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Abstract: An excess of oxidative stress (OS) may affect several physiological processes fundamental
to reproduction. SIRT1, SIRT6 and SIRT7 are involved in protection stress systems caused by OS,
and they can be activated by antioxidants such as celastrol or melatonin. In this study, we evaluate
SIRT1, SIRT6 and SIRT7 gene expression in cultured human granulosa-lutein (hGL) cells in response
to OS inductors (glucose or peroxynitrite) and/or antioxidants. Our results show that celastrol and
melatonin improve cell survival in the presence and absence of OS inductors. In addition, melatonin
induced SIRT1, SIRT6 and SIRT7 gene expression while celastrol only induced SIRT7 gene expression.
This response was not altered by the addition of OS inductors. Our previous data for cultured hGL
cells showed a dual role of celastrol as a free radical scavenger and as a protective agent by regulating
gene expression. This study shows a direct effect of celastrol on SIRT7 gene expression. Melatonin
may protect from OS in a receptor-mediated manner rather than as a scavenger. In conclusion, our
results show increased hGL cells survival with melatonin or celastrol treatment under OS conditions,
probably through the regulation of nuclear sirtuins’ gene expression.
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1. Introduction

Oxidative stress (OS) or the imbalance between reactive oxygen species (ROS) and
antioxidants, causes damage to proteins through aggregation and/or denaturation, lipid
peroxidation and nucleotide changes in the DNA structure [1]. OS may affect many
physiological processes, including those involved in reproduction as folliculogenesis,
fertilization or implantation [2,3].

Sirtuins are a family of proteins with NAD+-dependent deacylase and/or ADP ribo-
syltransferase activity [4]. In mammals, this family includes seven sirtuins (SIRT1-SIRT7)
that play an important role in many cellular biological processes such as transcriptional
regulation, inflammatory response, oxidative stress, cell survival, DNA repair or energy
metabolism [5]. Sirtuins share a conserved core catalytic domain but differ in catalytic
activities, subcellular localization, protein targets, and biological functions [6].

Nuclear sirtuins include SIRT1, SIRT6 and SIRT7 [7]. SIRT1 shuttles to the cytoplasm
to act on cytoplasmic targets [8]. In mouse knockout models, deficiencies of Sirt1, Sirt6,
and Sirt7 are associated with premature aging syndromes [9–11]. OS is an important factor
in inducing cell senescence because it leads to DNA damage or decreased telomerase
activity [12]. The peroxisome proliferator activated receptor g (PPAR-g) is a non-histone
protein target of SIRT1 and plays a role in the antioxidant stress system, inducing the

Antioxidants 2021, 10, 1871. https://doi.org/10.3390/antiox10121871 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-2220-5774
https://orcid.org/0000-0001-5177-1188
https://doi.org/10.3390/antiox10121871
https://doi.org/10.3390/antiox10121871
https://doi.org/10.3390/antiox10121871
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10121871
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox10121871?type=check_update&version=1


Antioxidants 2021, 10, 1871 2 of 12

expression of antioxidant enzymes [13]. Deacetylation of FOXO3a increases catalase
expression, providing protection from damage caused by OS [14].

SIRT6 plays an important role in genome maintenance and DNA repair [15]. Specifi-
cally, under OS conditions, Sirt6 is recruited to DNA damage sites and modulates repair
of DNA double strand breaks (DSBs) [16]. SIRT6 maintains genomic and telomeric in-
tegrity in mammalian cells through a complex that includes MutY homologue (MYH) DNA
glycosylase under oxidative DNA damage [17].

SIRT7 regulates transcription of rDNA interacting with RNA Polymerase I and his-
tones [18]. SIRT7 is also a modulator of stress response by adapting cells to environmental
challenges [19,20].

Celastrol is a natural triterpenoid isolate from Tripterygium wilfordii [21] with pre-
ventive and therapeutic properties for metabolic dysregulations such as obesity, cancer
or inflammatory and neurodegenerative diseases [22,23]. Celastrol also has a protective
effect against oxidative effects via activation of NRF2 signaling pathway [24] or decreas-
ing lipid synthesis in the liver and improving anti-oxidative status by increasing SIRT1
expression [25].

