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Abstract: The blood–brain barrier (BBB) is a network of specialized endothelial cells that regulates
substrate entry into the central nervous system (CNS). Acting as the interface between the periphery
and the CNS, the BBB must be equipped to defend against oxidative stress and other free radicals
generated in the periphery to protect the CNS. There are unique features of brain endothelial cells
that increase the susceptibility of these cells to oxidative stress. Insulin signaling can be impacted by
varying levels of oxidative stress, with low levels of oxidative stress being necessary for signaling
and higher levels being detrimental. Insulin must cross the BBB in order to access the CNS, levels of
which are important in peripheral metabolism as well as cognition. Any alterations in BBB transport
due to oxidative stress at the BBB could have downstream disease implications. In this review, we
cover the interactions of oxidative stress at the BBB, how insulin signaling is related to oxidative
stress, and the impact of the BBB in two diseases greatly affected by oxidative stress and insulin
resistance: diabetes mellitus and Alzheimer’s disease.
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1. Introduction

The blood–brain barrier (BBB) helps to separate the periphery from the central nervous
system (CNS). This specialized network of brain endothelial cells (BECs) interacts with
astrocytic endfeet, pericytes, neurons, and the basement membrane to form the neurovascu-
lar unit (NVU). BECs are connected by tight junctions (TJ) and express specific transporters
to regulate substrate entry into and out of the brain. The brain relies on this network of
cells to manage interactions with the circulation. BECs are constantly exposed to potential
free radicals or stress-inducing elements such as cytokines and inflammatory cells through
interactions with circulatory factors. BECs contain extra defense mechanisms against
oxidative stress, including increased glutathione and related enzymes [1]. Endogenous
(glutathione, lipoic acid, superoxide dismutase) and exogenous (vitamins, carotenoids,
polyphenols) antioxidants exist for humans and there are differences in antioxidant defense
systems across species. For example, humans cannot synthesize ascorbate and must acquire
it from the diet, while most other mammals are able to produce ascorbate endogenously,
with production levels corresponding to levels of oxidative stress [2].

Low amounts of reactive oxygen species (ROS) and reactive nitrogen species (RNS)
are important regulatory mediators in many signaling processes. Oxidative stress occurs
when there is an imbalance between the generation of ROS, RNS, metal ion homeostasis,
and antioxidant defenses. Lipid peroxidation is a type of oxidative stress that occurs when
cellular membranes, lipoproteins, and other lipids are exposed to oxidative substrates.
DNA and protein oxidative damage due to oxidative substrates are other types of oxidative
stress. When the level of oxidative stress is too high and/or antioxidant defenses are
impaired or altered, oxidative damage occurs, and can be a primary culprit in diseases.
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Insulin resistance and apolipoprotein E (apoE) are also linked with oxidative stress and can
impact the BBB. We will discuss the link between the BBB, oxidative stress, insulin receptor
signaling, and two diseases closely associated with insulin resistance: diabetes mellitus
(DM) and Alzheimer’s disease (AD).

2. Oxidative Stress at the BBB

The BBB contains properties that can not only combat oxidative stress but also lead
to the development of free radicals [3]. There are four critical traits that increase the
susceptibility of the BBB to oxidative stress (Figure 1). The brain is a highly metabolic
organ, utilizing approximately 20% of the body’s energy through oxygen consumption. A
potential side effect of this high oxygen consumption is an increased risk for generating
ROS products. The energy substrates must cross the BBB to reach the brain, prior to being
metabolized locally. Second, the BBB utilizes nitric oxide (NO) to regulate vasodilation,
which increases the opportunity for RNS. A fast response of the vasculature is especially
important for the brain, which does not store glucose and relies on blood flow for nutrients.
Dysregulation of NO synthase (NOS) enzymes, in particular endothelial NOS (eNOS),
which occurs under high-glucose conditions, can lead to oxidative stress [4]. Next, neuronal
membranes are largely made up of polyunsaturated fatty acids, such as docosahexaenoic
acid (DHA). DHA must be transported across the BBB [5]. These fatty acids are susceptible
to lipid peroxidation. BECs are particularly sensitive to lipid peroxides [6].
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into the brain as an alternative source of energy and signaling. This creates an increased opportunity 
for the generation of lipid peroxidation. Lastly, BECs contain a greater number of mitochondria 
compared to peripheral endothelial cells. Mitochondria are the primary source of reactive species, 
including superoxide. In all, BECs require a critical counter-regulatory process to combat the oxida-
tive factors in order to maintain a functioning BBB with preserved tight junction (TJ) proteins and 
basement membrane (BM). Figure generated using BioRender. 

