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Abstract: Comminuted meat products are highly susceptible to safety and quality degradation partly
because of their large interfacial area in the emulsion. The food industry extensively uses synthetic
chemical preservatives to delay that degradation which is caused by microbial growth, enzyme
activities and oxidation reactions. However, due to the potential health damage (e.g., cardiovascular
diseases, neurodegenerative diseases, cancers among others) synthetic preservatives in meat may
cause, consumers are becoming skeptical to buy meat products containing such additives. In the meat
industry, the interest of finding natural food preservatives is intensifying. Polyphenolic-rich plants
used as natural food preservatives offer the best alternative for a partial or a complete replacement
of their synthetic counterparts. They can be extracted from natural sources such as olives, fruits,
grapes, vegetables, spices, herbs, and algae, and among others. The common feature of these
phenolic compounds is that they have one or more aromatic rings with one or more -OH group which
are essential for their antimicrobial and antioxidant properties. This review article is intended to
provide an overview of the plant-based phenolic molecules used as natural food preservative, their
antimicrobial and antioxidant mechanism of action, and their potential application in comminuted
meat.

Keywords: plant extracts; polyphenols; comminuted meat; natural preservatives; antimicrobial; an-
tioxidant

1. Introduction

A report from the Food and Agriculture Organization (FAO) [1] predicted that the
degradation of the world ecosystem in addition to the projected global population growth
will challenge humanity‘s ability to feed itself. Moreover, each year, the loss of globally
produced food is estimated at 40% with microbial food spoilage and quality degradations
being some of the major causes thereof [2]. On the other hand, the global average per
capita consumption of meat is on the rise driven by increasing average per capita incomes
and population growth [3]. Consequently, this place pressure on the global meat supply
chain and government institutions to find sustainable solutions to address food security.
Meat, particularly comminuted meat, is a good source of proteins, trace elements such as
iron and zinc, vitamin B12, and essential amino acids, all critical components for a balanced
and healthy human diet. However, partly due to the large interfacial area in the emulsion,
comminuted meat is highly susceptible to oxidative degradation and microbial spoilage [4].

Since the industrial revolution, the food industry has been using, with relative suc-
cess, synthetic chemical preservatives such as sodium metabisulfite [5], potassium sor-
bate [6], sodium benzoate [7], butylated hydroxytoluene (BHT) [8], butylated hydroxi-
anisole (BHA) [9], sodium nitrite [10] and more to ensure the safety and quality of meat
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products by inhibiting and preventing the growth of spoilage and pathogenic cells and
delaying the oxidation of lipids and proteins. Because of the growing body of evidence
about the potential toxicity of these preservatives, consumers have become skeptical and
are asking for a healthier food [11]. In Australia, a national survey reported that 45% of
Australians were concerned about the safety and quality of foods they buy due to poten-
tial hazards of synthetic chemical preservatives in foods [12]. Plant-based preservatives
are generally regarded as safe (GRAS) without any documented detrimental impact and
have been reported to contain bioactive compounds that play an important role in the
preservation of foods.

Several bioactive compounds naturally occurring in plants have antioxidant and
antimicrobial properties and may play crucial roles in the preservation of comminuted
meat products. Plant-based bioactive compounds are generally classified as phenolic
compounds found in a variety of plants, fruits, herbs, and spices [13]. Numerous studies
on plant polyphenols, as natural preservatives in comminuted meat, has been reported.
These include rosemary [14], clove extracts [15], green tea [16], turmeric [17], and Moringa
oleifera leaf [18]. In their review paper, Das and co-authors [19] noted that although there
are many types of bioactive molecules of natural origin for meat preservation, such as those
from animal and microorganisms, the greatest interest for meat manufacturing is centered
on using plant extracts rich in bioactive molecules.

Polyphenols are recognized for their powerful antimicrobial and antioxidant proper-
ties. Their bioactivity is based on their capability to: scavenge free radicals and reactive
oxygen/nitrogen species (ROS/N), reduce oxidized intermediates, induce metal chelation,
and inhibit enzymes responsible for the formation of free radicals [20]. These molecules
differ in terms of their physiochemical structure and molecular weight; and they consist
of at least one aromatic ring, to which at least two hydroxyl groups are attached [21].
The bioactivity of polyphenols is dependent on the configuration of the molecules, and
the position and number of the hydroxyl group(s) in that molecule [22]. Polyphenolic
compounds, based on their structure, are divided into four major groups: phenolic acids,
flavonoids, stilbenes and lignans [21].

Reflecting on the significant number of recently published journal articles focusing
on the antioxidant and antimicrobial properties of polyphenols as natural preservatives in
comminuted meat, the aim of this review is to highlight and summarize the relevant find-
ings of selected plants. The scope of this review is related to bioactivity of polyphenolic-rich
plant materials, their antimicrobial and antioxidant mechanism of actions, their application
in comminuted meats. Challenges in the in-situ applications of plant derived bioactive
compounds and government regulations will also be highlighted.

