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Abstract: N-acetylcysteine (NAC) is a widely used antioxidant with therapeutic potential. How-
ever, the cancer-promoting effect of NAC observed in some preclinical studies has raised concerns
regarding its clinical use. Reactive oxygen species (ROS) can mediate signaling that results in both
cancer-promoting and cancer-suppressing effects. The beneficial effect of NAC may depend on
whether the type of cancer relies on ROS signaling for its survival and metastasis. Triple-negative
breast cancer (TNBC) has aggressive phenotypes and is currently treated with standard chemother-
apy as the main systemic treatment option. Particularly, basal-like TNBC cells characterized by
inactivated BRCA1 and mutated TP53 produce high ROS levels and rely on ROS signaling for their
survival and malignant progression. In addition, the high ROS levels in TNBC cells can mediate the
interplay between cancer cells and the tissue microenvironment (TME) to trigger the recruitment
and conversion of stromal cells and induce hypoxic responses, thus leading to the creation of cancer-
supportive TMEs and increased cancer aggressiveness. However, NAC treatment effectively reduces
the ROS production and ROS-mediated signaling that contribute to cell survival, metastasis, and
drug resistance in TNBC cells. Therefore, the inclusion of NAC in standard chemotherapy could
probably provide additional benefits for TNBC patients.

Keywords: N-acetylcysteine; triple-negative breast cancer; reactive oxygen species; antioxidant;
tumor microenvironment

1. Introduction

N-acetylcysteine (NAC) is widely used as a medication and a dietary supplement. It
functions as a mucolytic due to its ability to break the disulfide bonds in the glycoproteins
of the mucus, thus resulting in a decrease in viscosity [1]. In addition, NAC is used for the
treatment of acetaminophen overdose because it can restore the depleted glutathione (GSH)
reserves in the hepatocytes during the process of detoxification [2]. Moreover, NAC has
been widely studied for its antioxidant effects [1,3,4]. This antioxidant activity is mainly
attributed to its ability to act as a precursor of cysteine, which is itself a component of the
primary intracellular antioxidant, GSH. Because the availability of cysteine can limit the
rate of GSH synthesis under conditions of oxidative stress, the administration of NAC
can replenish GSH stores [2,4]. By contrast, the direct antioxidant activity of NAC was
thought to be irrelevant because the thiol group has inherently low reactivity toward
oxidants [1]. However, an alternative mechanism has recently been suggested involving
its ability to break the disulfide bonds of the cysteinylated proteins to release free thiols
and regenerate reduced proteins, which can have direct antioxidant activity in certain
cases (e.g., mercaptoalbumin) [1,5]. Another proposed mechanism involves the metabolic
conversion of NAC-derived thiols into hyperactivated thiols (hydropersulfides) that act as
direct oxidant scavengers and/or protective caps for critical protein thiols [6]. Therefore,
NAC is a potent antioxidant due to both its direct antioxidant activity and the supply of a
GHS precursor. Hence, NAC has been recommended for use in treating diseases where
oxidative stress is involved at the onset and/or progression of the disease state [4]. The
therapeutic use of NAC has been reported in several cancers, including breast cancer. For
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example, a pilot study has encouragingly suggested that NAC may be effective as a single
agent in the inhibition of cancer cell proliferation in breast cancer patients [7].

Both the incidence of cancer and the number of cancer-related deaths are rapidly
increasing worldwide, with breast cancer being the most frequently diagnosed. Approxi-
mately 2.1 million women were newly diagnosed with breast cancer in 2018, accounting
for almost one in four cancer cases among women [8]. Due to early detection and effective
treatment, the prognosis of breast cancer is relatively favorable. However, it is estimated
that 627,000 women still died from breast cancer in 2018, which accounts for approximately
15% of all cancer-related deaths among women in that year [8]. Moreover, breast cancer
is a highly heterogeneous disease in which certain types (e.g., triple-negative breast can-
cer) exhibit worse prognosis due to the lack of a targeted therapy [9]. Although NAC is
well-tolerated and available at a low cost, the mechanisms underlying its efficacy in cancer
treatment are complex and unclear. Moreover, NAC has been shown to exhibit cancer-
promoting effects in some cancer types, including lung cancer [10] and melanoma [11],
thus raising concerns regarding the clinical use of NAC.

Antioxidants are generally regarded as cancer-preventive agents because they protect
biomolecules from the detrimental effects of reactive oxygen species (ROS). However,
antioxidants are also thought to protect cancer cells from ROS-induced cell death, thereby
promoting their proliferation and malignancy. Nevertheless, this view may be an over-
simplification of the functions of ROS [12,13]. ROS are known to trigger diverse responses
that range from homeostasis to cell death. Therefore, it is important to define the types of
cancers that rely on ROS for their survival and malignant behavior in order to facilitate the
safe and efficacious use of NAC as a clinical treatment. Moreover, cancer also involves a
complex interplay between the tumor microenvironment (TME) and the cancer cells. In
this context, NAC may act on both the cancer cells and the TME. Hence, an understanding
of the responses of both cancer cells and the TME to both ROS and NAC will be important
for the therapeutic use of NAC. Hence, the present review briefly summarizes the functions
of ROS as signaling molecules in order to discuss their roles in cancer development and
progression. In addition, the current status of antioxidant use in cancer treatment is
examined in order to highlight the importance of the selective use of NAC for specific
types of cancer. Finally, the discussion focuses on those types of cancer that rely on ROS
for cancer cell survival and the creation of a permissive environment that promotes the
progression to malignant cancer. These are the types of cancer that can potentially benefit
from the use of NAC.

2. The Formation and Elimination of ROS

Cellular ROS levels exist in a steady, dynamic equilibrium between their formation via
diverse cellular processes and their elimination via the antioxidant system. As described
in the following paragraphs, ROS are produced during a variety of cellular reactions and
upon exposure to various extraneous agents including toxicants, drugs, and xenobiotics,
or ultraviolet light and other forms of radiation [14]. All of these factors can influence the
intracellular ROS levels. Moreover, complex interactions between multiple cellular sources
of ROS can be involved in the regulation of ROS homeostasis. To appreciate the resulting
dynamic changes in redox states, the various ROS species and their reaction products are
briefly described, along with the major cellular sources of ROS formation.