Compared to peripheral endothelial cells, BECs have a high concentration of mito-
chondria [7] to meet their energy needs, providing an opportunity for increased oxidative 
stress [8]. BECs were found to have mitochondrial contents of 8–11% of the cytoplasmic 
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Figure 1. The blood–brain barrier (BBB) and oxidative stress. There are 4 distinct ways brain
endothelial cells (BECs) are at a greater exposure to oxidative factors. First, these cells must transport
high levels of glucose into the brain for energy. Glucose must be metabolized to energy-utilizing
substrates within mitochondria, generating free oxygen radicals. Second, BECs generate high levels
of nitric oxide (NO) through endothelial nitric oxide synthase (eNOS), required for intracellular
signaling and regulation of vascular tone. Third, BECs must transport dietary lipids and fatty
acids into the brain as an alternative source of energy and signaling. This creates an increased
opportunity for the generation of lipid peroxidation. Lastly, BECs contain a greater number of
mitochondria compared to peripheral endothelial cells. Mitochondria are the primary source of
reactive species, including superoxide. In all, BECs require a critical counter-regulatory process to
combat the oxidative factors in order to maintain a functioning BBB with preserved tight junction
(TJ) proteins and basement membrane (BM). Figure generated using BioRender.

Compared to peripheral endothelial cells, BECs have a high concentration of mito-
chondria [7] to meet their energy needs, providing an opportunity for increased oxidative
stress [8]. BECs were found to have mitochondrial contents of 8–11% of the cytoplasmic vol-
ume compared to 2–5% in non-BBB cells. Mitochondria serve as one of the primary sources
for free radical generation due to the high percentage of oxygen consumed. The increased
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number of mitochondria also help in BBB maintenance. BEC mitochondria decrease in
number with aging [9,10], but this does not necessarily decrease the amount of oxidative
stress generated. In fact, oxidative stress is implicated in aging [11] and AD, as will be
discussed at the end of this review. In addition to the mitochondrial respiratory chain
contributing to the production of ROS, brain endothelium also contains NADPH oxidase
(Nox) and xanthine oxidase, which contribute to ROS generation [6]. These four processes
highlighted above make it critical for the BBB to have endogenous defense systems in place.

BECs can combat production of ROS and other free radicals under normal circum-
stances. In fact, under basal conditions, ROS are important signaling molecules. ROS
in BECs help to regulate survival networks. Of note, ROS in BECs play a critical role in
regulating vascular tone [12]. NO is generated by NOS, using L-arginine as a substrate.
There are three different isoforms in mammals: eNOS, inducible NOS (iNOS), and neuronal
NOS (nNOS). BECs only express the former two. NO regulates vascular tone by activating
soluble guanylate cyclase in the vascular smooth muscle and helps to control mitochondrial
oxygen consumption by inhibiting cytochrome c oxidase (complex IV).

ROS can also regulate BEC angiogenic responses [6]. Angiogenesis involves new
blood vessels sprouting from existing vasculature. This process is important during em-
bryogenesis of course, but is also necessary in tissue repair. There is a fine balance between
the beneficial and detrimental impact of ROS on angiogenesis. Small concentrations of
hydrogen peroxide (H2O2) generated by Nox promoted BEC proliferation, migration,
and tube formation [13,14]. ROS are able to stimulate induction of vascular endothelial
growth factor (VEGF), a protein critical in angiogenesis [15]. Higher concentrations of
H2O2 (>100 µM) have a detrimental effect by increasing BEC permeability and decreasing
TJ protein localization [13].