2. Plant-Based Bioactive Molecules for Food Preservation

Many plants have been reported to contain some antimicrobial and antioxidant prop-
erties due to the presence of bioactive compounds. This bioactivity is mainly attributed to
a variety of phenolic molecules (as shown in Figure 1) which are fundamentally related
but vary in their conformations and quantity depending on the specific source [23]. In the
plant extracts, phenolic compounds consist of phenolic acids (e.g., rosmarinic acids, caffeic
acids and gallic acid), phenolic diterpenes (e.g., carnosol and carnosic acid), flavonoids
(e.g., quercetin, catechin, apigenin, naringenin, kaempferol and hesperetin), volatile oils
(e.g., carvacrol, thymol, eugenol, and menthol) [24] and, many other bioactive compounds
have been isolated. The common characteristic of these phenolic compounds is their ability
to inhibit or prevent the growth of spoilage and pathogenic microorganisms and to slow
down the oxidative reactions within the food system.
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Figure 1. Chemical structures of selected plant-based phenolic compounds.

3. Extraction of Plant Bioactive Compounds for Food Application

The extraction is an important step to isolate polyphenol molecules from plant materi-
als. The concentration of these bioactive molecules in the extract can differ considerably
depending on the type of plant and the technology applied. Methods of extraction include
the use of solvents, distillation, pressing and sublimation [25]; and among which, the
solvent extraction is the most used method. There are several techniques used, both in
industry and in research, for the extraction and recovery of bioactive compounds from
plant sources. These include techniques such as Soxhlet, maceration and stirring [26],
ultrasound assisted extraction [27], pressurized liquid extraction (PLE) [28], subcritical
water extraction [29], supercritical fluid extraction (SFE) [30], microwave assisted extrac-
tion, pulse electric field extraction and enzyme-assisted extraction [31]. The selection of a
particular extraction method and technique is conditional on the physico-chemical nature
of compounds to be extracted, whilst the cost and safety of the method should also be
considered.

The extraction processes of bioactive molecules from plant materials consists of the
following phases: the solvent penetrates and diffuses into the solid matrix; (2) the solute
dissolves into the solvent; (3) the solute is diffused out of the solid matrix; the extracted
solutes are collected [25]. The chemical nature of the extraction solvent, particle size of the
plant materials, the ratio solvent-to-solid, the extraction temperature and the extraction
duration influence the efficiency of the extraction. The choice of the extraction solvent
depends largely on the desired fraction to be extracted; e.g., sesame oil was better extracted
with less polar solvent [32]. However, membrane-associated lipids are more polar and re-
quired the use of a polar solvent capable of breaking the hydrogen bonds or the electrostatic
forces.
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The storage conditions of the plant extract have implications on the shelf life and the
bioactivity strength of the extract. Research findings from Birch leaf hydrolysable tannins
suggested freeze-and vacuum-drying at −20 ◦C provided a more reliable result and longer
shelf life whereas storage at 4 ◦C and room temperature decreased the concentration of the
pedunculagin derivatives over a period of one year [33]. These results can be explained by
the fact that removing oxygen from the package of Birch leaves and cooler temperature
during storage slowed down the oxidation processed and eventually prevented microbial
growth that might impacted on the bioactivity potential of the plant extracts. In agreement
with these findings, the prolonged storage of blueberry extract at room temperature signifi-
cantly decreased the phenolic compounds and their biological activities [34]. An effective
extraction of plant bioactive molecules ought to consider all factors to ensure the integrity
of the extracts.

4. Antioxidant Mechanism of Action

Fundamentally, the antioxidant mechanism involves a concerted transfer of the H-
atom from a phenolic molecule to the radical thereby inhibiting either the early free radical
formation or, stopping the generation of additional free radicals which may propagate
the oxidation reaction further [11]. There are two main category of antioxidants based on
their mechanism of actions [35]: (1) primary antioxidants that disrupt the oxidative free
radical’s chain reaction by donating electrons or hydrogen atoms from the hydroxyl group
to stabilize the free radicals, and as a result, inhibit or slow down the initiation phase and
disturb the propagation stage of autoxidation; (2) secondary antioxidants that deactivate
the singlet oxygen, chelate metal ions, absorb UV radiation, scavenge oxygen and help to
regenerate the primary antioxidant as schematized in Figure 2.

Figure 2. Schematic representation of an antioxidant’s mechanism of actions. Single electron transfer (SET) and hydrogen
atom transfer (HAT). (A) SET involves the ionization potential of the antioxidant by transferring so as to deactivate a free
radical. HAT involves the bond dissociation enthalpy in which the free radical removes one hydrogen atom from the
antioxidant. (B) Metal chelation involves the binding of a metal (oxidant) to form a complex ring-like structure.

The bioactivity of antioxidants is mainly due to the combination of aromatic rings and
OH-groups that (re-)assemble their chemical structure to be able to bind and prevent or,
slow down lipid and protein oxidations [36]. This bioactivity of a plant-based polyphenol
increases with the number of OH-groups in its molecular structure. For example, among
flavones and flavanols, the scavenging of peroxyl and hydroxyl increased respectively
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according to the number of OH-groups [37]. In addition, the configuration of the aromatic
ring in the antioxidant molecular structure influences its activity. For instance, the scaveng-
ing ability of luteolin substantially exceeded kaempferol’s; this is because kaempferol lacks
the B-ring catechol in its configuration [38].

