrogenase activity. Data was represented as Mean \pm SEM, #p<0.05 vs Control, *p<0.05 vs HFD, (N=5).

Figure S6 Sirtuin activation enhances mitochondrial DNA-encoded ETC complex gene expression in high fat diet-induced diabetic rats. A ETC complex-I (NADH dehydrogenase) subunit mRNA expression (ND1, ND2, ND6). B ETC complex-III (cytochrome reductase) subunit mRNA expression (Cyto-b). C ETC complex-IV (Cytochrome oxidase) subunit mRNA levels (Cytochrome oxidase-II and III). D ETC complex-V (ATP-synthase) subunit (ATP6 and ATP8) mRNA levels. Data was represented as Mean \pm SEM, #p<0.05 vs Control, #p<0.05 vs HFD, **p<0.01 vs HFD, **p<0.001 vs HFD, (N=5).

Figure S7 Sirtuin activation ameliorates high fructose diet-induced perturbation of mitochondrial dynamics in diabetic rat heart. A Mitochondrial dynamics-related protein expression. Data was represented as Mean ± SEM, ##p<0.01 vs Control, *p<0.05 vs HFD, **p<0.01 vs HFD, ***p<0.001 vs HFD, (N=4), (Blots were developed from different gels due to same molecular weight equal amount of proteins were loaded into gels).

Figure S8 Sirt1 modulation regulates mitochondrial biogenesis-related genes and Sirt3 in rat cardiomyoblast (H9c2). (A) Mitochondrial biogenesis-related gene expression in Sirt1 activation condition. (B) Mitochondrial biogenesis related gene expression in Sirt1 inhibition condition. Data were represented as Mean \pm SEM, *p<0.05 vs DMSO, **p<0.01 vs DMSO, n=3.