Indeed, disruption of the BBB is a common response to oxidative stress [16]. TJs,
as touched on above, can be disturbed due to oxidative stress. Changes in TJ protein
levels and/or TJ protein cellular localization/trafficking are factors that contribute to
BBB disruption. For example, the TJ protein occludin is pulled away from TJs (relocated
away from its site of function at the cell membrane) during periods of increased oxidative
stress [17]. Additionally, ROS can rearrange the BEC cytoskeleton, providing a molecular
mechanism as to how ROS alter localization of TJ proteins, affecting BBB integrity [18].
The antioxidant ascorbate has been shown to reverse increases in endothelial cell barrier
permeability by protecting against the microtubule destabilization [19] that results from
high glucose-induced oxidative stress [20]. Matrix metalloproteinases (MMPs) are another
common culprit in oxidative stress-induced BBB damage. MMPs are proteolytic enzymes
that are capable of degrading extracellular matrix proteins and can cleave cell surface
receptors. MMP-2 and MMP-9 are the main MMPs most closely linked to barrier perme-
ability following oxidative insult [21]. MMPs, like MMP-9, are activated or upregulated in
response to oxidative stress [22].

Within the NVU, astrocytes are the least susceptible to oxidative stress, which may
help support the maintenance of the BBB during oxidative insult [23]. Astrocytes are also
the source of glutathione, a key antioxidant. Pericytes are particularly sensitive to oxidative
stress as, under disease conditions such as DM and AD, these cells are often the first cells
of the NVU reported to die [10]. This increased susceptibility to oxidative stress is not
well understood but could be due to a variety of reasons. First, pericytes are connected
to BECs via gap junction connections, allowing direct cell–cell cytoplasm interactions and
transfer of molecules, such as glucose. Second, it is possible that pericytes do not have
the antioxidant capability to combat increases in oxidative stress compared to BECs or
astrocytes. Treatment of pericytes with ascorbate prevents high glucose-induced apoptosis
of this NVU cell type [24], suggesting added protection from enhanced antioxidant capacity.
Lastly, the ratio of pericytes to BECs compared to other NVU cell types such as astrocytes
and neurons is much smaller [25]. Therefore, a small loss of pericyte number could be
much more detrimental to the NVU than a small loss of astrocytes.
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Autophagy, the ability for a cell to clear potentially toxic byproducts to generate nutri-
ents needed to support metabolic reactions, is critical for endothelial cell homeostasis [26].
ROS are early inducers of autophagy during nutrient deprivation [27]. This protects cells
from apoptosis during periods of low nutritional states. Alternatively, impairments in au-
tophagy lead to oxidative stress in endothelial cells. Antioxidants can enhance autophagy
in endothelial cells [28]. Intact autophagy can preserve endothelial function and promote
eNOS activation [29].

When studying the antioxidant capacity or response of BECs in vitro, it is important to
keep in mind that these cells can respond differently outside of the native environment. A
recent study showed that various commercially available BEC lines had different responses
to oxidative insult [30]. Additionally, co-culturing BECs with either astrocytes or pericytes
can elicit a different antioxidant response as well. Astrocytes enhance the antioxidant
activity of BECs through soluble, secreted factors [31]. The impact of oxidative stress on the
BBB, as well as the contribution of the BBB to oxidative stress, can indeed be complicated.
Deciphering cause and effect between these two systems is often hard to separate because
BBB disruption can lead to oxidative stress, and oxidative stress can induce BBB disruption.

3. Insulin, Oxidative Stress, and the BBB

CNS insulin is critical for its pleotropic role in metabolism as well as its ancestral
role in acting as a growth factor. Acting as a metabolic factor, insulin is able to regulate
feeding behavior as well as peripheral metabolism and glucose levels. CNS insulin can
also regulate cognition and neuronal development [32]. Insulin crosses the BBB in an
energy-dependent saturable manner [33]. Not only can insulin impact BECs themselves
through intracellular signaling, but impairments in BEC insulin receptor signaling and/or
transport of insulin across the BBB can lead to CNS insulin dysfunction [25,33].