Furthermore, transition metals have the capacity to induce the oxidation of lipids
by decomposing lipid hydroperoxides to generate lipid alkyl radicals. Polyphenols can
prevent lipid peroxidation by binding and neutralizing free radicals [35]. However, this
depends on the configuration of the molecules, and the number and the position of the
OH-group [39]. For example, Kelley and co-workers [36] demonstrated that both the
configuration and total number of OH-groups on the polyphenol molecule significantly
influence several mechanisms of antioxidant activities.

5. Antimicrobial Mechanism of Action for Preservation in Food Systems

The antimicrobial mechanism of polyphenolic rich plant extracts includes the follow-
ing [40]: (1) membrane disrupting molecules such as OH-group causes leakage of cellular
content or interruption of the metabolic enzymes or dissipation of the cellular energy in
its ATP form; (2) direct pH drop of the growth medium because of the increase in proton
concentration, decrease of the internal cellular pH by dissociation of acid molecules and
alteration of the cell membrane permeability; (3) the presence of an organic acid in the plant
extract may impact on the NADH oxidation, thus removing the supply of the reducing
agent to the electron transport system. Nevertheless, the exact molecular mechanism of the
antimicrobial activity is yet to be well understood because plants and plant extracts contain
a diverse range of bioactive molecules that are different in their configuration and chemical
structure and that regularly function in synergy/antagonism with each other. This means,
there may be several possible antimicrobial molecular mechanisms of action to impact the
cell in many ways as shown in Figure 3.

Figure 3. Antimicrobial activities of plant-based phenolic compound on microbial cells.

The OH-group of a phenolic molecule is central to the antimicrobial activity of plant
extracts. The OH-group can interact with the cell membrane of microorganism by hydrogen
bonding [41]. This causes either the disruption of the membrane structure resulting in
loss of cellular content, or the delocalization of electrons inducing the depolarization that
impacts on the proton motive force, which decreases the pH gradient across the membrane
and the level of the ATP pool, and ultimately leads to cell death. The number of OH-groups
on the phenolic ring influences the intensity and severity of the antimicrobial activity.
For example, Stojkovic and co-workers [42] studied the antimicrobial impact of caffeic
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acid, p-coumaric acid and rutin in food systems and found that caffeic acid had higher
antimicrobial activity compared to p-coumaric acid because of the additional OH-group in
the phenolic ring of caffeic acid.

The position of the OH-group(s) on the aromatic ring of the phenolic molecule also
influences the antimicrobial effectiveness of plant-based preservatives [43]. For example,
the difference in antimicrobial activity between thymol and carvacrol when tested against
bacteria was attributed to the OH-group located at the meta position in thymol compared
to the ortho position in carvacrol [44]. In another study, the antibacterial activity of
flavonoids against Methicillin-resistant Staphylococcus aureus strains found that the OH-
groups in positions 2’ of chalcones and position 5’ of flavanones and flavones increase
their antimicrobial activity [45]. The position of the OH-group on the aromatic ring of
polyphenols is, indeed, relevant in the delocalization of electron(s) from the cytoplasmic
membrane which exerts an antimicrobial activity on bacteria [46].

6. Application of Polyphenolic-Rich Plants in Meat System

Plants including herbs and spices have been used for thousands of years in different
applications including foods and beverages [47]. There are numerous trials conducted on
the antioxidant and antimicrobial properties of a variety of plants used in comminuted
meat as natural preservatives to inhibit microbial spoilage and to slow down the oxidative
reactions. Only a few of the major plant species used will be discussed further to highlight
their relevance in the comminuted meat processes.

6.1. Plant-Based Antioxidants Applied for Preservation in Meat Systems

Antioxidant activity is widely observed in a variety of plants and different parts of
the plant including fruits, herbs, seeds, peels, leaves, rhizomes, and flowers. This activity
is attributed to the presence of bioactive compounds. Several peer-reviewed publications
reported the application of plants and plant extracts with success in preventing or slowing
down the oxidative reactions in comminuted meats.

6.1.1. Drumstick Leaves (Moringa oleifera)

M. oleifera is a native plant to sub-Himalayan tracts of India, Pakistan, Bangladesh, and
Afghanistan. Its leaves contain important bioactive molecules including glucosinolates,
isothiocyanates, zeatin, quercetin, betasitosterol caffeoylquinic acid, and kaempferol that
all display antioxidant properties [48]. In goat patties, 0.1% of Moringa leaf extract was
incorporated to investigate its impact in terms of oxidative stability [49]. The experiment
was carried out in refrigeration condition over 15 days. The M. oleifera leaf extract was more
effective than BHT in maintaining low thiobarbituric acid reactive substances (TBARS)
numbers in precooked, chilled goat meat patties. Additionally, the sensory attributes of
the product were not affected. In another study, the effect of M. oleifera leaf powder on the
ferric antioxidant power (FRAP) and lipid oxidation during processing and storage of dry
pork sausage was investigated [18]. The inclusion of M. oleifera leaf powder in the recipe
was 0.5, 1 and 2 % of Moringa leaf powder—results indicated that the FRAP was increased
and the level of TBARS was significantly lower compared to the control.

