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Abstract: Dairy cattle experience health risks during the periparturient period. The continuous
overproduction of reactive oxygen species (ROS) during the transition from late gestation to peak
lactation leads to the development of oxidative stress. Oxidative stress is usually considered the main
contributor to several diseases such as retained placenta, fatty liver, ketosis, mastitis and metritis
in periparturient dairy cattle. The oxidative stress is generally balanced by the naturally available
antioxidant system in the body of dairy cattle. However, in some special conditions, such as the
peripariparturient period, the natural antioxidant system of a body is not able to balance the ROS
production. To cope with this situation, the antioxidants are supplied to the dairy cattle from external
sources. Natural antioxidants such as selenium and vitamin E have been found to restore normal
health by minimizing the harmful effects of excessive ROS production. The deficiencies of Se and
vitamin E have been reported to be associated with various diseases in periparturient dairy cattle.
Thus in the current review, we highlight the new insights into the Se and vitamin E supplementation
as antioxidant agents in the health regulation of periparturient dairy cattle.

Keywords: periparturient period; dairy cattle; oxidative stress; antioxidants; selenium; vitamin E

1. Introduction

The antioxidant system’s capacity to neutralize and remove reactive oxygen species
(ROS) created during metabolic activities is normally sufficient under normal physiological
conditions. It has been documented that metabolic changes during pregnancy and calving
may raise ROS production beyond the required threshold [1]. Oxidative stress developed
when the imbalance between ROS production and the availability of antioxidant molecules
occurred, which had proven cattle to various infections [2,3]. The high production of ROS
other than the normal level causes lipid peroxidation results in oxidative stress, tissue dam-
age and altering the level of reduced glutathione (GSH), which is involved in glutathione
metabolism [4,5]. Damage to the structure and function of cellular macromolecules (lipids,
proteins, and nucleic acids) occurs when the pro/antioxidant balance is disrupted, result-
ing in oxidative stress and a preponderance of oxidation over reduction processes lead to
metabolic disorders and diseases in dairy cows [6]. Thus maintaining redox homeostasis in
dairy cows is crucial during the periparturient and peak lactation phases [7–9].

The oxidative stress around parturition may contribute to immune and inflammatory
abnormal function and thus increase the chances of metabolic and infectious diseases [10,11].
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The balance between oxidants and antioxidants is necessary during the milking period to
improve dairy cows’ efficiency [12]. During the periparturient period, oxidative stress is
considered one of the key factors associated with susceptibility to infections such as retained
fetal membranes, metritis, mammary edema, mastitis and retained fetal membranes [2,13],
which is supported by several studies [14–16]. Harrison et al. reported that oxidative stress
before parturition is probably the main contributing factor for metabolic and reproductive
disorders in the milking period in dairy cattle [17]. Consistently Kizil et al. documented
that the acceleration of peroxidation reactions and weakened antioxidant system in cows
were associated with metritis [18].

The supplementation of vitamins and minerals has been documented to have a pos-
itive impact on the enhancement of the antioxidant status and immune responses in
perinatal calves [19]. The multicomponent antioxidative system neutralized the gener-
ated ROS, including selenium-dependent glutathione as one of its primary components
(GSH-Px; EC 1.11.1.9). The catalytic center of the enzyme contains selenium in the form of
selenocysteine, which catalyzes the reduction of hydrogen peroxide and lipid peroxides
when combined with GSH [20]. Consistently, the Se and vitamin E have been widely
studied for their antioxidative properties and immune regulation and consequent role
in cattle health [21–23]. Similarly, other studies also documented the positive impact of
Se and vitamin E supplementation on the antioxidant and health status improvement of
dairy cattle [24,25]. Consistently, it has been documented that Se and vitamin E administra-
tion significantly enhanced the growth rate of calves by reducing the perinatal oxidative
stress [26].