Insulin plays a role in oxidative stress, not only through its signaling networks, but
also in insulin resistance (Figure 2). It has been shown that oxidative stress can lead to
insulin resistance, particularly in the endothelium [34,35]. Additionally, increased oxidative
stress markers are significantly associated with reduced insulin receptor activation [36].
Increased oxidation of free fatty acids in endothelial cells increases the production of su-
peroxide by the mitochondrial electron transport chain leading to maladaptive insulin
signaling [34]. ROS and oxidative stress are able to activate multiple serine kinase cas-
cades [37], interrupting the insulin receptor signaling cascade. Alternatively, increased
insulin levels can increase reactive oxygen species production and oxidative stress, acceler-
ating insulin resistance [38]. Antioxidants such as alpha-lipoic acid, vitamin E, ascorbate,
and glutathione are able to improve insulin sensitivity [39]. Insulin can act in an antioxidant
manner by reversing high glucose-associated increases in ROS generation in peripheral
endothelial cells [40].

As mentioned above, BECs interact with other cells of the NVU to maintain BBB
structure and function, especially when it comes to oxidative stress. The role of the
insulin receptor at the NVU has recently been investigated. Loss of the insulin receptor
on astrocytes leads to decreases in mitochondrial number in neurons when the body is
exposed to high glucose [41]. Alterations in mitochondrial number, as shown by Oldendorf
et al. [7], can impact the degree of oxidative stress. This finding highlights two important
characteristics about the BBB. First, as is well known, it links the periphery to the CNS
through the impact of glucose, requiring high peripheral glucose to elicit a greater effect
in the brain due to loss of the astrocytic insulin receptor. Second, it connects insulin
receptor signaling on one cell type (astrocytes) to the communication with another cell type
(neurons) and the potential impact on oxidative stress.
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Figure 2. Interaction between insulin and oxidative stress. Insulin receptor signaling is tightly linked
with oxidative stress. Dysregulated or impaired insulin receptor signaling is also defined as insulin
resistance. Not only does oxidative stress, including free fatty acid (FFA) oxidation, impair insulin
receptor signaling, but insulin receptor signaling can also activate mTOR to inhibit autophagy and
oxidative stress. It is also known that insulin receptor signaling can regulate mitochondria number,
which can be blocked by oxidative stress. Additionally, low doses of oxidative stress can have a
positive impact on insulin receptor signaling, mediated by the NADPH oxidase, Nox4. Nitric oxide
(NO) can regulate insulin BBB transport. Diseases implicated in insulin receptor signaling, such as
diabetes mellitus (DM) and Alzheimer’s disease (AD), are heavily linked to oxidative stress. Figure
generated using BioRender.

Another type of communication between cells of the NVU is neurovascular coupling.
Neurovascular coupling is the mechanism by which cerebral blood flow is impacted
through chemical and mechanical effects. Vascular tone is controlled by the NO pathway.
NO bioavailability is largely affected by hyperglycemia-induced oxidative stress. Insulin
can affect this pathway by stimulating enzymes needed to produce NO. Insulin BBB
transport is increased under inflammatory conditions and further increased when NO
synthesis is inhibited [42]. Under the same inflammatory conditions, NO released by
endothelial NOS and inducible NOS indirectly stimulates insulin transport, whereas NO
released by nNOS acts directly on BECs to block insulin transport in a region-specific
manner [43]. These data support a direct link between insulin and NO, with a downstream
impact on BBB transport.

Oxidative stress is also able to trigger insulin receptor signaling. Small oxidant
molecules and reagents that generate H2O2 can mimic insulin action in adipocytes [44].
Indeed, insulin stimulation elicits a burst of H2O2 in target cells, enhancing insulin receptor
phosphorylation. Recent molecular work found that the NADPH oxidase, Nox4, is respon-
sible for the small burst of H2O2 production and is also able to stimulate insulin receptor
phosphorylation and downstream signaling [45]. Nox4 is widely expressed in mouse
BECs [46]. Whether similar signaling events occur in BECs remains to be determined.
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Insulin can affect dietary lipid transport across the BBB, which can be a source for
oxidative stress, as mentioned in the first section. Fatty acid transport protein 1 (FATP1) is
the primary transporter for DHA across the BBB, accounting for nearly three-quarters of
the total DHA uptake by BECs [47]. Insulin further increases DHA supply to the brain by
promoting translocation of FATP1 to the cell surface. DHA has neuroprotective effects on
cognitive function and memory in AD. While DHA is a target for lipid peroxidation, it is
unknown whether dietary supplementation of DHA results in increased lipid peroxidation
activity in brain.