6.1.2. Amla (Emblica officinalis)

Amla is a plant widely domesticated in subtropical areas of China, Indonesia, and
Malaysia. Its fruits and seeds powder are used as ingredients in many foods for promotion
of healthiness and longevity (Table 1) [50]; their main bioactive compounds include gallic
acid, ellagic acid, quercetin, and kaempferol. Bariya and co-workers [51] investigated
the antioxidant potential of Amla fruit and seed coat in goat patties. A basal recipe of
minced goat meat was prepared and then mixed, separately, with Alma fruit and seed coat
extracts. Goat patties incorporated with Amla fruit extract and Amla seed coat extract
had lower TBARS values and free fatty acid values compared to the control. The authors
recommended that goat meat patties containing Amla extracts from fruit and seed can last
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up to 21 days under vacuum packed refrigerated conditions without loss in quality. Similar
results also showed that the addition of Amla extracts into a raw chicken meat batter will
prevent lipid oxidation without compromising sensory attributes [52].

Table 1. Bioactive rich plants as antioxidants preservatives used in comminuted meats.

Plant
Sources

Scientific
Name

Major
Component Part Used Delivery

System
Amount

Added in
Meat (%)

Meat
System Effect References

Amla Emblica
officinalis

Gallic acid,
ellagic acid,
quercetin,

and
kaempferol.

Fruit, seed Extract - Goat patties
Inhibition of

lipid
oxidation

[51]

Apple Malus
domestica Lycopene Peel and

seed
Pomace
powder 1-5

Indian
traditional

meat
Shelf-life
extension [53]

Black cumin Nigella sativa
L.

Thymoquinone,
thymohydro-

quinone,
dithymo-
quinone,

p-cymene,
and trans-

anethol

Seed Extract 1.5 Fresh
minced beef

Lower level
of TBARS [54]

Black currant Ribes nigrum Anthocyanins Fruits Extract >0.5 Pork patties
Inhibited

lipid
oxidation

[55]

Black pepper Piper nigrum
Capsanthin

and
capsorubin

Fruit Powder 1 Fresh pork
sausage

Inhibition of
lipid

oxidation
[56]

Broccoli Brassica
oleracea

Phenolic
acids and
flavonoids

Leaf extract >0.1 Ground beef
patties

Lower level
of TBARS [57]

Chilli pepper Capsicum
annuum

Capsaicin
and dihydro-

capsaicin
Fruit Powder 2 Fresh pork

sausage

Inhibition of
lipid

oxidation
[56]

Clove
Extracts

Syzigium
aromaticum

L.

Eugenol and
eugenyl
acetate

Flower buds Extract 0.1 Beef patties
Inhibition of

lipid
oxidation

[15]

Curry Murraya
koenigii L.

Tannic, gallic,
caffeic,

cinnamic,
chlorogenic,
ferulic, and

vanillic acids

Leaf Extract 2.5 Meat
homogenate

Lower level
of TBARS [58]

drumstick M. oleifera

Glucosinalates,
isothio-

cyanates,
zeatin,

quercetin, be-
tasitosterol

caf-
feoylquinic

and
kaempferol

Leaf Extract 0.1 Beef patty Lower level
of TBARS [48]

Fatsia Aralia elata
Seem

Phenolic
acid,

Flavonoid,
aromatic

compounds

Leaf Extract 1 and 5 Beef patties Lower level
of TBARS [57]
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Table 1. Cont.

Plant
Sources

Scientific
Name

Major
Component Part Used Delivery

System
Amount

Added in
Meat (%)

Meat
System Effect References

Fenugreek
Trigonella
foenum-
graecum

Galactomannans,
nicotinic

acid,
alkaloids,

flavonoids

Seed Powder - Rabbit
sausage

Reduced
lipid

oxidation
[59]

Ginger Zingiber
officinale L.

Gingerol and
shogaols Rhizome Peeled and

shredded 1.5 Minced meat Lower level
of TBARS [60]

Ginkgo
biloba - Polyphenols Leaf Extract 0.05 Meatballs Lower level

of TBARS [61]

Grape seed Vitis vinifera

Catechin,
epicatechin,
gallic acid

and phenolic
acid

Seed Extract 0.01 Fish mince Lower level
of TBARS [16]

Green tea Camellia
sinensis Catechin Leaf Extract 0.01 Fish mince Lower level

of TBARS [16]

Hardy
garden mum

Chrysanthemum
morifolium

Polyphenolic
compounds Flower Extract 1 and 2 Goat meat

patties

Inhibit lipid
and protein
oxidation

[62]

Lotus Nelumbo
nucifera

Tartaric acid,
citric acid,
malic acid,

succinic acid,
tannin

Leaf Leaf powder 6 Chicken
patties

Lower level
of TBARS [63]