While the major ROS include the superoxide (•O2
−), hydrogen peroxide (H2O2), and

hydroxyl radicals (•OH) [15], other ROS include reactive nitrogen species (RNS) such as
nitric oxide (NO•), peroxynitrite (ONOO−), and dinitrogen trioxide (N2O3). Among these,
NO• is generated by the family of nitric oxide synthetases [16]. Subsequently, NO· can
undergo autooxidation to form N2O3 and react with •O2

− to form ONOO− [17]. Indi-
vidual ROS have distinct characteristics regarding their half-lives, localization, inherent
chemical properties that confer reactivity to various biological targets, and elimination
by antioxidant enzymes [18]. Although NO• is relatively inert, its derivative, ONOO−

is a powerful oxidant that can damage many biological molecules [19]. The •O2
− is also
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highly reactive but short-lived. The •O2
− generated within cells is rapidly converted

into H2O2 by local superoxide dismutases (SODs) [20,21]. By comparison, H2O2 is more
stable than •O2

− but can be reduced to water in a reaction catalyzed by catalase (CAT) or
glutathione peroxidase (GPX) [22]. The reaction involving GPX requires the oxidation of
GSH to glutathione disulfide, which is subsequently reduced back to GSH by glutathione
reductase, thioredoxin, and glutaredoxin [23,24]. Thus, the cell contains an enzyme sys-
tem for preventing the build-up of H2O2 and maintaining a steady-state concentration
(1–10 nM) [25].

Nevertheless, the presence of trace metals can catalyze the formation of the extremely
reactive •OH from H2O2 via the Fenton reaction. This •OH cannot be eliminated enzy-
matically and can lead to cellular damage or genomic instability due to the indiscriminate
oxidation of nearby lipids, proteins, and DNA [18,26]. In particular, ROS such as •OH and
ONOO− can oxidize nucleic acid bases or the deoxyribose backbone to potentially form
oxidation products, strand breaks, and DNA-protein crosslinks [27]. The ONOO− reacts pri-
marily with deoxyguanosine to cause modifications such as 8-oxo-2’-deoxyguanosine and
8-nitro-2’-deoxyguanosine [17]. In addition, ROS can modify protein structure and function
via the nitration of tyrosine residues and the oxidation of critical cysteine residues [28].
Further, ROS can initiate lipid peroxidation via the formation of the fatty acid radical,
which is highly unstable and readily reacts with molecular oxygen to produce the lipid
peroxyl radical (LOO•). This unstable radical species reacts in turn with another free fatty
acid to produce a different fatty acid radical and a lipid peroxide (LOOH) [29]. Thus, a free
radical chain reaction generates lipid peroxides that can be decomposed to form reactive
lipid electrophiles such as 4-hydroxy-2-nonenal (HNE). These breakdown products (e.g.,
HNE) can form covalent adducts with nucleophilic functional groups in proteins, nucleic
acids and membrane lipids [29,30]. Moreover, their prolonged half-lives may allow them to
serve as second-messengers of oxidative stress [31]. Therefore, ROS can react with cellular
macromolecules and lead to biological and pathological effects. However, it should be also
noted that the functional significance of many ROS reaction products in vivo still needs to
be validated and is under active study [17].

ROS are generated in multiple cellular organelles including mitochondria, peroxi-
somes, the endoplasmic reticulum (ER), and the plasma membrane. A major source of
ROS is the mitochondrial respiratory chain, a normal metabolic process that converts
the energy stored in macronutrients into adenosine triphosphate [26]. During mitochon-
drial respiration, electrons are transferred from electron donors to electron acceptors via
oxidation-reduction reactions. The last electron acceptor in this chain is an oxygen molecule,
which is normally reduced to water. However, a small fraction of the consumed molecular
oxygen undergoes incomplete reduction, leading to •O2

− formation [15].
Peroxisomes play a central role in various metabolic pathways including fatty acid

oxidation, anaplerotic reactions, ether phospholipid synthesis, and hydrogen peroxide
metabolism [32]. Many enzymes involved in these metabolic pathways produce specific
ROS or RNS during their normal catalysis [33]. Peroxisomes also contain catalase and other
antioxidant enzymes that effectively eliminate ROS [33]. Therefore, peroxisomes have the
ability to rapidly produce and decompose ROS, thus allowing dynamic changes in ROS
levels. Furthermore, peroxisomes and the mitochondria are metabolically interconnected
and intimately related in redox regulation [34,35].

ROS are also produced in the ER during the metabolism of xenobiotics, the synthesis
of unsaturated fatty acids, and protein folding [36]. A major source of ROS in the ER is
oxidative protein folding that involves intramolecular and intermolecular disulfide bond
formation [37]. For example, protein disulfide isomerase (PDI) is an ER oxidoreductase
that catalyzes oxidative folding of protein. During disulfide bond formation, cysteine
residues in the active sites of PDI accept two electrons from the cysteine thiol groups
of nascent polypeptide substrates, leading to the reduction of PDI and oxidation of the
substrate [38]. Subsequently, PDI can be regenerated in its oxidized form by the transfer
of electrons to ER oxidoreductin 1 (Ero1), a flavin adenine dinucleotide (FAD)-binding
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protein [37]. After accepting electrons from PDI, Ero1 is re-oxidized by the transfer of
electrons to molecular oxygen, but incomplete reduction results in the production of •O2

−,
which can be converted to H2O2 or other ROS [39,40].

In addition, NADPH oxidases (NOXs), a group of transmembrane proteins found
in the plasma membrane, are recognized as major sources of cellular ROS [41]. Seven
types of NOX are found in humans [42]. ROS production by NOXs is well recognized
as a host defense function [43]. In addition to phagocytic cells, NOXs are expressed in
non-phagocytic cells in a wide variety of tissues, albeit at much lower levels [44]. However,
NOX activity becomes rapidly activated upon their assembly in membranes in response
to various ligands such as cytokines, hormones, and growth factors [24,42]. The NOXs
transfer electrons sequentially from cytosolic NADPH to FAD, then to each of two hemes,
and finally to molecular oxygen on the opposite side of the cell membrane, thus producing
•O2

− (NOX1–3 and NOX5) or H2O2 (NOX4 and dual oxidase 1–2) [41,42]. Several NOXs
(e.g., NOX4) are also located in the ER membrane, where they catalyze the generation of
ROS [45]. Therefore, a variety of ROS are produced from multiple cellular sources which
cumulatively contribute to the physiological or pathological effects of ROS.