The impact on oxidative stress due to insulin at the BBB requires more direct investi-
gation. Many of the studies listed above are indirectly related, suggesting ways in which
oxidative stress could be implicated. Additionally, separating the impact of insulin com-
pared to other factors involved in insulin resistance (i.e., high glucose) is difficult to parse
out. Regardless, insulin and oxidative stress are clearly linked through insulin resistance,
mitochondrial changes, NO signaling, and fatty acid transport. Apolipoprotein E (apoE) is
one protein linked to insulin resistance, oxidative stress, and AD.

4. Apolipoprotein E Impact on BBB Oxidative Stress

ApoE exists in three isoforms in humans: apoE2, apoE3, apoE4. These three iso-
forms exist in known conformational and structural differences that lead to differential
interactions with proteins and peptides, including amyloid β protein (Aβ) and hyper-
phosphorylated tau [48,49]. Individuals expressing apoE4 have increased levels of CNS
oxidative stress [50]. Additionally, apoE4 carriers have increased Aβ in the vessel walls [51].
BEC exposure to Aβ dose-dependently increases oxidative stress [52]. The apoE4 isoform
increases the activation of the cyclophilin A-MMP-9 pathway, leading to BBB disrup-
tion [53,54], which could be mediated by oxidative stress [55]. ApoE regulates production
of NO [56]. Mice expressing apoE4 generate more NO compared to mice expressing
apoE3 [57]. Additionally, apoE can act as an antioxidant at physiological levels, potentially
through free metal sequestration. Mice lacking apoE are more susceptible to oxidation,
suggesting a protective role against oxidative stress for apoE [58]. ApoE4 has the least
functional antioxidant capacity, rendering this isoform as a poor protector from oxidative
stress [59]. Development of oxidative stress, particularly in AD, could be due to expression
of different apoE isoforms [60].

The various apoE isoforms have differential binding affinities to many proteins and
peptides, such as Aβ and microtubules. Additionally, each apoE isoform has a different
binding affinity to the insulin receptor [61,62]. ApoE3 binds stronger to the insulin receptor
than apoE4 [63]. Aged mice expressing apoE4 have reductions in insulin receptor signaling
and also respond less well to insulin stimulation compared to apoE3 mice [64]. In primary
neurons, apoE4 interacts with the insulin receptor in a way that impairs trafficking, leading
to impaired insulin signaling and insulin-stimulated mitochondrial respiration [64]. Since
it is known that insulin receptor signaling is involved in oxidative stress, any disturbance
in this signaling due to expression of the apoE4 isoform could contribute to changes in
cellular oxidative stress.

5. Diseases Associated with Insulin and Oxidative Stress

As reviewed above, oxidative stress occurs at the BBB by a number of mechanisms
and pathways. Oxidative stress can result in BBB disruption and other dysfunctions of the
BBB such as altered immune cell trafficking, toll-like receptor expression, and transporter
functions. Oxidative stress at the BBB is often accompanied by inflammation and/or neu-
roinflammation, with oxidative stress being both a cause and result of inflammation [65–67].
A diversity of disease states, conditions, and therapeutics can cause oxidative stress at
the BBB. These include induction by viral proteins [68], methamphetamine [66], highly
active anti-retroviral therapy [69], obesity [70], and aging [10]. Here, we will focus on two
conditions: DM and AD.
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5.1. Diabetes Mellitus (DM)

DM is defined by the body’s inability to properly respond to insulin, resulting in
hyperglycemia and abnormal metabolism of carbohydrates. Disruption of the BBB occurs
in diabetic humans [71], rhesus monkeys [72], and in rodent models of both insulinopenic
and insulin-resistant DM [73–75]. Many other alterations in BBB function occur with
diabetes, including changes in the brain-to-blood (efflux) transporters P-glycoprotein (P-gp)
and LDL receptor-related protein 1 (LRP-1). Changes in the receptor for advanced glycation
end products (RAGE), MMPs, the choline transporter, NMDA-dependent vasodilation,
immune cell trafficking, and ascorbate transport all occur at the BBB in DM or models of
DM [76].