Melatonin is a hormone synthesized by a wide variety of animal cells and tissues [26]
with antioxidant and free radical scavenger activity [27,28]. There is evidence that mela-
tonin as an anti-oxidative regulator, plays a role in the reproductive system during oocyte
maturation [29], steroidogenesis capacity acquisition [30] or embryo implantation [31]. In
addition, melatonin has been involved in the clearance of free radicals in oocytes during
ovulation [32]. Melatonin effects could be mediated by sirtuins because its action seems to
be associated with SIRT1 upregulation [33] and activation of SIRT6 and AMPK-PGC-1α-
AKT pathways of signaling after long-term melatonin administration [34].

The aims of this study were to determine the expression of nuclear sirtuins, SIRT1,
SIRT6 and SIRT7, in response to oxidative stress induced by glucose or peroxynitrite
in cultured human granulosa-lutein cells and to evaluate the effect of the antioxidants,
celastrol and melatonin as protective agents.

2. Materials and Methods
2.1. Subjects

Human granulosa-lutein (hGL) cells were obtained from 109 healthy women between
18 and 27 years of age participating in an oocyte donation program (OD). All the procedures
and the informed consent from patients were approved by the Ethics Committee of the
Universidad de La Laguna (CEIBA2012-0044).

2.2. Ovulation Induction Protocol

Ovulation induction was performed using recombinant FSH (Gonal F, Serono, Madrid,
Spain), combined with recombinant LH (Luveris, Serono, Madrid, Spain) or human
menopausal gonadotropins (Menopur, Ferring, Madrid, Spain) [35]. The hormonal doses
administered to each patient were adjusted according to their individual response. Mature
oocytes and follicular fluid (FF) were obtained by ultrasound-guided egg retrieval 36 h after
the administration of 0.4 mg of leuprolide acetate (Procrin solution, Abbvie, Madrid, Spain).

2.3. Isolation of hGL Cells

hGL cells were isolated from FF of each woman by light centrifugation and washed
in “isolation medium” (Medium 199, supplemented with sodium bicarbonate [3.7 g/L],
penicillin [59 mg/L], streptomycin [100 mg/L], amphotericin B [25 mg/L], L-glutamine
[0.29 g/L], and bovine serum albumin [0.1%]). Red blood cells and leukocytes were
removed by 50% Percoll gradient and anti-CD45-coated magnetic beads (Dynabeads M-450
CD45; Dynal ASA, Oslo, Norway), respectively. Cellular viability (minimum 95%) was
confirmed by trypan blue exclusion test.
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2.4. Cell Culture and Treatments

Approximately 2.5 × 105 viable cells per well were plated in sterile 6-well dishes
(Thermo Fisher Scientific, New York, NY, USA) and cultured for 48 h at 37 ◦C under
5% CO2 in McCoy’s 5A medium supplemented with l-glutamine (0.29 g/L), BSA (0.1%),
penicillin (59 mg/L), streptomycin (100 mg/L), and amphotericin (25 mg/L).

2.4.1. Glucose Treatment

In 17 cell cultures, glucose was added alone or in combination with FSH (added after
24 h) according to the following conditions: control, +20 mM glucose, +20 mM glucose +
100 ng/mL FSH, +100 ng/mL FSH.

2.4.2. Peroxynitrite Treatment

Peroxynitrite were added after 19 h to 20 cell cultures according to the following
conditions: control, +0.1 mM peroxynitrite, +0.1 mM peroxynitrite + 100 ng/mL FSH,
+100 ng/mL FSH. Peroxynitrite was incubated for 10 min and then fresh medium was
added. FSH was added after the first 24 h of culture.