3. The Function of ROS as Signaling Molecules

In addition to pathophysiological responses, ROS-mediated signal transduction plays
a role in various basal and adaptive physiological responses for organismal homeosta-
sis [14]. Compared to other ROS molecules, H2O2 is relatively stable and has both reducing
and oxidizing properties, making it a central redox signaling molecule [46]. Protein modifi-
cation by H2O2 yields instrumental signaling intermediates and is specific to certain target
proteins [20]. The best-studied mechanism by which H2O2 achieves specificity in signaling
mediation occurs via the oxidation of cysteine (Cys) residues on target proteins [20,47]. At
physiological pH, Cys residues exist in the form of thiolate anions (Cys-S−), which are
more susceptible to oxidation than the protonated cysteine thiol (Cys-SH) [46]. The thiolate
anion can be oxidized to the sulfenic form (Cys-SOH) by H2O2, leading to functional
changes in target proteins. The sulfenic form can be reduced back to the thiolate anion by
disulfide reductases such as thioredoxin and glutaredoxin to restore function [48]. Hence,
a steady-state physiological flux of H2O2 (in the nM range) toward specific target proteins
leads to reversible oxidation, thereby serving as a reversible signal transduction mechanism
that results in the alteration of protein activity, localization, and interaction with other
biomolecules [47]. However, persistence of the H2O2-mediated sulfenic form can lead to
further oxidation to sulfinic (SO2H) or sulfonic (SO3H) forms. Unlike the sulfenic modifi-
cations, the formation of sulfinic and sulfonic species can be irreversible, thus leading to
permanent protein damage [49]. The •O2

− has also been found to interact directly with
specific intracellular targets and trigger signal transduction through the inactivation of
specific proteins that are sensitive to •O2

− levels although it has poor reactivity due to a
short half-life [50].

This ROS-mediated signaling can be physically and functionally compartmentalized
within the cell [51]. For example, NOXs localize in specific subcellular compartments [42].
Their ROS production is activated by various ligands, and the resulting ROS serve to
modulate proximate redox-sensitive targets in intracellular signaling pathways. In addition,
antioxidant enzymes are localized in specific cellular locations. Both ROS production and
elimination by antioxidant enzymes occur at specific sites in cells and are associated with
specific stimuli. This spatial and temporal organization of ROS production and removal can
determine the outcomes of ROS signaling [51]. However, ROS are also believed to rapidly
diffuse across membranes via certain aquaporins (AQPs) or other specific channels [52,53].
Therefore, ROS generated in one compartment can trigger responses in another [54]. For
example, ROS produced by mitochondria facilitate disulfide formation in cell surface
proteins, which may regulate protein function [55]. In addition, peroxisome-derived H2O2
could oxidize redox-sensitive cysteine residues in multiple proteins including the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB) and phosphatase and tensin
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homolog (PTEN) within as well as outside peroxisomes [56]. The production of peroxisomal
ROS could also trigger mitochondrial apoptosis pathways [35]. Thus, ROS readily cross
peroxisomal and mitochondrial membranes and can mediate signaling both within and
outside the compartments in which they originate.

In addition, ROS produced in one cell can affect neighboring cells. For instance, H2O2
diffuses through the AQP family, in a similar fashion to water [53]. By diffusing through
these channels, H2O2 acts as a signaling molecule not only in an autocrine, but also in a
paracrine fashion. Notably, H2O2 produced in myofibroblasts induces cell death in adjacent
lung epithelial cells [57]. Upon co-culture with fibroblasts derived from psoriatic plaque
lesions, the intracellular accumulation of ROS and the activation of ERK have been shown
to result in the proliferation of keratinocyte [58]. The same study further revealed that
ROS over-produced by NOX4 of the fibroblasts in psoriatic plaques act as mitogens for
keratinocytes. Thus, intercellular signaling has been demonstrated between H2O2 donor
and recipient cells. The •O2

− has a short lifetime due to rapid conversion to H2O2 and
cannot diffuse across biological membranes due to its negative charge. Nevertheless, •O2

−

has been shown to initiate intracellular signaling by its passage through anion channels in
the cell membrane [59]. Thus, ROS generated in one cell can stimulate redox signaling in
adjacent cells.

4. The Effect of Antioxidant Supplementation upon Cancer Development and
Progression

Excessive ROS can react with biomolecules including DNA, which is considered
to be a possible cause for the increase in oncogenic mutations and the development of
cancer [60]. This notion led to the expectation that dietary antioxidants might effectively
prevent cancer development and has been a theoretical basis and explanation for the cancer-
preventive effects of various antioxidant-rich plant foods observed in epidemiological
studies. However, cancer-promoting effects have also been observed for antioxidants in
some preclinical studies [10,11]. For example, supplementation with NAC or vitamin E
after the development of cancer was found to increase cancer progression and reduce
survival in mouse models of both BRAF- and KRAS-induced lung cancer [10]. Similarly, the
oral administration of NAC after small nevi formation was shown to increase lymph node
metastases without affecting the number and size of the primary tumors in a transgenic
mouse model of melanoma [11]. These cancer-promoting effects of dietary antioxidants
have resulted in a change in the perspective on the role of antioxidants in cancer. While
antioxidants do prevent ROS-mediated cellular damage, they also protect cancer cells from
ROS-mediated death. Therefore, antioxidants can effectively prevent cancer initiation, but
can promote the growth of established cancers.

Although the cancer preventive effect of dietary antioxidants has been demonstrated
in some studies [61,62], their use has also been shown to be ineffective in decreasing the
incidence of cancer [63,64]. Moreover, some antioxidants were found to increase the risk of
cancer. For instance, a large phase III randomized placebo-controlled trial demonstrated
that dietary supplementation with vitamin E for over 7 years significantly increased the
risk of prostate cancer [65]. In addition, some preclinical studies have indicated that supple-
mentation with antioxidants can increase the risk of cancer development [66,67]. Chronic
NAC treatment was shown to increase cancer initiation both under abnormal conditions
associated with lung oxidative stress (JunD deletion) and during normal aging in mice [66].
In this study, although NAC treatment decreased oxidative stress and cell senescence in
the lungs, this led to increased cancer initiation. In addition, GSH synthesis driven by the
glutamate cysteine ligase modifier subunit (GCLM) was shown to be necessary for cancer
initiation in a transgenic mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT)
mouse model of breast cancer [67]. In contrast, genetic loss of Gclm significantly delayed
the onset of mammary tumor and reduced the mammary tumor burden [67]. The same
study further demonstrated that the mammary tumor burden was dramatically reduced
by treatment with buthionine sulfoximine (BSO), a potent inhibitor of GSH synthesis, prior
to the onset of cancer development, but not upon the onset of mammary tumor growth,
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thus suggesting the need for GSH in breast cancer development. These results mitigate
against the use of antioxidants for the prevention of cancer and reveal an inconsistency in
the anticipated beneficial effects of antioxidants in cancer initiation.

Contradictory results have also been obtained with respect to the use of antioxidants
in cancer progression. In a melanoma mouse model, cancer cells in metastatic sites (blood
and viscera) had higher ROS levels than those in primary sites [68]. This high oxidative
stress in metastatic cells was found to suppress distant metastasis, and treatment with
an antioxidant (NAC, 200 mg/kg/day) increased the frequency of metastasis without
significantly affecting the growth of established primary tumors [68]. However, in another
study, the increased ROS levels in highly metastatic cells activated v-Src avian sarcoma
(Schimidt-Ruppin A-2) viral oncogene homolog (Src), which led to increased cell migration
and metastases. In contrast, mitochondrial superoxide scavenging by rotenone was shown
to prevent ROS-mediated Src activation and consequently inhibit both the migration of
cancer cells in vitro and spontaneous cancer metastasis in mouse xenograft models using
melanoma and breast cancer cell lines [69]. Thus, the roles of ROS and antioxidants in
cancer progression cannot be generalized.