Lychee seed Litchi
chinensis

Epicatechin,
procyanidin

B4 and
procyanidin

B2

Fruit Pericarp
extract >0.1 Sheep meat

nugget
Lower level
of TBARS [64]

Mulberry Morus alba L.

polyphenols,
flavonoids
and antho-

cyanins
Polyphenols,
flavonoids,
and antho-

cyanins

Leaf Extract >0.01 Ground beef Lower level
of TBARS [65]

Myrtle Myrtus
communis

α-pinene,
1,8-cineole,
limonene,
linalool,

α-terpineol

Leaf Extract - Beef patties Lower level
of TBARS [66]

Pomegranate Punica
granatum

Tannins, an-
thocyanins,

and
flavonoids

Fruit Extracts 0.02 Ground pork
meat

Lower level
of TBARS [67]

Rosemary Rosemarinus
officinalis L.

Carnosic
acid, Caffeic

acid, and
rosmarinic

acid

Leaves Extract >0.012 Pork meat
Inhibition of

lipid
oxidation

[68]

Turmeric curcuma
longa Curcumin Rhizome Powder 3.5 Rabbit

patties

Inhibition of
lipid

oxidation
[69]

Wattles Acacia
nilotica

Flavone,
alkaloids,
and gums

Seed Extract >0.1 Chicken
patties

Shelf-life
extension [70]

6.1.3. Mountain Savory (Saturaja montana L.)

Mountain savory is a perennial semi-shrub that inhabits arid, sunny, and rocky terrains
in the Mediterranean region, although this plant has also been domesticated throughout
Europe. The main bioactive molecules with antioxidant properties are carvacrol, borneol,
linalool, thymol, γ-terpinene, and ρ-cymene [71]. The effects of mountain savory as
a natural antioxidant in mortadella-type sausages were investigated [72]. Batches of
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mortadella-type sausages were formulated with different concentrations of sodium nitrite
(0, 100, and 200 mg/kg) and mountain savory essential oil at concentrations of 7.8, 15.6,
and 31.25 µL/g. The mountain savory extract significantly reduced the oxidative reactions
of the lipids in the mortadella-type sausages. However, the use of savory extract in high
concentrations combined with a high level of sodium nitrite induced unfavorable sensory
change in terms of color of the finished product.

6.1.4. Green Tea (Camellia sinensis)

Green tea is an ever-green plant that grows in tropical and temperate regions. Green
tea extract contains several polyphenolic molecules with antioxidant properties in which
the predominant active compound is catechins [35]. Numerous studies have investigated
the antioxidant properties of green tea in meat and meat products. For example, the effect
of green tea as a natural antioxidant in uncured pork sausage showed that 0.05% of green
tea in combination with 0.030% of black tea suppressed the TBARS value more efficiently
than 0.010% of BHT without changing the organoleptic characteristics such as color, order,
taste, texture, and overall acceptability [73]. In fact, the utilization of green tea extract as a
natural antioxidant in Turkish dry-fermented sausage showed that green tea extract was
more effective than BHT in reducing TBARS without affecting the sensory attribute of the
meat product [74].

6.1.5. Clove Extract (Syzigium aromaticum L.)

Cloves, flower buds of Syzigium aromaticum L., is a valuable plant originally domesti-
cated in China. The main bioactive compound in cloves with antioxidant properties are
eugenol and caryophyllene [75]. The effect of natural antioxidants including clove extract
in beef patties where the basic formulation of patties included 90.8% beef lean meat, 8%
beef back fat, and 1.2% salt with clove extract included at 0.1% concentration showed
retardation in the increase in TBARS, demonstrating the ability of cloves to inhibit the
oxidation of lipids in beef patties during cold storage [15]. Additionally, the sensory panel
found that the beef patties with clove extract had better flavor and overall acceptability.
A study on the effect of clove extract as a natural antioxidant in Chinese-style sausages
where the clove extract was included in the recipe at concentrations of 0, 0.25%, 0.5%, 1%,
and 2%; indicated that the 2% inclusion of clove extract had the highest inhibition of lipid
oxidation [75]. This might be due to the high concentration of polyphenols, including
eugenol and caryophyllene in the clove extract.

6.1.6. Grape Seed Extract (Vitis vinifera)

Grape seeds are the by-products of the winery and grape juice industry. These seeds
contain 5 to 8% of polyphenols cinnamic acids, benzoic acids, catechin, epicatechin, and
gallic acid [16,76]. The effect of grape seed extract (GSE) as antioxidant in raw fresh minced
beef maintained under a refrigerated condition of 4 ◦C for 10 days was investigated [77].
The basal formulation was fresh mince with (1) 50 mg GSE/kg of meat (2) 200 mg GSE/kg
of meat (3) 1000 GSE/kg of meat, (4) negative control (without antioxidant), and positive
control (with 0.01% of BHT/kg of meat). The TBARS were significantly reduced in all
treated minced beef meat samples during storage compared to both negative and positive
control. In line with these results, the inclusion of GSE added at 0.02% and 0.04% in a green
beef sausage recipe extended the shelf life without affecting the sensory attributes [78].