2.4.3. Antioxidant Treatment

Glucose and peroxynitrite treatments were replicated with the addition of celastrol
1 µM (glucose + celastrol n = 19; peroxynitrite + celastrol n = 18) or melatonin 10 µg/mL
(glucose + melatonin n = 18, peroxynitrite + melatonin n = 17). The effect of celastrol or
melatonin alone was tested in the same donors.

2.5. Gene Expression Analysis by qRT-PCR

Forty-eight hours after seeding, total RNA from each cell culture was isolated using
Aurum total RNA mini kit (Bio-Rad Laboratories, Hercules, CA, USA) and reverse tran-
scribed using iScript cDNA Synthesis kit (Bio-Rad Laboratories, Hercules, CA, USA), adding
1 µg RNA per reaction, following the manufacturer’s instructions. Relative gene expression
was performed using the following primers: SIRT1 (CTATACCCAGAACATAGACACG,
ACAAATCAGGCAAGATGC), SIRT6 (AGGGACAAACTGGCAGAGC, TTAGCCACGGT-
GCAGAGC) and SIRT7 (GCAGAGCAGACACCATCC, GTTCACGATGTAAAGCTTCG) and
β-actin (CTTCCTTCCTGGGCATGG, GCCGCCAGACAGCACTGT) as a housekeeping gene.
All amplification reactions were carried out in a BioRad CFX96 real-time PCR system (Bio-Rad
Laboratories, Hercules, CA, USA) and performed with 2× Sso Fast Eva Green Supermix
(Bio-Rad Laboratories, Hercules, CA, USA) and 0.4 µmol/L of each primer in a final volume
of 10 µL.

All samples were analyzed in triplicate using the following thermal profile: 30 s
at 95 ◦C, 45 cycles at 95 ◦C for 5 s plus 59 ◦C for 5 s. The melting curve program was
performed at 65 ◦C to 95 ◦C with a heating rate of 0.1 ◦C/s and read every 0.5 ◦C. Gene
expression levels are presented as individual data points using the mean of triplicates to
calculate 2∆CT [36].

2.6. DNA Damage Assay

Isolated hGL cells were seeded on poly l-lysine (Sigma, St. Louis, MO, USA) pre-
coated 15 mm coverslips and fixed in methanol 100% for 6 min at −20 ◦C. The blocking
step was performed using universal blocking buffer (PBS buffer supplemented with 1%
BSA, 0.1% gelatin, 0.5% Triton X-100, 0.05% sodium azide) after washing three times
with PBS buffer (Na2HPO4 1.09 g, NaH2PO4 0.32 g, NaCl 9 g, H2O 1000 mL, pH 7.4).
Anti-8-OHdG (15A3) antibody (dilution, 1:50; Santa Cruz Biotechnology Inc., Dallas, TX,
USA) diluted in blocking solution was incubated for 1 h at room temperature and then
washed three times with PBS buffer. Secondary anti-mouse IgG FITC conjugate antibody
(dilution, 1:125; Boehringer Mannheim, Baden-Wurttemberg, Germany) was incubated for
1 h. Finally, the coverslips were mounted using ProLong Diamond Antifade Mountant with
DAPI (Thermo Fisher Scientific Inc., Waltham, MA, USA) and analyzed using Leica SP8
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confocal microscope (Leica Microsystems CMS, Mannheim, Germany). DNA damage was
quantified by levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) staining and cell survival
was estimated by DAPI staining in all cell culture conditions as described above. Images
were analyzed using Image J 1.53 software (https://imagej.nih.gov/ij/index.html). Cells
were counted in 20 different fields and classified in three groups with respect to their
fluorescence level: high (cells fluorescent at 100% maximum brightness intensity), medium
(cells fluorescent at 60% brightness intensity) and low (cells fluorescent at 20% brightness
intensity). DNA damage was calculated as the percentage of cells with different 8-OHdG
staining levels in each condition tested. Cell survival was estimated based on the total
number of cells (DAPI staining) relative to number of cells in each control.