A recent study has clearly demonstrated a change in ROS effects depending on the
stage of the cancer. Suppressing ROS production during high expression of the antioxidant
TP53-inducible glycolysis and apoptosis regulator (TIGAR) promoted premalignant cancer
initiation, but limited metastasis in a pancreatic ductal adenocarcinoma (PDAC) model [12].
In contrast, increased ROS production following the loss of TIGAR in PDAC cells drove
a phenotype switch that increased invasive and metastatic capacity [12]. However, this
might be related to a particular scenario where ROS production was under the control of
TIGAR, whose expression changed during the progression of cancer. Overall, the role of
ROS (or antioxidants) is inconsistent, both in cancer initiation and progression, and their
effects cannot be generalized on the basis of the cancer stage.

Cellular ROS can mediate cancer-promoting signaling and, thus, facilitate cancer
cell proliferation and survival. For example, membrane-associated ROS generated via
NOXs (e.g., NOX4) are important contributors to the activation of signaling pathways that
drive proliferation and metastasis of cancer cells [70]. Mitochondrial ROS have also been
shown to be necessary for KRAS-induced cancer development [71]. In contrast, ROS can
induce cellular senescence and cell death, thereby acting as cancer-suppressing agents.
Furthermore, cancer cells are believed to produce higher levels of ROS and hence, rely more
on antioxidant activity to reduce their ROS burden than do non-cancerous cells [72]. Due
to the potentially higher sensitivity of cancer cells to ROS-mediated cell death compared to
normal cells, exogenous ROS generation has been proposed as a therapy for selectively
killing cancer cells without affecting normal cells [73]. Therefore, ROS are considered to be
a double-edged sword in cancer development and cancer treatment [74]. Consequently,
treatment with antioxidants including NAC can be beneficial or detrimental in cancer
management.

5. The Therapeutic Potetial of NAC in TNBC

Breast cancer is a heterogeneous disease [75,76], and this diversity is attributed to
distinct genetic, epigenetic, and transcriptomic changes [77,78]. Molecular characteris-
tics based on gene expression data led to the classification of the following molecular
breast cancer subtypes: luminal A, luminal B, HER2 over-expression, and basal-like breast
cancer [79,80]. These molecular subtypes are relatively well represented by their estro-
gen receptor (ER), progesterone receptor (PR), and human epidermal growth receptor 2
(HER2) statuses, which can be identified by immunohistochemistry. As such, luminal A
is ER- and/or PR-positive and HER2-negative; luminal B is ER- and/or PR-positive and
either HER2-positive or -negative; and HER2 over-expression or amplification is hormone
receptor-negative and HER2-positive [78]. Basal-like cancers constitute an extremely het-
erogeneous group, and the majority (80%) of this type, which lack of ER, PR, and HER2
expression, are referred to as triple-negative breast cancers (TNBCs) [81,82].



Antioxidants 2021, 10, 169 7 of 22

The above breast cancer classification scheme provides guidance for patient treat-
ment [83]. For example, luminal types depend on estrogen for their growth and can be
treated with drugs to reduce either the estrogen action (e.g., tamoxifen) or the actual level
of estrogen (e.g., letrozole) [83]. Breast cancer with HER2 amplification can be effectively
treated with humanized anti-HER2 monoclonal antibodies or small molecule kinase in-
hibitors (e.g., trastuzumab) [84]. However, no molecular-based targeted therapy is available
for TNBCs [9]. Thus, breast cancer is comprised of various subtypes associated with distinct
molecular characteristics and treatment responses. Moreover, the content and reliance of
cancer cells on ROS for their survival and progression may vary among the various cancer
types. For some cancers, high levels of ROS may be necessary to support their growth and
malignant behavior, whereas other cancers may be more effectively treated by induction
of ROS-mediated death [72,85]. In addition, the development and progression of a cancer
toward the malignant phenotype is known to be highly dependent on interactions with the
TME [86–89]. The ROS can mediate TME-induced signal transduction to promote cancer
progression [90]. High ROS levels derived from cancer cells may also result in the creation
of a permissive TME by altering adjacent stromal cells to acquire cancer-associated phe-
notypes and by recruiting immune cells [91–93]. Therefore, breast cancers with high ROS
production in either the cancer cells or the TME would benefit from a safe and efficacious
NAC treatment that is tailored toward the specific cancer type.

5.1. The Dependence on ROS for the Survival and Malignant Progression in TNBC

Otto Warburg was the first to describe a propensity for cancer cells to metabolize
glucose anaerobically even in the presence of oxygen (the Warburg effect), and suggested an
explanation for this abnormal glucose metabolism in terms of impaired bioenergetic activity
of the mitochondria [94]. This led to the belief that oxidative phosphorylation (OXPHOS)
is downregulated in cancer cells [95]. However, accumulating evidence suggests that
aerobic glycolysis does not predict the loss of oxidative metabolism [96], and impairment
of mitochondrial metabolism cannot be generalized across all cancers [97,98]. Moreover,
increased OXPHOS and mitochondrial mass have been linked to the invasive and migratory
potential of cancer cells [99].

As noted above, TNBC comprises a very heterogeneous subgroup of cancers that
accounts for 10–20% of all breast cancers [100,101]. Moreover, due to a lack of effective
treatment options, TNBC is often associated with an aggressive phenotype and worse
disease-specific outcomes than other breast cancer subtypes [102,103]. Significantly, one of
the mechanisms that promote cell survival and drive aggressiveness in TNBC has been
linked to high levels of ROS production resulting from gene mutations, gene expression
changes and the attainment of stem cell-like properties [91,104,105]. This high ROS content
induces multiple signaling which, in turn, leads to highly proliferative, migratory, and
drug-resistant phenotypes in TNBC (Figure 1).
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Figure 1. The dependence of triple-negative breast cancers (TNBCs) on reactive oxygen species (ROS) signaling for their
survival and malignant progression. Basal-like TNBC is related to the BRCA1 mutation/inactivation and TP53 mutation. This
oncogenic dysregulation induces metabolic changes and oxidant-antioxidant imbalances that lead to high ROS production,
which may be necessary for the survival and proliferation of TNBC cells. In addition, TNBC cells may further undergo
gene expression changes (i.e., MsrA loss and BLT2 amplification) that increase ROS production via NOX activity, which
then modulates signaling that promote cell survival and invasion. High ROS levels also stabilize gene expression (e.g.,
MMP-9) related to the metastatic phenotype. Moreover, the high drug-resistant and metastatic properties of TNBC are often
related to an increase in the cancer stem-like cell (CSC) fraction (i.e., overexpression of c-MYC and MCL1) that produces high
amounts of ROS via high oxidative phosphorylation (OXPHOS). This ROS-mediated signaling leads to TNBC progression,
but is effectively attenuated by N-acetylcysteine (NAC) treatment, thereby reducing the survival and metastasis of TNBC
cells.