The periparturient phase in high milking cows requires maximum antioxidant system
efficiency, while deficiency of nutrients like selenium and vitamin E expose dairy cattle to
placental retention and mastitis [27]. When the milk yield of cow is high, the antioxidant
system’s lowering capability of oxidative stress may be insufficient, which is especially
obvious in selenium insufficiency. The availability of selenium in the body is the pri-
mary determinant of glutathione peroxidase and other selenoproteins involved in various
metabolic processes [28–30]. Beside, the deficiency of Se and vitamin E also compromised
the immune system of periparturient cows. Vitamin E and Se share common biological
activities have shown antioxidant properties and deficiencies of these nutrients may lead to
neutrophil activity reduction as well. Thus, the deficiencies of either one or both may affect
the antioxidant activity of the body which is not sufficient to protect the neutrophil from
the destructive action of toxic oxygen molecules in mammary glands [31,32]. The sufficient
supply of vitamin E and Se maintained the optimum level of antioxidant activity which
is associated with the rapid neutrophil influx into milk during intramammary infection
caused by microorganisms [33,34]. Thus, we designed the current review to highlight
the consequences of oxidative stress in periparturient dairy cattle and the role of Se and
vitamin E supplementation as antioxidant agents in animal health regulation.

2. Factors That Predispose Periparturient Dairy Cattle to Oxidative Stress

During the periparturient period, dairy cattle experience several physiological changes [35].
Metabolic stress is one of the key issues developed due to these physiological changes,
which are associated with excessive lipid mobilization followed by oxidative stress and in-
flammatory and immune dysfunction [36,37]. These three processes (excessive mobilization
of lipid, oxidative stress, inflammatory and immune dysfunction) are interconnected, which
may contribute to the diseases during the periparturient period in dairy cattle [38–41]. The
interrelation of oxidative stress, excessive lipid mobilization and inflammatory and immune
dysfunction are summarized in Figure 1.
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Figure 1. The interconnection among oxidative stress, excessive mobilization of lipid and abnormal
regulation of immunity and inflammation; the oxidative stress causes dysfunction of immunity
and inflammation by using nuclear factor kappa-B (NF-kB) signaling. The abnormal regulations of
inflammation enhance the tumor necrosis factor-alpha production in non-phagocytic cells, resulting
in over-production of OS and excessive lipolysis.

The dry matter intake in periparturient dairy cattle decreases and the energy and
the calcium requirements increase for lactation [42]. In such condition, more oxygen is
utilized by dairy cattle for cellular respiration to fulfill the demand of energy for the onset
of lactation, which may lead to a negative energy balance [43]. To fulfill the requirement of
energy, dairy cattle utilize body reserves especially in adipose tissues [39]. The increase
in the ROS generation and reactive nitrogen species (RNS) may take place in response to
excessive lipid mobilization [44,45]. The high intake of crude protein (CP) near parturition
in dairy cattle may lead to increased urea level, which is associated with the development
of nitrosative stress status, which negatively impacts animal health [44].

The body condition score (BCS) is another important factor determining cows’ sus-
ceptibility to OS during the periparturient period. It has been documented that cows
with higher body condition scores > 3.5/5 were more prone to OS and metabolic stress at
transition time [14]. The BCS is characterized by a breakdown of fat and protein followed
by catabolic pathways associated with energy production from lipids and amino acids
during the transition period in cattle. Furthermore, it has been shown that lipid peroxi-
dation is considered a key factor for OS [46]. The excessive loss in BCS is also a critical
factor associated with excessive production of OS and non-esterified fatty acids (NEFAs) in
periparturient dairy cattle [47,48].

The increased level of NEFAs and beta-hydroxybutyrate (BHB) due to lipid mobiliza-
tion may lead to oxidative stress and dysregulation of the immune system in periparturient
dairy cattle [39,49]. A low level of glucose around parturition is also a critical factor
that causes less effective pathogen-killing oxidative burst from polymorphonuclear neu-
trophils [50] which impaired the host defense. The inflammation around peripartal helps
to facilitate the process of parturition and homeorhetic adaptations to the onset of lac-
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tation [51,52]; however the abnormal regulation of inflammation caused by OS around
parturition was documented to be associated with metabolic and infectious diseases [39].
From the above discussion we concluded that nutritional management might be one of
the effective ways to enhance the antioxidant capacity of animal and protect them from
oxidative stress.

3. Antioxidant Properties of Selenium and Their Role in Dairy Cattle Health

For animals, there are two important sources of Se: (1) selenoamino acids naturally de-
rived from plants, such as selenomethionine and selenocysteine; and (2) inorganic Se, such
as selenate or selenite [53]. Even if an animal’s physiological requirement for Se is modest,
the anti-oxidant system is weakened if it is not satisfied, resulting in negative repercussions
for animal health [54]. Selenium is an essential trace element having antioxidants and
immunomodulating properties [55–57].

