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Abstract: Malignant melanoma is one of the most deadly types of solid cancers, a property mainly
attributed to its highly aggressive metastatic form. On the other hand, different classes of isoth-
iocyanates, a class of phytochemicals, present in cruciferous vegetables have been characterized
by considerable anti-cancer activity in both in vitro and in vivo experimental models. In the cur-
rent study, we investigated the anti-cancer response of five isothiocyanates in an in vitro model
of melanoma consisting of non-metastatic (A375, B16F-10) and metastatic (VMM1, Hs294T) ma-
lignant melanoma as well as non-melanoma epidermoid carcinoma (A431) and non-tumorigenic
melanocyte-neighboring keratinocyte (HaCaT) cells. Our aim was to compare different endpoints
of cytotoxicity (e.g., reactive oxygen species, intracellular glutathione content, cell cycle growth
arrest, apoptosis and necrosis) descriptive of an anti-cancer response between non-metastatic and
metastatic melanoma as well as non-melanoma epidermoid carcinoma and non-tumorigenic cells.
Our results showed that exposure to isothiocyanates induced an increase in intracellular reactive
oxygen species and glutathione contents between non-metastatic and metastatic melanoma cells.
The distribution of cell cycle phases followed a similar pattern in a manner where non-metastatic
and metastatic melanoma cells appeared to be growth arrested at the G2/M phase while elevated
levels of metastatic melanoma cells were shown to be at sub G1 phase, an indicator of necrotic cell
death. Finally, metastatic melanoma cells were more sensitive apoptosis and/or necrosis as higher
levels were observed compared to non-melanoma epidermoid carcinoma and non-tumorigenic cells.
In general, non-melanoma epidermoid carcinoma and non-tumorigenic cells were more resistant
under any experimental exposure condition. Overall, our study provides further evidence for the
potential development of isothiocyanates as promising anti-cancer agents against non-metastatic
and metastatic melanoma cells, a property specific for these cells and not shared by non-melanoma
epidermoid carcinoma or non-tumorigenic melanocyte cells.
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isothiocyanate; anti-cancer agents; melanoma; reactive oxygen species; glutathione; cell cycle arrest;
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1. Introduction

Malignant melanoma (MM) is one of the deadliest types of malignancies, and it is
characterized by continuously increasing rates worldwide [1–5]. Although it accounts
for approximately 5% of skin cancer cases, it is related to high mortality rates which
account for approximately 80% of skin cancer deaths [6]. The aggressiveness of MM is
related to low 5-year survival rates (i.e., less than 15%) while patients with advanced stage
MM (i.e., stage IV) have a median survival of less than one year [6,7]. MM arises from
the progressive accumulation of melanocytic lesions while important risk factors include
genetic predisposition as well as prolonged UV exposure, strongly associated with the
onset and progression of the disease [8–10]. A number of genetic abnormalities have been
identified and associated with the onset of MM including mutations in BRAF, NRAS and
KIT while additional mutations in TP53, TERT and PTEN are required for the occurrence
of the invasiveness of the disease [11–14]. Currently, treatment options for early stages of
MM include surgical resection while systemic therapy (i.e., chemotherapy (e.g., paclitaxel,
temozolomide), immuno-therapy by means of cytotoxic T-lymphocyte-associated protein
4 (CTLA-4) and programmed cell death protein 1 (PD-1) inhibitors (e.g., Ipilimumab,
Nivolulab, Pembrolizumab) and targeted therapy by means of BRAF and MEK inhibitors
(e.g., Dabrafenib, Vemurafenib, Trametinib)) is applied for more advanced and metastatic
types of the disease [6,7,11]. However, although the significant clinical progress due to
these therapeutic approaches, MM is still incurable as it is associated with high rates of
recurrence and poor prognosis. In addition, the observed side effects caused by systemic
toxicity, along with drug resistance, can further contribute to the limited therapeutic efficacy
against MM [6,11,15]. To this end, the development of new therapeutic approaches is of
high importance in order to improve current existing protocols, thereby improving the
quality of life in MM patients [6,15–17].