2.7. Oxidative Stress Assay

2′,7′-dichlorofluorescin diacetate (DCFDA), also known as the H2DCFDA-Cellular
Reactive Oxygen Species Detection Assay Kit (Abcam, Cambridge, England) was used
for measure the cellular OS level. This kit evaluates the oxidation of DCFDA by ROS
or reactive nitrogen species (RNS) [37]. OS level was measured in cell cultures with a
25 × 103 cells per well density treated with 10 µg/mL melatonin using 45 µM DCFDA at
24 and 48 h, following the manufacturer’s instructions.

2.8. Statistical Analysis

SPSS 23 software (IBM Corporation, Somers, NY, USA) was used to perform the
statistical analysis using the Student’s t-test to carry out comparisons between each cell
culture conditions considering a p value of <0.05 as statistically significant. Mean and
standard error (SE) are reported.

3. Results
3.1. DNA Damage in Control and Treated Cells

Treatment with glucose, and especially, peroxynitrite increased the percentage of the
high and medium intensity levels of 8-OHdG staining. Both the number of damaged cells
and dead cells increased compared to control cells (Figure 1A).

Human GL cells treated with celastrol or melatonin showed an increase in the high
and medium 8-OHdG staining levels compared to control. This increase was higher in
celastrol-treated cells. Celastrol and melatonin treatment increased survival of hGL cells by
56% and 20%, respectively (Figure 1B).

Addition of celastrol or melatonin to hGL cells treated with glucose increased the
intensity of staining from high and medium 8-OHdG staining levels. Complementarily,
the addition of celastrol or melatonin to cell cultures increased survival by 7% or lowered
mortality, respectively (Figure 1C). Peroxynitrite-treated cells showed a lower percentage
of highly damaged cells, compared to cells treated with a combination of peroxynitrite and
celastrol or peroxynitrite and melatonin. Moreover, we found a survival increase of 55% in
peroxynitrite + celastrol and 17% in peroxynitrite + melatonin (Figure 1D).

3.2. Effect of Melatonin on hGL Cultured Cells

ROS/RNS levels in hGL cells treated with melatonin were measured by DCFDA at
24 and 48 h (Figure 2). Statistically significant differences were not found.

3.3. SIRT1 Expression in Control and Treated Cells

Melatonin-treated cells showed an increased gene expression of SIRT1 compared to
control (Figure 3A). The addition of glucose or glucose in combination with celastrol did not
modify SIRT1 mRNA level but the combination of glucose and melatonin increased SIRT1
expression (Figure 3B). FSH treatment increased SIRT1 expression compared to control
(Figure 3C) but FSH + celastrol addition did not modify gene expression. However, we
observed an increased expression of SIRT1 in cells treated with FSH + melatonin compared

https://imagej.nih.gov/ij/index.html
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to control. Peroxynitrite treatment did not affect SIRT1 expression but the combination of
peroxynitrite with celastrol or melatonin increased SIRT1 expression (Figure 3D).
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Figure 3. Effect of glucose, peroxynitrite, FSH, celastrol (CEL), melatonin (MEL) and their combi-
nations on SIRT1 gene expression. SIRT1 relative expression levels in hGL cells treated with: (A)
celastrol (n = 19) or melatonin (n = 18), (B) glucose (n = 17) and in combination with celastrol (n = 19)
or melatonin (n = 18), (C) FSH (n = 17) and in combination with celastrol (n = 19) or melatonin (n = 18),
(D) peroxynitrite (n = 20) and in combination with celastrol (n = 18) or melatonin (n = 17). Asterisks
(*) indicate statistically significant differences compared to control.

3.4. SIRT6 Expression in Control and Treated Cells

Gene expression analysis showed higher SIRT6 expression in melatonin-treated cells
compared to control (Figure 4A). The addition of glucose or FSH, alone or in combination
with celastrol, showed no differences in SIRT6 expression compared to control (Figure 4B,C).
However, addition of glucose or FSH combined with melatonin increased SIRT6 mRNA
levels (Figure 4B,C), probably because of the effect of melatonin alone observed before
(Figure 4A). Peroxynitrite treatment and combination with celastrol or melatonin did not
modify SIRT6 gene expression compared to control (Figure 4D).