Dietary selenium (Se) can be supplemented from organic or inorganic sources and this
may affect Se metabolism and functional outcome such as antioxidative status and immune
functions in dairy cows [53]. Glutathione peroxidase (GPx) is a selenium-containing an-
tioxidant enzyme that plays an important role in the antioxidant defense of the body [58].
The selenium status is usually determined by measuring the level GPx in blood [59]. Fur-
thermore, selenium supplementation caused an undefined antibacterial activity in milk
lactoserum [60], but the mechanism of this antibacterial activity is unknown; however,
increased glutathione peroxidase (GSH-Px) activity will decrease pathogenic microorgan-
isms’ development rate in whey. Selenium is a powerful antioxidant that is integrated
into selenate in the form of GSH-Px [61]. GSH-Px is a selenoprotein that plays a role in
the antioxidative defense process in mammals and cells. It has the ability to eliminate
lipid-damaging peroxides and protect immune cells from oxidative stress [57]. Recently
published findings showed that supplementation of 0.30 mg Se/kg of DM as Nano-Se
for 30 days significantly increased the level of GSH-Px activity. In addition, the mRNA
expression of genes (glutathione peroxidase 1, 2 and 4; thioredoxin reductase 2 and 3; and
selenoproteins W, T, K and F) were upregulated in response to Nano-Se supplementation
in mammary glands of dairy cattle [62].

Se regulates several important antioxidant genes such as TOAX, GPX, CAT, SOD, and
GSH to relieve oxidative stress [63]. The SOD gene causes the reduction of oxidative stress
through the quenching of the superoxide radical and transferring it into less toxic hydrogen
peroxide followed by breaks down into water and oxygen to prevent DNA damage using
enzyme catalase (CAT) [64–66]. The different types of selenoproteins and their antioxidant
properties are summarized in Table 1.

Table 1. Various types of Selenoproteins and their antioxidant properties.

Selenoproteins Properties

Glutathione peroxidase 1 Cellular reduction of H2O2 [67,68].

Glutathione peroxidase 2 Reduction of peroxide in the gut [69].

Glutathione peroxidase 3 Reduction of peroxide in the blood [70].

Glutathione peroxidase 4 Causes the Reduction of hydrogen peroxide radicals and facilitates lipid peroxides to water and
lipid alcohols and the cellular ferroptosis induced by iron [71].

Selenoprotein H Responsible for Nuclear localization, which is associated with redox sensing and transcription [72,73].

Selenoprotein O Mitochondrial protein consisted of a cytosine-nucleotide-nucleotide-uridine motif suggestive of
the redox role [62].

Selenoprotein T Deficiency leads to early embryonic lethality [74].

Selenoprotein W Have a role of putative antioxidant which is important for muscle growth [75].

Selenophosphate synthetase 2 Selenophosphate synthetase 2 has an essential role in the biogenesis of all selenoproteins together
with itself [76].
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As a food component, selenium is an exceptional agent of protection from atheroscle-
rosis, coronary ischemic disease and cancer. Due to the antioxidant properties, selenium is
considered a serious factor of biological and antioxidant protection of vascular endothelium,
low-density lipoproteins, DNA protection and chromosomes [77].

3.1. Selenium Role in Cattle Health

Oxidative stress is the major contributor to various diseases in dairy cattle, including
metabolic and inflammatory problems (mastitis, metritis, ketosis etc.,) [36,78–80], and
parasitic infections [81,82]. It has been reported that oxidative stress is also associated with
reproductive diseases in cattle [83–85]. Furthermore, Diyabalanage et al. reported that
an adequate supply of Se is necessary for cattle because it can pass through the placental
barrier during pregnancy which is essential for intrauterine and calf development [59]. Con-
sistently, a study reported that the sufficient supply of Se could enhance the antioxidative
status and consequent improvement in dairy cattle health [86].

3.1.1. Selenium Role in Mastitis Control

High-producing periparturient dairy cows experienced more incidence of mastitis
because of oxidative stress which causes the changes in the expression of genes associated
with proinflammatory factors [87]. Furthermore, Miranda et al. [88] reported that low
levels of Se and glutathione peroxidase activity increase oxidative stress in the mammary
gland, which is linked to a reduction in the number of mammary epithelial cells. However,
the balance level of Se supplementation decreases the concentration of hydrogen peroxide
in mammary epithelial cells [88]. Thus by reducing the level of hydrogen peroxide in
mammary epithelial cells, the oxidative status could be relieved which results in reducing
the apoptotic cells.