A number of studies have revealed that phytochemicals have been associated with
significant anti-cancer activity against a variety of tumors. Many epidemiological studies
have indicated an inverse correlation between consumption of fruits and vegetables and
risk for cancer development [18,19]. In this context, the beneficiary and health-promoting
properties of various phytochemicals against skin malignancies have been extensively
described [20–22]. Specifically, it has been reported that the consumption of cruciferous
vegetables is associated with reduced risk of cancer development, a capacity associated
with their high content of sulfur-containing phytochemicals known as isothiocyanates
(ITCs) [23–26]. These are secondary metabolites obtained from hydrolysis of their pre-
cursor molecules (glucosinolates), by myrosinase, an enzyme activated after plant tissue
disruption [27] (Figure 1). The importance of ITCs as nutraceutical agents is reflected upon
their capacity to modulate enzymes involved in (i) detoxification, (ii) apoptotic induction,
(iii) cell cycle growth arrest and (iv) interactions with various other cellular pathways
of tumor growth and invasion known to be deregulated in various cancers including
MM [28–38].

Although the great majority of studies have documented an anti-cancer activity of ITCs
against non-metastatic melanoma cell lines [33–35], their effect in metastatic melanoma
cells has remained largely undetermined. Thus, in the present study, we have aimed
to evaluate and compare the anti-cancer potency of five major ITCs (e.g., sulforaphane;
SFN, iberin; IBN, allyl isothiocyanate; AITC, benzyl isothiocyanate; BITC and phenethyl
isothiocyanate; PEITC) in metastatic (A375, B16F-10) and non-metastatic (VMM1, Hs294T)
melanoma cells. Furthermore, we have adopted non-melanoma epidermoid carcinoma
(A431) and immortalized non-tumorigenic melanocyte-neighboring keratinocyte (HaCaT)
cells in order to characterize the specificity of our observations to MM alone.
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Figure 1. Schematic representation of the enzymatic conversion of glucosinolates into ITCs by the action of myrosinase. 
Sulfoxide, allylic and aromatic derivatives of glucosinolates are presented as the three major ones along with their respec-
tive ITCs namely IBN, SFN, AITC, PEITC and BITC, respectively. 
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Figure 1. Schematic representation of the enzymatic conversion of glucosinolates into ITCs by the action of myrosinase.
Sulfoxide, allylic and aromatic derivatives of glucosinolates are presented as the three major ones along with their respective
ITCs namely IBN, SFN, AITC, PEITC and BITC, respectively.

2. Materials and Methods
2.1. Cell Lines and Cultures

A375 and A431 cells were purchased from Sigma-Aldrich (St. Louis, MO, USA).
HaCaT cells were kindly provided by Sharon Broby (Dermal Toxicology & Effects Group;
Centre for Radiation, Chemical and Environmental Hazards; Public Health England, UK).
Finally, VMM1, Hs294T and B16F-10 cells were obtained from LGC Standards (Middlesex,
UK). All cells were authenticated by Short Tandem Repeat (STR) profiling, tested for
mycoplasma and cultured for 15–20 passages before the usage of new stocks. All cell lines
were maintained in a humidified atmosphere at 37 ◦C and 5% CO2 and according to the
provider’s recommended culture conditions.

2.2. Exposure Protocols

For the estimation of reactive oxygen species (ROS), glutathione (GSH), cell cycle
kinetics, apoptosis and necrosis, cells were seeded in 100 mm dishes, followed by overnight
incubation. The next day, all cells were exposed to 10 µM of each ITC for 24 and 48 h
incubation periods. Untreated (control) cells were incubated with either 0.1% DMSO or
0.1% EtOH. The density of seeded cells was determined as previously published [16,17].