3.5. SIRT7 Expression in Control and Treated Cells

The analysis of gene expression showed that the addition of both celastrol and mela-
tonin increased SIRT7 mRNA levels compared to control (Figure 5A). Glucose or FSH
treatment did not modify SIRT7 expression. However, the combined addition of both
celastrol or melatonin increased SIRT7 mRNA levels (Figure 5B,C), mimicking the effect
observed in cells treated with celastrol or melatonin alone (Figure 5A). This effect of celas-
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trol was also observable in peroxynitrite + celastrol (Figure 5D) whereas in peroxynitrite
treatment, lower amounts of SIRT7 mRNA were observed (Figure 5D). SIRT7 expression
also decreased in peroxynitrite + melatonin-treated cells (Figure 5D).
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Figure 5. Effect of glucose, peroxynitrite, FSH, celastrol (CEL), melatonin (MEL) and their com-
binations on SIRT7 gene expression. SIRT7 relative expression levels in hGL cells treated with:
(A) celastrol (n = 19) or melatonin (n = 18), (B) glucose (n = 17) and in combination with celastrol
(n = 19) or melatonin (n = 18), (C) FSH (n = 17) and in combination with celastrol (n = 19) or melatonin
(n = 18), (D) peroxynitrite (n = 20) and in combination with celastrol (n = 18) or melatonin (n = 17).
Asterisks (*) indicate statistically significant differences compared to control.
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4. Discussion

Oxidative stress may be harmful in human reproduction processes and investigation
of antioxidant agents that may prevent OS damage in reproductive tissues and processes
is of paramount importance to improve both natural fertility and the results of infertility
treatments. This research was performed to investigate the effects of celastrol and melatonin
in preventing the impact of OS generated by glucose or peroxynitrite on cultured hGL cells.

The addition of OS inductors (glucose or peroxynitrite) to cultured hGL cells increased
DNA damage and the percentage of dead cells compared to control, most prominently
under peroxynitrite treatment (Figure 1A). Previous studies from our laboratory showed
that higher ROS/RNS levels in cells treated with glucose or peroxynitrite [38] increased OS
levels, leading to DNA damage and cell death. In this article, we report that the addition of
antioxidants (celastrol or melatonin) to culture medium elicits an increase in the amount
of high/medium level of 8-OHdG staining (a measure of DNA damage) compared to the
amount found in control cells, but in contrast, we found an increase in the total number
of surviving cells (Figure 1B). In the case of celastrol, this pro-survival effect could be
related to the decrease in ROS/RNS level as upregulation of SIRT7 gene expression was
observed in cultured cells treated with antioxidant [38]. The pro-survival response of
melatonin is lower and consistent with the fact that the addition of melatonin to cultured
medium did not substantially modify ROS/RNS levels (Figure 2). Interestingly, these
results support the role of melatonin as an OS protector in a receptor-dependent manner,
instead of a scavenger molecule under the conditions tested here. The effects observed
after the addition of celastrol and melatonin were maintained in cells treated with the
combination of OS inductor + antioxidant (Figure 1C,D).

Analysis of gene expression in hGL cells treated with glucose showed no variation in
sirtuins’ gene expression (Figures 3B, 4B and 5B), even though previous studies demon-
strated an increased ROS/RNS by the addition of glucose to culture medium [38]. An
increase in DNA damage and in the number of dead cells was observed (Figure 2). Taken
together, these data indicate that the addition of glucose increased OS and DNA damage
with no variation in sirtuins’ gene expression.

To analyze the effect of antioxidants on hormones that play an important role in
oocyte maturation, FSH was added to cultured hGL cells. We observed an increase in
SIRT1 expression in cells treated with FSH, suggesting that SIRT1 could be a mediator of
FSH action. To our knowledge, this is the first time that a relationship between FSH and
SIRT1 expression has been described in hGL cells, suggesting a proliferative FSH-effect
mediated by SIRT1. This relationship between hFSH and SIRT1 expression was previously
described in porcine ovarian cells [39].