6.2. Plant-Based Antimicrobial Applied for Preservation in Meat Systems
6.2.1. Roselle Calyx Extract (Hibiscus sabdariffa)

Roselle calyx is a plant that grows in the tropic and subtropical regions. This plant
is native to Asia and is now cultivated throughout the world and is known by different
names such as roselle, hibiscus, jacaranda, red sorrel or karkade. The major bioactive
compounds found in the roselle flowers are gallic acid, catechin, epicatechin, chlorogenic
acid, protocatechuic acid and hydroxycinnamic acids [79]. The antimicrobial properties
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of H. sabdariffa extract to improve the shelf life of beef meat was investigated; slices of 10
g of beef meat were sprayed, under refrigeration conditions with 250, 500, 750, 1000, or
1250 mg/l of the hibiscus extracts and then stored for 10 days until microbial analysis [80].
Microorganisms that were tested in this study include Escherichia coli, Salmonella enterica
serovar T., Staphylococcus aureus, Listeria monocytogenes and Bacillus cereus. The hibiscus
calyx extract showed an increase in the shelf life of the meat. In a similar study, the
extracts of H. sabdariffa were mixed at 5 or 10 mg with ground beef under refrigeration
conditions [81]. Food spoilage bacteria examined included Salmonella typhimurium DT104,
Escherichia coli O157:H7, L. monocytogenes, S. aureus, and B. cereus; the Roselle calyx extract
showed significant antimicrobial effects.

6.2.2. Chestnut Inner Shell (Castanea crenata Mill)

Castanea crenata is a woody plant native to South Korea and Japan. Chestnut shell is
estimated to represent about 10% of the weight of the chestnut, and it is removed during
the peeling process [82]. This chestnut by-product contains a significant concentration of
phenols and hydrolysable tannins [83]. The chestnut inner shell extracts (CISE) have been
reported to have an antimicrobial effect in meat products. For example, the antimicrobial
effect of CISE against Campylobacter jejuni in chicken meat was studied [84] The chicken
meat was cut into small portions and mixed with CISE made up of different concentrations
(0, 0.5, 1, and 2 mg/g of CISE dissolved in 90 mL of 1% peptone solution) and kept under
refrigeration conditions (4 ◦C) or at 42 ◦C. CISE inhibited the growth of C. jejuni in chicken
meat both at 4 ◦C and 42 ◦C—the authors recommended that this plant extract can be used
as a natural antimicrobial in meat and meat products.

6.2.3. Acacia nilotica Extract

Acacia is a genus in the Leguminosae family comprising 1350 species distributed in
the warm and arid regions around the world [85,86]. The leaves, bark, and pods of Acacia
nilotica has been reported to have antimicrobial activities because of the presence of bioac-
tive molecules including catechin(s) and gallocatechin [87]. The antimicrobial properties
of A. nilotica seed extracts (ANSE) were evaluated in chicken patties [62]. Formulation
of chicken patties were performed by mixing minced chicken with various Acacia seed
extract concentrations (0, 50, 100, and 150 mg/100mL distilled water) and storing the mince
under refrigeration conditions (4 ◦C). The microorganisms that were tested include E. coli
ATCC 10536, S. typhimurium ATCC 14028, Y. enterocolitica ATCC 27729, Klebsiella pneumonia
ATCC 10031, B. cereus ATCC 14579 and S. aureus ATCC 29737 (Table 2). The shelf life of
chicken patties was prolonged for 15 days under concentration of 150 mg ANSE/100 mL
distilled water. In line with these findings, A. nilotica extract when used in beef patties at
concentration of 1% and 2% in the beef burger recipe also showed strong antimicrobial
effects [88].
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Table 2. Some studies regarding the application of phenolic-rich extracts to comminuted meat products to enhance meat
preservation.

Plant Scientific
Name Meats

Amount
Added in
meat (%)

Delivery
System

Targeted
Species Outcome References

Acacia nilotica Acacia nilotica Minced
chicken - Seed extract

E. coli, S.
typhimurium, Y.
enterocolitica, K.
pneumonia, B.

cereus, S. aureus

Growth
inhibition [70]

Bottlebrushes Callistemon
citrinus Burgers 2

Leaves and
flowers
extracts

L. monocytogens Growth
inhibition [89]

Chestnut Castanea sativa Chorizo 0.1 Leaves extracts Total Viable
counts

Microbial
growth

inhibition
[90]

Cranberry Vaccinium subg.
Oxycoccus

Cured
Frankfurters 3 Powder Listeria

monocytogens
Growth

inhibition [91]

Drumsticks M. oleifera Poultry
sausage 0.5 Ground

powder
E. coli, S.aureus,

Total plate
counts

Growth
inhibition [92]

Grape seed Vitis vinifera Turkey
Frankfurters 0.5 Seed extract

E. coli O157:H7,
L.

monocytogenes,
S. typhimurium,

Contributed to
the microbial

reduction
[93]