2.3. Determination of Biological Endpoints

After exposure to each ITC, a single cell suspension of 106 cells/mL was prepared. For
the determination of ROS, DHR 123 (10 µM) was added in the suspension and incubated for
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5 min at 37 ◦C while DAPI (1 µM) was added to each sample and incubated for additional
5 min, in order to determine the % of dead cells. For the determination of GSH, 5 µL of
ThiolGreen detection reagent was added into each cell suspension. Samples were incubated
at 37 ◦C (for 30 min), centrifuged (at 1000 rpm for 4 min) and cell pellets were resuspended
in 1 mL of Assay Buffer. Finally, DAPI (1 µM) was added into each sample and incubated
for 5 min in order to determine the % of dead cells in the suspension. For the determination
of cell cycle kinetics, the FxCycle PI/RNase staining solution was used according to the
manufacturer’s instructions. Briefly, about 0.5 × 106 cells were fixed in cold 70% ethanol,
for 1 h or longer, and kept at 4 ◦C until further processing. Then, cells were washed
twice with PBS to remove ethanol and finally suspended in FxCycle PI/RNase staining
solution for 30 min, at room temperature, in dark conditions. For the detection of apoptosis,
the CellEvent Caspase 3/7 Green flow cytometry assay kit was used, according to the
manufacturer’s instructions. Briefly, 0.5 µL of CellEvent Caspase 3/7 Green detection
reagent was added into 0.5 mL of each cell suspension and samples were incubated at
37 ◦C for 30 min. Finally, DAPI (1 µM) was added to each sample and incubated for 5 min
in order to determine the percent of dead cells in the suspension. Caspase-3/7-positive
and DAPI-positive cells were identified as apoptotic and/or necrotic, respectively. For
all determinations, 10,000 events were used (for each sample) while data acquisition and
analysis were performed using a FACS Canto II flow cytometer (BD Biosciences, San Jose,
CA, USA).

2.4. Statistical Analyses

Data were expressed as mean values ± standard deviation (SD). Comparisons between
control and treated groups were analyzed by one-way ANOVA with Tukey’s test for
multiple comparisons using the SPSS v.22 software. Levels of p < 0.05, p < 0.01 and p < 0.001
were considered statistically significant.

3. Results

We have previously provided evidence that SFN, IBN, AITC, BITC and PEITC exhib-
ited significant cytotoxic activity against an in vitro model of MM [16,17]. Based on these
findings, exposure to 10 µM, at 24 and 48 h, of each ITC were selected as the optimum
conditions for all experiments in this study. To this end, we have adopted these conditions
in order to evaluate if the previously documented cytotoxic capacity of ITCs [16,17] is
mediated through perturbations in levels of ROS, GSH, apoptosis, and necrosis as well as
changes in cell cycle growth arrest kinetics.

For assessing ROS production, we have used a flow cytometry approach (Figure 2A–F
and Supplementary Figure S1A–F). Our data revealed that for the majority of ITCs, 48 h of
exposure induced higher levels of ROS (when compared to 24 h) in all cell lines. Specifically,
the most robust ROS induction was observed in A375 and B16F-10 (Figure 2A,B, respec-
tively) compared to VMM1 and Hs294T (Figure 2C,D, respectively) cell lines. However,
A431 and HaCaT cells appeared to be more resistant in ITCs-induced ROS generation
(Figure 2E,F, respectively). In fact, their ROS levels were almost similar to those observed
in metastatic melanoma cells.

Next, we sought to determine the effects of ITCs on the intracellular levels of GSH by
flow cytometry (Figure 3A–F and Supplementary Figure S2A–F). According to our data,
the main pattern of GSH levels followed either a significant decrease (Figure 3A,D,F) or
remained at control levels (Figure 3B,C,E) over 24 h of exposure for the majority of ITCs, in
all cell lines, accompanied by a marked increase at 48 h of ITCs exposure (Figure 3A–F).
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Figure 2. The effect of various ITCs on ROS levels in an in vitro model of MM. Cells were exposed to 10 µM of each ITC, for
24 and 48 h, and monitored by means of flow cytometry. Results were quantitated as ROS fold induction levels for (A) A375,
(B) B16F-10, (C) VMM1, (D) Hs294T, (E) A431 and (F) HaCaT cells. Data shown are means ± SD of three replicates from
three independent experiments. * p < 0.05. ** p < 0.01, *** p < 0.001, when compared to untreated (control) cells.
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Figure 3. The effect of various ITCs on GSH levels in an in vitro model of MM. Cells were exposed to 10 µM of each ITC,
for 24 and 48 h, and monitored by means of flow cytometry. Results were quantitated as relative GSH levels for (A) A375,
(B) B16F-10 (C) VMM1, (D) Hs294T, (E) A431 and (F) HaCaT cells. Data shown are means ± SD of three replicates from
three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, when compared to untreated (control) cells.