5.1.1. High ROS Production Derived from BRCA1 Inactivation and TP53 Mutation in
TNBC

High ROS production contributes to cancer cell survival and growth, particularly
in basal-like TNBC [106]. Basal-like TNBC tumor samples from the Cancer Genome
Atlas dataset exhibit distinctly different mitochondrial gene expression, thus suggesting
differences in mitochondrial function in this subtype of breast cancer [106]. Basal-like
TNBC cell lines (MDA-MB-231, MDA-MB-468, and BT-549) contain higher ROS levels than
luminal (MCF-7) or non-cancerous (MCF-10A) cell lines, the majority of which are located
in the mitochondria [106]. Treatment with NAC (15 or 30 mM) has been shown to induce
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cell death in TNBC cell lines but not in luminal cells, thus indicating the dependence of
basal-like TNBC cells on high levels of ROS for their survival and proliferation [106]. In
addition, increased ROS level have been found necessary for the migratory and invasive
properties of MDA-MB-231 cells [99]. Elevated levels of mitochondrial DNA have been
detected in circulating cancer cells from mice with tumors derived from orthotopically
implanted MDA-MB-231 cells compared to primary tumors [99]. This high DNA content
in metastatic cancer cells was attributed to high mitochondrial biogenesis and OXPHOS
due to high expression of peroxisome proliferator-activated receptor gamma coactivator
1-α. The perturbation of mitochondrial respiratory function in breast cancer cells has
also been shown to result in ROS generation [107]. This increased ROS was shown to
promote breast cancer cell motility via a pathway mediated by activator protein-1 and
C-X-C motif chemokine ligand (CXCL) 14, while pretreatment with NAC (5 µM) was
shown to effectively inhibit this ROS-induced cell motility [107]. Thus, metabolic alteration
induced by changes in mitochondrial function in basal-like TNBC cells accumulates high
ROS levels that contribute to high proliferative and metastatic properties.

The inactivation of breast cancer susceptibility gene 1 (BRCA1) may also be related
to high ROS content in basal-like TNBC. BRCA1 dysfunction is regarded as a drivers of
basal-like breast cancer as well as a subgroup of TNBC [77,100,108]. Although BRCA1
is infrequently mutated in sporadic TNBC, low expression or inactivation of BRCA1
may occur in wild-type TNBC due to epigenetic gene silencing, miRNA-mediated post-
transcriptional suppression, and other nongenetic alterations [109–111]. In addition to its
established function as a tumor suppressor, BRCA1 has been shown to regulate oxidative
stress [112]. The overexpression of wild type, but not the cancer-associated mutant form,
of BRCA1 was shown to significantly reduce the cellular levels of ROS and protein damage
caused by H2O2, whereas the knockdown of BRCA1 increased the ROS levels in MCF-7
and MCF-10A cells [113]. Thus, the protective role of BRCA1 against oxidative stress,
in combination with the oxidative DNA-damaging ability of estrogen metabolites, may
partially explain the specificity of BRCA1- and BRCA2-mutant cancers in the breast and
ovary, where estrogen levels are relatively high [114]. This has been further demonstrated
in a mouse mammary tumor model with specific knock-out of Brca1 in the mammary
gland [115]. The DNA double-strand breaks induced by oxidative estrogen metabolites
could not be repaired without Brca1, thus resulting in genomic instability and cancer
development. By contrast, antioxidant treatment (4-hydroxy-2,2,6,6-tetrametylpeperidine-
N-oxyl, tempol) suppressed the levels of estrogen-induced oxidative DNA lesions, and
significantly delayed the onset of Brca1-deficiency-induced cancer development [115].
Thus, increased ROS levels in basal-like subtypes of TNBCs may be associated with BRCA1
mutation/inactivation and may be essential for the survival of this type of cancer.

In addition, TNBC exhibits high levels of genomic instability, with TP53 being the most
frequently mutated somatic gene (over 80%) [91,100,108]. The TP53 gene regulates cellular
ROS levels by either controlling the expression of antioxidant and prooxidant genes or by
modulating the metabolic pathways [116,117]. Cancer cells containing mutant TP53 have
been shown to exhibit increased mitochondrial biogenesis and OXPHOS, which resulted
in increased metastasis [118]. Moreover, low p53 levels result in decreased transcription
of antioxidant genes (e.g., Mn-SOD and GPX1), whereas high levels induce an imbalance
of antioxidant gene transcription (i.e., upregulation of Mn-SOD and GPX, but not of CAT)
and transactivation of prooxidant genes (e.g., p53 upregulated modulator of apoptosis and
p53-induced gene). Thus, TP53 mutation is associated with high cellular ROS levels due to
an imbalance in the antioxidant defense [119,120]. Therefore, the BRCA1 inactivation and
TP53 mutation that often observed in TNBC may contribute to a significant ROS content in
these cells. Hence, the effective removal of ROS in TNBC by NAC treatment can suppress
ROS signaling that leads to malignant progression of this type of cancer. Notably, TP53
mutation is also prevalent in other types of cancer, including ovarian and esophageal
cancer [121,122]. This suggests that survival and proliferation of these cancer cell types are
ROS-dependent and that NAC treatment is of potential benefit in such cancers.
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5.1.2. High ROS Production Derived from Gene Expression Changes in TNBC

The enzymatic action of NOXs also leads to ROS production (Section 2), and gene
expression changes that induce high NOX-related ROS generation have also been ob-
served in TNBC [123,124]. These NOX-derived ROS have been shown to contribute to
cell proliferation, survival, and invasive behavior in TNBC. For instance, the leukotriene
B4 receptor 2 (BLT2) is highly expressed in breast cancer tissues at both the mRNA and
protein levels [123]. Activation of BLT2 triggers signaling pathways that promote the
survival, metastasis, and adhesion of cells, and its high expression is associated with a
worsened prognosis in TNBC patients [125]. Moreover, the scavenging of NOX1-related
BLT2-mediated ROS by NAC treatment (5 mM) was shown to effectively induce cell
apoptosis in the MDA-MB-468 TNBC cell line [123].