Green tea Camellia
sinensis Pork meatballs 0.03 Extract Mold, Yeast,

Coliforms
Growth

inhibition [94]

Lentisk Pistacia
lentiscus L. Pork sausage 0.03 Extracts Total Viable

counts

Slowing
microbial
growth

[95]

Mustard Brassica juncea Bologna 5 Extract L. monocytogens Growth
inhibition [96]

6.2.4. Carob Fruits (Ceratonia Siliqua)

Ceratonia siliqua, commonly known as Carob fruit, is considered an underutilized
plant, native to Mediterranean regions including Northern Africa, Southern Europe, and
the larger Mediterranean islands [13]. This plant has antimicrobial properties, and the
major bioactive compounds include hydroxybenzoic acids, flavonols such as quercetin,
myricetin, kaempferol and their glycosidic derivatives [97]. The antimicrobial activity of C.
siliqua against Listeria in minced meat was evaluated [98]. Half of 25 g minced beef meat
was inoculated with 2.102 cfu/g of L. monocytogens/g of meat and thoroughly mixed for 3
min at room temperature. The extract of Ceratonia siliqua pods was then added to the 25 g
inoculated minced mixture at concentrations of 0.1, 0.2, or 0.4 mg of C. siliqua extract/g of
meat. The samples were stored under refrigeration conditions (7 ◦C) for 10 days. The C.
siliqua extract inhibited the food pathogen, suggesting that this plant is a potential source
of active ingredients suitable for the food and pharmaceutical industries.

6.2.5. Lemongrass (Cymbopogon citratus)

Lemongrass (C. citratus) is a perennial and tall grass encompassing around 55 species
and is domesticated in tropical and subtropical regions. The major antimicrobial com-
pounds in Lemon grass include citral (65–86%), a mixture of terpenoids citral B (neral)
and citral A (geraniol) [99]. The antimicrobial effects of Lemongrass oil on the quality
characteristic of camel burgers stored under refrigeration conditions (4 ◦C) for 12 days was
investigated [100]. The concentration of lemongrass in the green mix were 0.5%, 0.75%, and
1%. The camel burger formulated with 1% lemongrass showed the lowest total viable count
and, in addition, recorded the highest in organoleptic characteristic assessment. Similarly,
lemongrass (concentration of 1.0%) inhibited the growth of mesophilic and psychotrophic
bacteria in fresh chicken sausage [101].

7. Limitations of Natural Preservatives when Applied in Food Systems

Several scientific studies acknowledge the antimicrobial and antioxidant properties
of plant polyphenols. However, most of these studies have been performed in-vitro (not
all have been reported in this review) and their application in meat systems (in-situ)
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might have different outcomes. In in-situ applications, the amount of these phenolic-rich
plant preservatives required to have an effect, are frequently so high that these levels are
not always organoleptically acceptable, whereas in the in-vitro applications, much lower
amounts of the same plant extracts are needed to display the antimicrobial and antioxidant
properties [102]. The probable explanation of the difference observed between the in-vitro
and in-situ application of (poly)phenolic-rich plant extracts maybe because of the presence
of other components in meat systems such as fat, proteins, carbohydrates, and salt which
may have an impact on their bioactivity. Two aspects are crucial for the practicability of
using natural preservatives in food systems [103]: (1) the change of sensory attributes of
food such as color, smell, and texture when the natural preservative is added, and (2) the
interactions of the natural preservative with other food ingredients in the system. Meats
and meat products are commonly rejected by consumers when the natural preservative is
in the form of plant essential oil, which is volatile and impart a strong flavor [104].

Furthermore, bioactive compounds’ concentration in herbs/spices may differ, for
the same spices, depending on the extraction techniques, harvesting season and between
geographical regions [86]. In addition, the bioactive compounds in the plant part (seed,
leaf, root bark and stem bark) may not be the same in terms of quality and quantity [105].
For example, the main barrier encountered in the use of plant extracts, particularly essential
oils, is the inability of the reproducibility of their activity [41]. This is because, although
they consist of a diverse collection of chemical compounds, they have different qualitative
and quantitative fluctuations in the concentration of the active molecule which influence
their bioactivity. In addition, the cost, selectivity and safety of these extract should be
considered as these could be limiting factors in the selection of solvent and technique
of extraction [25]. Another aspect that warrants more scrutiny is the fact that many of
these plant extracts are being marketed on their image of being “green”, yet some of the
extraction methodologies such as solvent extraction is in fact aggressive and dangerous.

As mentioned, the amount of extract required to positively influence the shelf-life
stability of the comminuted meat products, are frequently high and as a result, could
influence other organoleptic attributes. Additionally, a number of papers published on
plant-based preservatives do not in fact indicate the concentrations at which the extracts,
and more importantly, the active components therein, are added to the meat, thus making
it challenging to evaluate the efficacy thereof under in-situ conditions.