In the next series of experiments, we examined the effect of ITCs exposure in causing
perturbations on cell cycle progression by flow cytometry (Figure S3A–F). In A375 and
B16F-10 cells, ITCs induced cell cycle growth arrest at G2/M phase, an effect that was
intensified after 48 h of exposure, in A375 cells (Figure 4A), while, in B16F-10 cells, this was
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clearly not the case as there was no evidence of growth arrest (Figure 4B). In VMM1 and
Hs294T cells, exposure to ITCs resulted in G2/M growth arrest but to a lesser extent when
compared to A375 cells (Figure 4C,D). In A431 cells, ITCs exhibited a G2/M growth arrest
evident at 48 h of exposure only while non-tumorigenic cells did not exhibit any evidence of
cell cycle growth arrest (Figure 4E,F, respectively). Overall, our findings indicate cell cycle
perturbations in non-metastatic and metastatic melanoma as well as non-melanoma cells
(with a predominant growth arrest at G2/M phase) while non-tumorigenic cells remained
largely unaffected after exposure to ITCs.

A B 

C D 

E F 

Figure 4. The effect of various ITCs on cell cycle progression in an in vitro model of MM. Cells were exposed to 10 µM of
each ITC, for 24 and 48 hr, and monitored by means of flow cytometry. Results were quantified as percent of total DNA
content accumulated at each phase of the cell cycle (e.g., sub-G1, G1, S and G2/M) for (A) A375, (B) B16F-10, (C) VMM1,
(D) Hs294T, (E) A431 and (F) HaCaT cells. Data shown are means ± SD of three replicates from three independent
experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, when compared to untreated (control) cells.

Finally, we evaluated the type of cell death under the same experimental conditions
by using flow cytometry in order to distinguish between necrosis and apoptosis. Overall,
our data indicated that exposure to ITCs exhibited a modest induction of necrosis while
minimally affecting apoptosis as the great majority of the various cell types remained
viable at the end of each exposure protocol. Specifically, A375 and B16F-10 cells appeared
to be more sensitive to necrosis (Figure 5C,F) rather than apoptosis (Figure 5B,E) after
exposure to ITCs. These observations were evenly distributed among all tested ITCs. On
the other hand, VMM1 and Hs294T cells appeared to follow the same pattern of apoptotic
(Figure 5H,K) and/or necrotic (Figure 5I,L) cell death except that the effect of aromatic
compounds (e.g., BITC and PEITC) was substantially higher in both types of cell death.
Finally, A431 and HaCaT cells showed to be resistant to ITCs-induced cell death as evident
by a small percent of apoptotic (Figure 5N,Q) and/or necrotic (Figure 5O,R) cells. Overall,
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our results indicate that exposure to ITCs induces both a necrotic as well as apoptotic cell
death in non-metastatic and metastatic melanoma cells while non-melanoma epidermoid
carcinoma and non-tumorigenic cells remain largely unaffected.

 Figure 5. Cont.
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 Figure 5. The effect of various ITCs on apoptotic and necrotic cell death in an in vitro model of MM. Cells were exposed to
10 µM of each ITC, for 24 and 48 h, and monitored by means of flow cytometry. Results were quantitated as percent of live,
apoptotic and necrotic cell populations for (A–C; A375), (D–F; B16F-10), (G–I; VMM1), (J–L; Hs294T), (M–O; A431), (P–R;
HaCaT) cells. Data shown are means ± SD of three replicates from three independent experiments. * p < 0.05, ** p < 0.01,
*** p < 0.001, when compared to untreated (control) cells.