In addition, down-regulation of the ROS scavenger methionine sulfoxide reductase A
(MsrA), has been associated with advanced cancer in human breast cancer tissues, and
the same study indicated that increased ROS production by MsrA knockout in a TNBC
cell line (MDA-MB-231) led to a more aggressive phenotype in both 3D-culture and tumor
xenograft models [126]. Both the mitochondria and the NOX system were involved in ROS
hyperproduction due to loss of MsrA, which led to decreased PTEN expression, activation
of the phosphoinositide-3-kinase pathway, and increased vascular endothelial growth
factor (VEGF) production [126].

High NOX4 expression has also been shown to increase mitochondria-associated ROS
levels, thus resulting in the stabilization of matrix metalloproteinase-9 (MMP-9) mRNA [124].
This high MMP-9 expression significantly contributed to cancer metastasis and was linked
with invasive properties of MDA-MB-231 cells [124]. In addition, cell adhesion and migra-
tion are largely dependent on the binding of integrin to extracellular matrices [127]. High
β1 integrin expression has been correlated with low survival rates and advanced metastatic
status in TNBC [128]. Studies have implicated the involvement of NOX complexes in
integrin-mediated ROS production [127,129]. For instance, the binding of integrin α2β1 to
type IV collagen in a human adenocarcinoma cell line was shown to result in the activation
of NOX1 [130]. Integrin engagement activates ROS production via NOX1, which causes
cancer cells including MDA-MD-231 cells to escape anoikis and survive [131]. Moreover,
enhanced adhesion of MDA-MB-231 cells to proteins of extracellular matrices after radi-
ation therapy has been observed and correlated with high ROS production and surface
expression of active β1 integrin [132]. The same study demonstrated that treatment with
NAC (10 mM) could inhibit this radiation therapy-induced cell adhesion. These results
demonstrate that gene expression changes leading to high NOX-related ROS generation
increase cell survival and induce invasive and metastatic phenotypes in TNBC, and that
the reduction of ROS via NAC treatment can suppress the invasive and migratory behavior
of TNBC cells.

5.1.3. High ROS Production by Cancer Stem-Like Cells in TNBC

Tumors contain phenotypically and functionally heterogeneous cancer cell popu-
lations. Consequently, the development of drug resistance and a metastatic phenotype
in TNBC may be related to the presence of rare type of cancer cell referred to as cancer
stem-like cells (CSCs) or tumor-initiating cells. These produce high amounts of ROS via
mitochondrial OXPHOS and demonstrate self-renewal capability and aggressive charac-
teristics such as high levels of metastasis, a tendency towards relapse after treatment, and
resistance to chemotherapy [133–135].

Following chemotherapy, c-MYC and induced myeloid leukemia cell differentiation pro-
tein (MCL1) are frequently found to be co-overexpressed in chemotherapy-resistant hu-
man TNBC tissues as well as CSCs derived from TNBC cell lines (MDA-MB-436 and
SUM159PT) [133]. Both c-MYC and MCL1 have been found to additively increase mito-
chondrial OXPHOS and to dramatically elevate ROS production, thus contributing to the
maintenance of CSCs and the stabilization of hypoxia-inducible factor-1α (HIF-1α) [133]
(Section 5.2.3). During chemotherapy, TNBC cells activate OXPHOS to induce hypoxia
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pathways associated with drug resistance; thus, scavenging ROS may decrease ROS over-
load and prevent the development of the hypoxic phenotype as well as drug resistance.
The dependence of CSC maintenance upon ROS is further demonstrated by the effective
treatment of CSCs within TNBC cell lines using a re-engineered CAT [136].

In addition, c-MYC has been shown to drive the dysregulation of fatty acid β-oxidation
(FAO), and TNBC cells that over-express c-MYC have been shown to exhibit bioenergetic
reliance upon FAO [137]. Functional mitochondria are crucial for the maintenance of
stemness, and CSCs also rely on mitochondrial OXPHOS for their survival in other cancer
types, including liver and head and neck cancer [138,139]. Furthermore, elevated FAO-
catalyzed mitochondrial ROS production in CSCs has been reported to promote cancer
metastasis [135]. Therefore, drug treatment can induce the acquisition of CSC properties in
TNBC and, thus, contribute to metabolic changes, ROS-dependence in stemness, and drug
resistance. This, in turn, suggests that NAC treatment can effectively target the stem cell
subpopulation in TNBC.

5.2. The Interplay between Cancer Cells and the Tumor Microenvironment via ROS

A high ROS content in cancer cells can be transferred to the surrounding TME in
a constant interaction that greatly influences cancer progression. For example, BRCA1
mutations induce oxidative stress in the TME [140], and a high ROS content can arise from
high expression and/or activation of NOXs, or from a deficiency of antioxidant enzymes
such as GPX, in the stromal cells [141,142]. Regardless of the source, high levels of ROS
actively contribute to interaction between cancer cells and the TME, thus leading to more
permissive microenvironment toward highly proliferative, metastatic, and drug-resistant
properties of cancer (Figure 2).
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Figure 2. The involvement of reactive oxygen species (ROS) in the interplay between cancer cells and the tumor microenvi-
ronment (TME). The ROS-triggered signaling actively involves in interaction between cancer cell and the TME in TNBC.
These ROS-mediated interactions induce the recruitment of immune cells, conversion of stromal cells into cancer-associated
phenotypes (e.g., myofibroblastic transition, metabolic changes, and immunosuppression), and hypoxic responses (e.g.,
metastases, inflammation, and cancer stem-like cell (CSC) enrichment), thereby creating permissive TMEs and promot-
ing malignant progression of cancer. N-acetylcysteine (NAC) treatment can effectively interfere with cancer cell-TME
interactions by suppressing the ROS signaling that mediates the invasive, drug-resistant, metastatic properties of TNBC
cells.
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5.2.1. Conversion to the Cancer-Associated Fibroblast Phenotype via ROS

Cancer-associated fibroblasts (CAFs) are a main component of the TME and actively
contribute to cancer growth and malignancy by secreting various growth factors and
chemokines [87,143–145]. The CAFs are known to exhibit a myofibroblast phenotype, and
the abundance of stromal myofibroblasts that express α-smooth muscle actin (α-SMA) has
been shown to predict poorer overall survival rates in various types of cancer, including
breast cancer [146–149]. Although the origin of CAFs remains controversial, they are
considered to be largely derived from the activation of resident fibroblasts [145]. In this
respect, ROS play fundamental roles in the activation and conversion of fibroblasts into
CAFs [141,146,150,151]. Specifically, ROS have been shown to promote the conversion of
fibroblasts into myofibroblasts through the up-regulation of HIF-1α and CXCL12, an effect
that was reduced by long-term NAC treatment (0.5 mM for 20 days) [151]. In addition, the
conversion of fibroblasts into fibrotic myofibroblasts via NOX-4-dependent ROS production
in association with transforming growth factor TGF-β1 (TGF-β1) has been suppressed by
treatment with NAC (5 mM), either before or after treatment with TGF-β1 [141,146,150,152].