Several mechanisms have been shown to be involved in the oxidative stress of the BBB
in DM. These include pericyte loss from excessive glycolysis, production of methylglyoxal,
and involvement of nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor
involved in the production of antioxidant proteins.

The major cause of blindness in the West is diabetic retinopathy, which is a disruption
of the blood–retina barrier (BRB). As the retina is a cranial nerve, and thus part of the
CNS, the BRB is often viewed as a specialized arm of the BBB [77]. The mechanism of
diabetic retinopathy has long been understood to be a hyperglycemic-induced loss of
pericytes [78,79], cells that are key to BBB induction and maintenance [80]. Work with the
BBB has shown that oxidative stress induced by excess glycolysis in pericytes underlies the
demise of first pericytes and then BBB integrity. Blockade of glycolysis with mitochondrial
carbonic anhydrase inhibitors reduces oxidative stress, preserves pericytes, and protects
against BBB disruption [81,82].

Methylglyoxal, a derivative of pyruvic acid, is a highly reactive and cytotoxic com-
pound that can interact with other molecules to form advanced glycation end products
(AGEs). AGEs, in turn, result in oxidative stress and loss of BBB integrity [83]. Production
of methylglyoxal is increased in hyperglycemia and has been associated with diabetic
atherosclerosis and worsening of neuropathic pain. Methylglyoxal can react with BEC
TJ proteins, resulting in BBB disruption [84,85]. Methylglyoxal is typically detoxified by
glutathione, and treatment with N-acetylcysteine restores glutathione levels and protects
against methylglyoxal-induced BBB disruption.

Nrf2 activation can improve insulin sensitivity in a mouse model of diabetes [86]. Nrf2
gene expression in the CNS is most predominant in BECs and microglia [46]. Studies have
shown a protective role for Nrf2 in preserving the BBB from diabetes-related oxidative
stress. BBB disruption inversely correlated in one study with Nrf2 expression, with lower
expression of Nrf2 being associated with higher levels of BBB disruption [87].

Treating oxidative stress at the BBB often begins with addressing hyperglycemia.
Other substances that have been shown to reduce oxidative stress and to preserve BBB
function in DM or models of DM include epoxyeicosatrienoic acids [88]. In a type II DM
model, telmisartan reduces oxidative stress, preserves BBB integrity, and maintains TJ
protein expression [89].

5.2. Alzheimer’s Disease (AD)

AD is pathologically defined by the presence of Aβ plaques and hyperphosphorylated
tau tangles. Oxidative stress in the AD brain, including its microvasculature, is high [90].
One cause of oxidative stress is Aβ. Knocking down Aβ levels by treating with an antisense
directed against amyloid precursor peptide results in a reduction in oxidative stress in
the brain [91]. The methionine at position 35 is a free radical source, producing oxidative
stress. In support of this, a mutated form of Aβ with a non-reducing amino acid substituted
for methionine at the 35 position does not produce neurotoxicity or oxidative stress [92].
Aβ induces oxidative stress at the BBB, resulting in decreased TJ protein expression [52].
In the aged SAMP8, which is used as a mouse model of AD, treatment with the potent
antioxidant alpha lipoic acid and N-acetylcysteine reverses the oxidative stress and memory
impairment seen in that model [93].
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Recent evidence has shown that the BBB is mildly disrupted in AD and that this
disruption is associated with pericyte dysfunction [94]. Pericytes are key to the induction
and maintenance of the BBB and their loss is associated with BBB dysfunction in AD
and DM as well as several other diseases [95]. Pericytes are very sensitive to oxidative
stress and their loss has been associated with oxidative stress in at least some conditions.
Although Aβ can affect both TJ protein expression [96] and pericyte viability [97], evidence
is that pericyte loss occurs very early in the course of the disease, before the onset of mild
cognitive impairment or positive Pittsburgh compound B (PIB) scans, which detect Aβ [94].
Therefore, pericyte loss and BBB disruption occur very early in the course of AD.