The legislative aspects of natural preservatives may pose problems in some instances.
For example, garlic appears to be generally safe based on substantial tract records of
consumption and use in foods including meats and meat products. However, there have
been a number of scientific publications that established inconveniences, such as allergic
reactions and alteration of platelet function and coagulation, that this polyphenolic-rich
plant may cause [106]. Furthermore, the Food and Drug Administration (FDA) of the
Unites States of America classifies estragole as a flavoring with as GRAS status whereas the
EU prohibit it on the ground that it may be genotoxic. Clearly, discordances of regulations
on natural food preservatives between regulatory bodies may be an additional impediment
to their use in meat and meat products.

8. Regulations of Natural Food Preservatives

The most influential governing bodies that legislate, enforce the law, and oversee the
approval and regulation of food additives in the World include the European Food Safety
Authority (EFSA) in the European Union and the FDA. Another important organization
involved in the risk assessment and studies on food preservatives and who regularly
issue statements regarding food preservatives is the joint FAO/World Health Organization
(WHO) Expert Committee on Food Additives, and the Codex Alimentarius [107].

The addition of natural preservatives in the food legislation and their subsequent
approval for commercial use in the food industry require a comprehensive science-based
evidences, full description of the product, manufacturing and storage methods, the safety
report of the product, compliance with the Good Manufacturing Practice (GMP), ingredient
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warning, pack labelling and notification [108]. In the European Union (EU), regulation
EC1333/2008 on food additives put in place a list of approved food additives that was
published in full in regulation EU 1129/2011 [109]. According to this regulation, natural
preservatives currently approved as food additives in the EU include rosemary, tocopherol-
rich extracts (E 306), γ-tocopherol (E 308), δ-tocopherol (E 309), carotenes (E 160a), and
annatto, bixin and norbixin (E 160b). However, considering meat, specific natural preserva-
tives are approved as food additives. These include rosemary which is to be used only in
dried sausage at maximum level of 100 mg/Kg or 150 mg/Kg in dehydrated meat only and
Carotene to be used in sausage, pâtés and terrines at a maximum level of 20 mg/kg [110].

In the United States, the FDA regulates the dose and type of additives and preser-
vatives allowed in meat and meat products. Natural preservatives with GRAS status
are added in the Food Additive Status list issued by the U.S. Department of Agriculture
(USDA). In the most recent ruling for GRAS preservatives published [111], all future GRAS
reviews would be “self-determinations” of GRAS status by the notifier and encourages the
manufacturer to provide a notification of the GRAS conclusion on the additive used. This
recent ruling for GRAS preservatives has been misinterpreted and is allowing companies
to make their own safety determination on GRAS substances they use without notifying
the FDA [112]. There are two ways a substance can be classified as GRAS, based on: (1)
“scientific procedure” that include human, animal, analytical and scientific studies to es-
tablish the safety of a substance. (2) “common use in food” defined as substantial history
of consumption of a substance for use in food [113]. However, natural preservatives such
as estragole is classified by FDA as a GRAS substance but prohibited as flavoring in the
EU. On the other hand, Codex Alimentarius proposed a maximum carotenoid level of 20
mg/kg in fresh meat, poultry, and game (comminuted), but the United States of America
(USA) does not adopt this proposal in its legislation.

In Australia and New Zealand, the Food Standards Australia New Zealand (FSANZ)
is a bi-national self-governing statutory authority that put in place the food standard code
and plays an important role in ensuring public health, providing suitable information
about food including food additives. “Natural” claims on food products are particularly
convincing to many Australians. However, there are no enforceable food standard regulat-
ing “natural additive” or the use of the term “natural”. This leaves consumers with only
the uncertain protection of the Trade Practice Act of 1974 which forbids food manufacturers
from misleading or deceiving consumers [12].

9. Conclusions

Microbial spoilage and oxidative reactions are the major problems that decrease the
shelf-life of meat and meat products. The food industry extensively uses synthetic food
preservatives to maintain the safety and quality of their products, but due to the potential
health concerns these chemical compounds can cause, consumers are nowadays demanding
for much healthier alternatives. In the food manufacturer communities, the interest of
finding natural preservative to meet consumers requirement is trending. Polyphenolic-
rich plants used as food preservatives offer the best alternative for the replacement of
their synthetic counterparts. The common feature of these phenolic compounds is that
they have one or more aromatic rings with one or more -OH group which are essential
for their antimicrobial and antioxidant properties. Several studies on the application of
polyphenolic-rich plants in comminuted meat reported improvement of the safety and
quality of the finished products. However, the molecular mechanisms of polyphenol
bioactivities are yet to be well understood. Furthermore, the amount of polyphenolic-rich
plant required in the meat system for effective antimicrobial and antioxidant activities are
often so high that these levels are not always organoleptically acceptable. Thus, studies on
evaluating synergistic effects and optimization involving plant-based natural preservative
to advance the knowledge in manufacturing meat products with longer shelf life and free
from synthetic preservatives without compromising sensory attributes. On the aspect of the
regulation of natural food preservatives, differences exist between regulatory bodies such
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as FDA and EU. Hence, harmonization of concepts, definitions, and approval requirements
of food additives as well as food natural preservatives is required so that they are clearer
and can benefit to the food manufacturers, academic institutions, and anyone else with an
interest in food additives.
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