The addition of peroxynitrite decreased SIRT7 expression levels but did not modify
SIRT1 or SIRT6 expression (Figures 3D, 4D and 5D). Peroxynitrite is a potent oxidant that
produces a high percentage of DNA damage and cell death. SIRT7 expression is related to
cell proliferation and impaired G1/S progression [40]. It is possible that decreased mRNA
levels of SIRT7 in the presence of peroxynitrite induced cell cycle arrest in order to activate
DNA repair systems. A post-translational modification of SIRT6 by peroxynitrite-induced
OS controlling Sirt6 enzymatic activity has been reported [41], with no alteration in gene
expression. This agrees with our data showing the non-variation in SIRT6 expression with
peroxynitrite treatment.

Interestingly, we observed changes in gene expression elicited by OS in cultured hGL
cells independently of the OS inductor. The addition of melatonin alone or in combination
with any of the other substances, induced the expression of the three nuclear sirtuins
studied here. The activation of SIRT1 by melatonin has been widely described in many
conditions [42–44]. In the mouse ovary, melatonin reduces OS and apoptotic damage
by activating SIRT1 signaling in a melatonin receptor-dependent manner [45]. Since our
results support a protective effect of melatonin without a reduction in ROS/RNS levels, it
is possible that the increased survival observed in hGL cells treated with melatonin could
be related to SIRT1 inhibition of apoptosis through Foco1 deacetylation [46]. Previous
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data also described melatonin-dependent regulation of SIRT6 expression in endothelial
cells [47] proposing SIRT6-AMPK-PGC-1α-AKT signaling as a novel downstream target
of melatonin membrane receptors [34]. To our knowledge, this is the first report of an
effect of melatonin on SIRT7 gene expression. Since Akt pathway promotes cell survival
in response to extracellular signals and a direct role of SIRT7 in Akt regulation has been
described [48], it is possible that melatonin could regulate SIRT7 expression through the
PI3K/AKT/mTOR pathway similarly to SIRT6 regulation. This hypothesis is supported by
the results of our DNA damage experiments; we found that melatonin treatment increased
cell survival (Figure 1B1–B6). The role of SIRT7 in reproduction is not clear, although in
female mice, SIRT7 expression is related to ovarian reserve by playing a role in repairing
double-strand DNA breaks [49].

The addition of celastrol, alone or with the addition of OS inductors increased SIRT7
gene expression under the treatment conditions tested in these experiments. Several
studies point to celastrol as a substance with multiple activities such as anti-tumor [50,51],
anti-inflammatory [52,53] and antioxidant [54,55], and it participates in cell processes as a
molecule affecting signaling of several pathways such as the ERK pathway [56,57]. In this
sense, celastrol has been reported to bind Shoc2, a scaffold protein involved in processes
such as cell motility, invasion, and proliferation through the ERK pathway [58]. SIRT7
activates ERK1/2 signaling [59]. Taken together, our results may show a compensatory
mechanism where SIRT7 is overexpressed to revert the ERK pathway inhibition by celastrol,
leading to maintenance of the cell proliferation status.

In conclusion, our results show that melatonin and celastrol treatments increase hGL
cells survival under oxidative stress conditions, probably by regulating the expression
levels of nuclear sirtuins. Since sirtuins’ expression is related to the control of several
female reproductive processes, modulation of sirtuins’ gene expression may contribute to
improved oxidative stress status in normal ovaries and pathologic states.

5. Conclusions

Female reproductive functions may be altered by oxidative stress with resulting infer-
tility or pregnancy complications. Research on the ovarian environment under oxidative
stress conditions could yield information to prevent female reproduction failure. The aim
of this paper was to study the response of nuclear sirtuins to oxidative stress induction
and to evaluate the effect of antioxidants. Our results show that treatment with celastrol or
melatonin improves oxidative stress effects and both compounds are differently involved
in nuclear sirtuins’ expression.
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