Just as in DM, studies have implicated the loss of Nrf2, with increased susceptibility to
BBB dysfunction related to obesity, aging, and AD [98]. Glycogen synthase kinase-3 (GSK)
antisense in SAMP8 protects against oxidative stress via an Nrf2 pathway [99]. Other work
emphasizes a major role for microglial inflammation resulting in oxidative stress at the
BBB [100].

As discussed above, two major efflux (brain-to-blood) transporters located at the BBB
are P-gp and LRP-1. These transporters have many ligands, including Aβ. Clearance
of Aβ from the brain is predominantly dependent on these pumps, both of which are
impaired in AD and the AD models SAMP8 and Tg7645 [101–103]. The neurovascular
hypothesis of Zlokovic states that the impaired efflux of Aβ from the brain contributes to
Aβ accumulation and the progression of AD [103]. The likely role of oxidative stress as
underlying the impairment of P-gp has recently been reviewed [104]. In the hippocampus
of subjects with AD, the level of LRP-1 is not altered, but the amount LRP-1 that is oxidized
is greatly increased [105]. Treatment with N-acetylcysteine reverses the inflammation-
induced impairment of Aβ efflux [106]. Many xenobiotics are also substrates of P-gp,
and so decreased P-gp activity may place AD patients at increased risk of drug-related
neurotoxicity.

Inhibition of the mammalian target of rapamycin (mTOR) protects the vasculature
from aging by reducing oxidative stress [107]. Rapamycin, an mTOR inhibitor, can preserve
the BBB in a mouse model of AD by limiting BBB disruption, upregulating TJ proteins, and
downregulating MMPs [108]. Recently, there has been a push to test the clinical efficacy of
rapamycin in AD [109]. We recently found that, while rapamycin did not impact insulin
transport across the BBB, it did affect insulin binding at the BBB, which could impact
downstream insulin receptor signaling [110].

6. Conclusions

Oxidative stress can occur in any organ throughout the body and each organ has
its own unique response to combat the production of oxidative stress. For example,
oxidative stress is known to impact the gut microbiome, which can indirectly lead to
alterations at the BBB through release of circulatory factors and have been linked to
neurodegenerative and metabolic disease [111,112]. We chose to focus this review on
the BBB and accompanying BECs, due to the interactions between insulin resistance
and two primary diseases in which insulin resistance is implicated: DM and AD. We
recognize one limitation of our review, which is the limited discussion regarding transport
of antioxidants across the BBB. This topic deserves an independent review as there are a
number of endogenous and exogenous antioxidants or antioxidant-like compounds, such
as polyphenols, that require BBB transport to enter the CNS, utilizing different transport
systems and stereoselectivity. Phenolic compound and other antioxidant BBB transport
has been reviewed elsewhere [113,114]. Additionally, as antioxidant defense systems vary
greatly between humans and basic laboratory models, covering BBB transport systems and
distinguishing between different models are beyond the scope of this review. Instead, we
focused our review on the BECs themselves, rather than transport across this cell type. We
presented the literature regarding BECs antioxidant defense systems and the generation
of oxidative stress within BECs. We discussed ways in which insulin can mediate or
contribute to oxidative stress at the BBB and the involvement of apoE.
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Lastly, we highlighted two diseases affected by oxidative stress and involved in insulin
resistance. Although AD and DM are very different diseases, one affecting cognition and the
other peripheral glucose metabolism, they share many mechanistic similarities. Diabetes,
hyperglycemia, and obesity are risk factors for AD and other cognitive deficits, both
diseases have disruptions and other dysfunctions at the BBB, and both can be associated
with insulin resistance, one mainly in the peripheral tissues and the other mainly at
brain tissues. These similarities in symptoms may be mediated by the similarities in
their underlying disease mechanisms. For both diseases, one of the most prominent
characteristics is that of oxidative stress involving Nrf2, neuroinflammation, pericyte loss,
and similar alterations in BBB functions [115]. These connections suggest that, not only
may both diseases be treatable by similar drugs [116], but they may explain why metabolic
drugs commonly used to treat diabetes hold potential for the treatment of AD as well.
Regardless of how oxidative stress may be involved in these diseases, targeting oxidative
stress or insulin resistance can clearly improve the structure and function of the BBB.
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