4. Discussion

MM is one of the most aggressive and lethal types of solid cancers worldwide, with its
metastatic form accounting for 80% of all deaths related to skin cancer, despite the use of
several promising therapeutic treatment options [6,39]. On the other hand, epidemiological
studies revealed that a balanced diet, rich in cruciferous vegetables, is inversely related with
the incidence of skin cancer development [23]. To these ends, ITCs represent an important
class of bioactive dietary compounds that exhibit a wide range of biological activities
including anti-inflammatory, anti-bacterial, anti-aging, and anti-cancer in various types
of cancers. In MM, the underlined ITCs-induced anti-cancer mechanisms are mediated
through alterations in various otherwise deregulated cellular signaling pathways associated
with cell growth, proliferation and apoptosis, thereby negatively regulating the initiation
and progression of this type of malignancy [24,25].

Initially, we have evaluated the potential of ITCs to induce oxidative stress as an
important parameter of their cytotoxicity. Despite ITCs-induced stimulation of oxida-
tive stress, a differential response in ROS production was evident depending on the cell
type itself as well as the class of ITC used in each exposure protocol. Specifically, our
results indicated that ROS induction in non-metastatic melanoma cells was significantly
higher compared to metastatic melanoma, non-melanoma epidermoid carcinoma and
non-malignant cells. The observed differences in contents of intracellular ROS levels could
be linked to the differential response of each cell type against ITCs-induced cytotoxicity.
Overall, our data are in agreement with other reports indicating that ITCs (particularly
BITC and PEITC) can promote ROS-induced cytotoxicity in various in vitro models of lung
cancer [40–42]. Furthermore, in another study, SFN was shown to increase ROS levels in a
p53-null osteosarcoma (MG-63) as well as bronchial epithelial (BEAS-2B) cell lines where
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ROS accumulation was accompanied by increased expression levels of Nrf2 and heme
oxygenase-1 (OH-1) leading to cell death [43,44].

Then, we attempted to evaluate the role of GSH in the differential response of each cell
line against exposure to ITCs. Overall, the levels of total intracellular GSH content were
significantly increased in non-metastatic cells while the same pattern was observed also in
all the other cell lines as well, but to a lesser extent. The marked increase in GSH levels was
particularly evident at 48 h of ITCs exposure, an observation that may be interpreted either
as a consequence to increased levels of oxidative stress or as an adaptive response for the
metabolism of ITCs via the mercapturic acid pathway. For the latter, many reports suggest
that the mode of action of ITCs is based on their ability to conjugate with intracellular GSH
forming dithio-carbamates [45–48]. However, these conjugates appeared unstable due to
extracellular hydrolysis, resulting in the burst elevation of GSH that is reabsorbed back to
the cell [45,49]. To this end, another study has suggested that ITCs are capable of inducing
oxidative stress due to their conjugation with intracellular GSH, thereby deactivating a
major constituent of the intracellular antioxidant cell defense mechanism [50,51].

Moreover, when assessing cellular distribution in the context of cell cycle growth
arrest, metastatic and non-metastatic melanoma cells showed a similar pattern indicative
of a G2/M phase growth arrest. In addition, non-melanoma epidermoid carcinoma cells
were also shown to be growth arrested at G2/M phase, an observation that was not shared
by non-malignant cells as they remained largely unaffected after exposure to ITCs. A
number of studies have provided contradicted data regarding the capacity of ITCs to
induce growth arrest at G2/M phase in various cancer cell lines [52–55] or other cell cycle
phases like G0/G1 [56] and G1/S [57] as well. In particular, exposure of epithelial colorectal
adenocarcinoma (CaCo-2 and SW620) cells to SFN, AITC, BITC and PEITC was shown to
induce a growth arrest at G2/M phase while exposure of human oral squamous carcinoma
(HSC-3) and breast ductal carcinoma (ZR-75-1) cells to PEITC and SFN respectively caused
growth arrest at G0/G1 phase [55–57]. To these ends, exposure to IBN also appears to
follow the same pattern in neuroblastoma (HT 92 and SK-N/-SH) cells by inducing a
growth arrest at G2/M and G0/G1 phases, respectively [58].