In addition to inducing myofibroblast transition, the large amounts of ROS produced
by cancer cells induces metabolic changes in the neighboring fibroblasts [153,154]. In an
in vitro co-culture model, ROS derived from cancer cells (MCF-7 cells) induced autophagy
in fibroblasts and consequently reduced the expression of Caveolin-1 (Cav-1), which led to
the development of myofibroblast characteristics (i.e., upregulation of α-SMA, calponin, and
vimentin) [153–155]. Under these co-culture conditions, Cav-1 in fibroblasts was targeted to
the lysosome for its autophagic degradation in response to high ROS levels, which could be
prevented by treatment with NAC or with an autophagy inhibitor (chloroquine) [92,155].
The metabolic switch between cancer cells and fibroblasts also involves ROS. For instance,
H2O2 secreted by cancer cells causes oxidative stress in adjacent fibroblasts, which leads to
decreased mitochondrial activity and increased glucose uptake, thus creating a dependence
on aerobic glycolysis in fibroblasts [153]. In contrast, an enhancement in mitochondrial
activity has been observed in cancer cells (e.g., MDA-MB-231 and MCF7 cells) during
co-culture [153]. Similarly, in a xenograft mouse model where MDA-MB-231 breast cancer
cells were co-injected with wild-type or Cav-1-deficient fibroblasts, the Cav-1-deficient
fibroblasts led to enhanced glycolytic enzyme synthesis to provide energy-rich metabolites
(e.g., lactate), thus increasing cancer growth and angiogenesis [156]. Hence, Cav1-deficient
CAFs, induced by high ROS levels, exhibit a shift towards aerobic glycolysis.

Notably, a loss of stromal Cav-1 expression is a strong predictor of poor clinical
outcome in TNBC and basal-like breast cancers [157]. The BRCA1 mutation in breast
cancer cells has been shown to significantly increase ROS levels in adjacent fibroblasts,
thus leading to decreased Cav-1 expression and increased expression of monocarboxylate
transporter 4 (MCT4), which is the main exporter of L-lactate from cells [140]. These
changes were reversed by both wild-type BRCA1 and NAC treatment. Furthermore,
Cav-1 has been shown to be a negative regulator of NOX proteins, such that reduced
Cav-1 expression leads to increased NOX expression and, hence, a further increase in ROS
production [158]. Taken together, the results described in this section indicate that the
large quantities of ROS produced by cancer cells lead to myofibroblastic transition and a
dependence on aerobic glycolysis in neighboring stromal fibroblasts, thus providing an
energy-rich cancer-promoting microenvironment.

5.2.2. Conversion to Tumor-associated Macrophage Phenotype via ROS

In addition to CAFs, breast TMEs include tumor-associated macrophages (TAMs).
These are a critical component of the TME and greatly influence cancer progression and
the therapeutic response [159]. High ROS levels derived from cancer cells contribute to the
recruitment of macrophages into the TME and to their conversion to a more permissive
macrophage phenotype [91,105]. For instance, ROS were shown to increase the activation
of aryl hydrocarbon receptor (AhR), thus leading to increased transcription of antioxidant
enzymes and epidermal growth factor receptor (EGFR) ligand (amphiregulin) in malignant
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mammary cells [91]. In this study, AhR and amphiregulin were shown to regulate the
production of chemokines (e.g., granulocyte colony-stimulating factor, CXCL1, CXCL2,
and C-C motif chemokine ligand 5) to attract monocytes into the TME in a BRCA1-deleted
mouse mammary tumor model. Notably, the expression of these chemokines and the
infiltration of monocyte lineage cells were also correlated with the ROS levels in BRCA1
mutation-associated human breast cancer tissues in the same study. These results are
further supported by those of another study in which continuous treatment with an ROS
inhibitor (butylated hydroxyanisole, BHA) efficiently blocked the recruitment of monocytes
into the TME and improved the prognostic values in various transgenic mouse models,
including MMTV-PyMT-induced breast cancer models [93].

Cancer immune escape refers to the avoidance of immune control of cancer growth and
spread and is considered an important strategy for cancer survival and development [160].
The programmed death ligand-1 (PD-L1) signaling pathway is an important component
of cancer immune escape [160,161]. Antioxidant depletion or the generation of ROS by
treatment with BSO or paclitaxel has been shown to positively regulate mRNA and protein
levels of PD-L1 in both human and mouse macrophages in vitro [105]. These PD-L1-
expressing macrophages have immunosuppressive and angiogenic properties due to the
production of immunosuppressive cytokines (e.g., interleukin (IL)-4, IL-10, and IL-17) and
VEGF, respectively [105]. In this study, the administration of paclitaxel for the treatment
of the spontaneous-TNBC analogue BRCA1/p53-deleted mouse model mammary tumors
induced PD-L1 expression in the TAMs, thus leading to an immunosuppressive TME.
NF-κB signaling in response to ROS accumulation mediated the promotion of PD-L1
transcription and the release of immunosuppressive chemokines. In another study, NOX-
mediated ROS generation was shown to play a critical role in macrophage differentiation
into immunosuppressive M2 macrophages, whereas inhibition of ROS by BHA treatment
specifically blocked the differentiation into M2, but not M1 macrophages [93]. Thus, ROS
act as paracrine signaling molecules to recruit TAMs into the TME and thus alter the TAM
phenotype to exhibit more immunosuppressive characteristics.

5.2.3. Activation of Hypoxic Responses via ROS-Mediated Tumor-Stromal Interaction

A hypoxic microenvironment surrounding cancer cells can also promote invasion,
metastasis, and resistance to therapy [162–164]. Hypoxia-inducible factors (HIFs) are
critical transcription regulators that respond to hypoxia [165]. These include the oxygen-
regulated HIF-1α, HIF-2α, and HIF-3α subunits, and the constitutively expressed HIF-1β
subunit [164]. The HIFs are subject to prolyl hydroxylation, ubiquitination, and protea-
somal degradation, all of which are inhibited under hypoxic conditions; hence, the latter
conditions facilitate the stabilization and accumulation of HIF-α protein [164,165]. High
expression of HIFs or HIF-regulated genes is particularly common in basal-like TNBCs,
thus suggesting that hypoxia may play a relevant role in promoting aggressive behaviors
of these tumors [166,167]. In fact, the activation of HIF has been suggested as a mechanism
by which TNBCs can acquire invasiveness and metastatic propensity [168–170]. Like-
wise, HIFs are required for the enrichment of chemotherapy-resistant CSCs in TNBC [163]
(Section 5.1.3).

