Supplementary materials

Insulin–mimetic dihydroxanthyletin-type coumarins from *An-gelica decursiva* with protein tyrosine phosphatase 1B and α -glucosidase inhibitory activities and docking studies of their molecular mechanisms

Md Yousof Ali¹, Susoma Jannat², Hyun Ah Jung³ and Jae Sue Choi^{4*}

- ¹ Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; mdyousof.ali@ucalgary.ca
- ² Department of Biochemistry and Molecular Biology, University of Calgary, T2N 4N1 Alberta, Canada; jannatacct@gmail.com
- ³ Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
- ⁴ Department of Food and Life Science, Pukyong National University, Busan 48513, Korea;
- * Correspondence: jungha@jbnu.ac.kr (H.A.J); choijs@pknu.ac.kr; Tel.: +82-51-629-7547 (J.S.C.)

Supplymentary materils

Table of Contents

Figure S1. Dixon and Lineweaver-Burk plots for PTP1B inhibition of dihydroxanthyletin-type coumarins

Figure S2. Dixon and Lineweaver-Burk plots for α -glucosidase inhibition of dihydroxanthyletin-type coumarins

Figure S3. Molecular docking models for PTP1B inhibition of dihydroxanthyletintype coumarins

Figure S4. Molecular docking models for α -glucosidase inhibition of dihydroxanthyletin-type coumarins

Figure S1. Dixon plots for PTP1B inhibition of dihydroxanthyletin-type coumarins. (+)-*trans*-decursidinol (A), Pd-C-II (B), Pd-C-II (C), Pd-C-III (D), were tested in the presence of different concentration of substrate (pNPP): 2mM (•); 1mM (•) and 0.5 mM ($\mathbf{\nabla}$). Lineweaver-Burk plot for PTP1B inhibition of coumarins. PTP1B inhibition was analyzed in the presence of different concentration of sample as follows: 0 μ M (Δ), 0.8 μ M ($\mathbf{\nabla}$), 4.0 μ M (•) for (+)-*trans*-decursidinol (E); 0 μ M (Δ), 2 μ M ($\mathbf{\nabla}$), 10 μ M (•) and 50 μ M (•) for Pd-C-II (G); 0 μ M ($\mathbf{\Delta}$), 2 μ M ($\mathbf{\nabla}$), 10 μ M (•) for Pd-C-II (G); 0 μ M ($\mathbf{\Delta}$), 4 μ M ($\mathbf{\nabla}$), 20 μ M ($\mathbf{\nabla}$), 20 μ M (•) for Pd-C-III (H).

Figure S2. Dixon plots for α -glucosidase inhibition of dihydroxanthyletin-type coumarins. (+)-*trans*-decursidinol (A), Pd-C-II (C), Pd-C-III (D) were tested in the presence of different concentration of substrate (pNPG): 2.5mM (•); 1.25mM (•) and 0.625 mM ($\mathbf{\nabla}$). Lineweaver-Burk plot for α -glucosidase inhibition of coumarins. α -Glucosidase inhibition was analyzed in the presence of different concentration of sample as follows: 0 μ M (\mathbf{D}), 7.81 μ M (Δ), 15.62 μ M ($\mathbf{\nabla}$), 31.25 μ M (•) and 62.5 μ M (•) for Pd-C-I (F); 0 μ M (\mathbf{D}), 7.81 μ M (Δ), 15.62 μ M ($\mathbf{\nabla}$), 31.25 μ M (•) and 62.5 μ M (•) for Pd-C-II (F); 0 μ M (\mathbf{D}), 7.81 μ M (Δ), 15.62 μ M ($\mathbf{\nabla}$), 31.25 μ M (•) and 62.5 μ M (•) for Pd-C-II (G); 0 μ M (\mathbf{D}), 15.62 μ M ($\mathbf{\nabla}$), 31.25 μ M (•) and 62.5 μ M (•) for Pd-C-II (G); 0 μ M (\mathbf{D}), 15.62 μ M ($\mathbf{\nabla}$), 62.5 μ M (•) and 125 μ M (•) for Pd-C-III (H).

Figure S3. Molecular docking models for PTP1B inhibition of (+)-trans-decursidinol (A), Pd-C-I (B), Pd-C-II (C), and Pd-C-III (D). Compound 23 denote (magenta color) and dihydroxanthyletin-type coumarins (light blue color).

Figure S4. Molecular docking models for α-glucosidase inhibition of (+)-*trans*-decursidinol (A), Pd-C-I (B), Pd-C-II (C), Pd-C-III (D) and acarbose (E).