Finally, our findings confirmed that ITCs are capable of inducing a modest induction
of apoptotic and/or a necrotic cell death, in all cell lines, but to a different extent depending
on cell type. Specifically, the levels of apoptosis were diminished when compared to
those of necrosis in all cell lines. In addition, levels of both necrosis and apoptosis were
significantly higher in metastatic and non-metastatic melanoma cells when compared to
non-melanoma epidermoid carcinoma and non-tumorigenic ones. This is of major impor-
tance as previous work, by our group, has shown that, although higher concentrations
of ITCs (25–100 µM) were capable of exerting significantly higher levels of an anti-cancer
response, this was demonstrated by a pattern of non-specificity towards both tumorigenic
and non-tumorigenic cells [16,17,26]. In other words, an ITC concentration above 10 µM
appeared to be considerably more cytotoxic for any cell line regardless if it was tumorigenic
or not (i.e., non-specific potency) [16,17,26]. To overcome the barrier of such non-specificity,
we have selected an ITC concentration of 10 µM, over 48 h of exposure, as this was shown
to be the maximum concentration capable of exerting cytotoxicity to melanoma cells while
tumorigenic non-melanoma (A431) as well as non-tumorigenic keratinocyte (HaCaT) cells
remained relatively resistant [16,17,26]. Finally, according to the literature, the cytotoxic
effect of ITCs appears to be mediated through activation of both apoptotic and necrotic cell
death, a response that is related to the specific type of cells used under various experimental
protocols, thus indicating a bimodal mode of cell death induction [59–62].

5. Conclusions

In the present study, we have provided evidence that major ITC compounds (e.g., SFN,
IBN, AITC, BITC and PEITC) exert a differential anti-cancer response against metastatic and
non-metastatic melanoma cells, by means of increased intracellular ROS and total reduced
GSH levels and perturbations in cell cycle distribution kinetics along with activation of



Antioxidants 2021, 10, 284 11 of 14

cytotoxicity-induced apoptotic and/or necrotic cell death. Specifically, BITC and PEITC
were shown to be the most potent compounds in inducing activation of necrotic cell death
in metastatic melanoma cell lines when compared to the non-metastatic ones. At the same
time, non-melanoma epidermoid carcinoma and immortalized melanocyte-neighboring
keratinocyte cells were shown to be more resistant to treatment with all ITCs. Moreover,
our data showed that the order of ITCs’ cytotoxic potency was as follows: BEITC~PEITC >
SFN~IBN > AITC. These observations are in agreement with the results from other studies
suggesting that the structure of ITCs is strongly associated with their cytotoxic potential
as aromatic compounds (BITC and PEITC) appear to be most potent when compared to
the aliphatic (AITC) and organosulfur (SBN and IBN) ones [63–65]. Furthermore, this
effect could be attributed to the relative volatility of ITCs as aromatic ITCs appear to be
considerably less volatile compared to allylic ones [66]. In conclusion, our study provides
further evidence about the potential of ITCs to act as novel therapeutic agents, thereby
supporting their inclusion in pharmaceutical drug development against MM.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-392
1/10/2/284/s1, Figure S1: The effect of ITCs (SFN, IBN, AITC, BITC, PEITC) on ROS levels in an
in vitro model of malignant melanoma, Figure S2: The effect of ITCs (SFN, IBN, AITC, BITC, PEITC)
on GSH levels in an in vitro model of malignant melanoma, Figure S3: The effect of ITCs (SFN, IBN,
AITC, BITC, PEITC) on cell cycle in an in vitro model of malignant melanoma, Figure S4: The effect
of ITCs (SFN, IBN, AITC, BITC, PEITC) to induce apoptosis and/or necrosis in an in vitro model of
malignant melanoma.
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