Hypoxic conditions also mediate the tumor-stromal interactions that lead to the eleva-
tion of cytokines, in turn, promote metastatic phenotypes in TNBC [171,172]. For instance,
hypoxia has been shown to induce the recruitment of macrophages and mesenchymal
stem cells (MSCs) by the production of macrophage colony-stimulating factor 1 via the
interaction between TNBC cells and MSCs [171]. Hypoxia is also involved in the interaction
between TNBC cells and breast CAFs via interleukin-1β (IL-1β) and interleukin receptor 1
type 1 to induce metastatic gene expression and invasive properties in TNBC cells [172]. In
particular, Il-1β is highly induced in hypoxia [172] and is one of major highly-elevated pro-
teins in TNBCs [173]. Hence, tumor-stromal inflammation induced by hypoxia stimulate
the pro-metastatic phenotypes in TNBC [173].
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Notably, ROS are increased in response to hypoxia and inhibit the ability of prolyl
hydroxylases to hydroxylate HIFs [174]. Therefore, ROS production involving the mi-
tochondria is required for the stabilization of HIF-1α and the subsequent transduction
of the hypoxia-mediated signaling [165,175]. Hypoxia has been shown to induce ROS
production in MDA-MB-468 cells, and treatment with NAC (10 mM) was shown to reverse
hypoxia-induced up-regulation of N-cadherin and plasminogen activator inhibitor-1, the
activation of EGFR, and cell motility [104]. In addition, exposure of MDA-MB-231 cells to
hypoxia led to increased levels of ROS, the activation of two main HIF-1α transduction
regulators (extracellular signal-regulated kinases and AKT), and upregulation of c-Fos
protein, whereas treatment with NAC (0.3 mM) prevented these changes induced under
the hypoxic conditions [172]. Furthermore, treatment with drugs that differ in their mecha-
nisms (e.g., paclitaxel and gemcitabine) has been shown to induce hypoxic responses and
CSC enrichment in TNBC cell lines (MBA-MB-231, SUM-149, and SUM-159), and this was
mediated by increased ROS levels [176]. Therefore, ROS mediated hypoxic response in
TNBC, and NAC could effectively inhibit the transduction of hypoxia-mediated signaling.

As noted above, ROS are actively involved in the interplay between cancer cells and
the TME for cancer progression in TNBC, and NAC can suppress this process by interfering
with the ROS-mediated cancer cell-TME interaction. A pilot study has demonstrated that
short-term treatment (14-27 days) with NAC significantly reduces the level of stromal
MCT4 expression and proliferation in breast cancer patients [124]. Therefore, NAC has
been shown to be effective in the metabolic modulation of breast TME at the clinical level.

Traditional or standard chemotherapy is currently the main systemic treatment option
for TNBC. Although optimal regimens still need to be established, chemotherapy regi-
mens based on anthracyclines (e.g., doxorubicin) and taxanes (e.g., paclitaxel) represent
the mainstay of TNBC treatment [177]. However, although TNBC is initially sensitive to
chemotherapy, progressive resistance is a common problem that leads to disease recur-
rence and a poor outcome, thus limiting the benefits of standard chemotherapy [178]. The
inclusion of NAC in standard chemotherapy can potentially provide additional benefits
for TNBC patients, although it should be ensured that the NAC treatment does not in-
terfere with the effectiveness of the chemotherapy. Currently, the combinational use of
NAC is more focused on its effects in terms of preventing or relieving the adverse side
effects of standard chemotherapy, such as peripheral neuropathy due to taxane chemother-
apy [179] or cardiotoxicity caused by anthracycline chemotherapy [180,181]. Although
some preclinical studies on the combination of NAC and standard chemotherapy have
been published, the reported effects are inconsistent. For instance, pretreatment with
NAC has been reported to potentiate the doxorubicin-induced phosphorylation of p53
and ATM, thus increasing their inhibitory effects upon cell proliferation and migration in
ovarian cancer cells [182]. In addition, NAC has been shown to prevent NF-κB activation
by gemcitabine and to improve the efficacy of gemcitabine in pancreatic cancer cells that
were implanted in athymic nude mice [183]. By contrast, NAC has been shown to nega-
tively alter the chemotherapeutic effectiveness of paclitaxel in a lung cancer cell line by
decreasing the ROS levels, thus preventing paclitaxel-induced apoptosis [184]. However,
it should be noted that studies using cell culture models may be misrepresented due to
the absence of in vivo-like TMEs, which are an important component of the benefits of
NAC. The potential interference of NAC with the effectiveness of standard chemotherapy
critically depends on whether the specific chemotherapy depends on ROS production.
For example, the anticancer efficacy of radiotherapy does not depend on ROS and, hence,
NAC treatment reduces the levels of radiotherapy-induced ROS but does not interfere with
radiotherapy-induced cell death [185]. In fact, high ROS is often associated with resistance
to standard chemotherapy probably due to their involvement in CSC enrichment and
permissive TME formation [91,163,186] (Sections 5.1.3 and 5.2). Moreover, NAC treatment
can be particularly effective in the inhibition of the tumor-stromal interaction and the
reduction in CSC population, thereby decreasing chemotherapy-induced resistance and
aggressiveness in TNBC.
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6. Conclusions

NAC is a membrane-permeable antioxidant and has been safely used as a mucolytic
and antidote for acetaminophen. However, its use in cancer treatment has resulted in
varying outcomes ranging from beneficial to detrimental largely because ROS can mediate
both cancer-promoting and cancer-suppressing signaling. In this respect, particularly high
ROS levels are generated by TNBC cells due to gene mutation/inactivation (e.g., BRCA1
and TP53), gene expression changes, and CSC enrichment. This ROS accumulation medi-
ates the cellular signaling necessary to maintain the survival and promote their metastatic
capacity and drug resistance. Furthermore, high ROS levels derived from TNBC cells can
mediate interaction between cancer cell and the TME to induce the formation of permissive
TME and hypoxic responses that linked to their aggressive behavior. However, treatment
with NAC effectively suppresses the ROS production and ROS-mediated signaling that
contribute to cell survival, metastasis, and drug resistance, thereby inhibiting cancer pro-
gression. Meanwhile, TNBCs exhibit aggressive phenotypes, and standard chemotherapy
remains the mainstay of TNBC treatment that often generate resistance and relapse. There-
fore, the additional use of NAC can be an effective strategy for treating those TNBCs.
However, further studies are required in order to define better molecular signatures for
the identification of specific subset of TNBC patients who can benefit the most from NAC
therapy and to monitor its efficacy. Moreover, for the use of NAC to be clinically relevant,
further studies need to examine the potential interference of NAC with the effectiveness
of standard chemotherapy, the most suitable time for NAC administration relative to the
standard chemotherapy, and the appropriate treatment duration.
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