In a recent study GSH-Px activity in whole blood and somatic cell count (SCC) in
canned milk have been found to be negatively correlated with each other [89]. The increase
in GSH-Px activity in blood after selenium supplementation was linked to a reduction in
the frequency of subclinical mastitis in dairy cattle [12]. Consistently, previous studies
show that Se supplementation improves antioxidant status; enhances the plasma glu-
tathione peroxidase (GSH-Px) activity, decreases the malondialdehyde (MDA) level in
plasma, and decreases SCC in milk [90–94]. The increased level of MDA is an indication of
oxidative stress.

Twenty-five selenoproteins have been discovered in animals, and at least 12 of them
have a broad immunological and antioxidant role, indicating that they could be useful in
dairy cattle udder health and the prevention of subclinical mastitis. The sensitivity of cows’
mammary glands to bacteria may be linked to their selenium levels [89]. According to
recent studies, the incidence of mammary gland infection in dairy cows is dramatically
reduced after eight weeks of selenium supplementation at a dietary level of 0.2 mg/kg [95].
In general, selenium deficiency suppresses the immune system, whereas supplementing
with low amounts of selenium may improve and/or restore immunologic capabilities. In a
study, Hemingway found that 14 out of 36 cows receiving antibiotic therapy during the
dry time developed mastitis, but only four cows out of 36 receiving 4 mg Se during dry
milking had mastitis [96]. A study has documented that Se enhanced the immunity of
the mammary gland against infection and subsequent control of mastitis [60]. In addition,
they showed that the mammary gland’s innate and adaptive immune action is improved
through cellular and humoral activities in response to Se supplementation.

It has been reported in a recent study that supplementation of Se for 90 days in mice de-
creased the IL-1β, TNF-α, pyrin domain-containing protein 3 (NLRP) and caspase-1 expres-
sion level in Staphylococcus aureus-infected mice [97]. Moreover, they documented that Se
treatment also causes the inhibition of the NF-κB/MAPK pathway by suppressing NALP3
and attenuate the mastitis caused by S. aureus in mice [98–102]. The Se also inhibited the ex-
pression of TLR2, myeloid differentiation factor-88 (Myd88), NLRP3, Caspase-recruitment
domain (ASC), and Caspase-1 caused by S. aureus in mice RAW 264.7 macrophages fol-
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lowed by suppression of NF-κB and MAPK signaling pathways [103,104]. Besides, Se also
regulates the LR2-related pathways in the mouse mammary gland followed by S. aureus
infection to suppress the inflammatory and control mastitis. Injectable Na-selenite as Se
also decreased the level of somatic cell count in milk and enhanced dairy cattle’s milk
production [105].

3.1.2. Effect of Selenium on Reproduction of Animals

It has been reported that oxidative stress severely reduces sperm function while antiox-
idants such as Se can correct the male infertility factors [106,107]. Besides, the decreased
level of selenium is also associated with infertility, anestrous and retained placenta in
dairy cattle [108]. The deficiency of selenium is associated with abortions [109,110] and
stillbirth [111]. The possible reason for abortion is the insufficient progesterone concentra-
tion to maintain the pregnancy. The supplementation of Se has been associated with the
improved concentration of progesterone and promotes its postpartum production [110].
Moreover, the incidence of metritis and ovarian cysts [97] and the incidence of retained
placenta were decreased in response to Se administration [112]. In addition, the Se also
regulates the expression of GPx1 in granulosa cells which has a role of antioxidant during
ovarian follicular development [113].

It has been reported that the integrity of the sperm membrane and their fertilizing
ability is maintained with proper supplementation of antioxidants [114]. Interestingly,
a study has documented that proper administration enhances the antioxidant defense
capability of the organism which is associated with modulation of the quality of the male
ejaculate [115]. Selenoproteins such as selenophosphate synthase (SPS-2) and mitochondrial
capsule selenoprotein (MCSeP) have been identified in testis [116]. The OS increases
during pathological conditions and leads to lipid peroxidation which is negatively linked
to the fertility potential of spermatozoa [106,117]. In addition, the high concentration of
polyunsaturated fatty acids (PUFAs) also enhances lipid peroxidation which causes the
sperm plasma membrane fluidity and integrity, thus affect the number of spermatozoa and
their motility, which is necessary for sperm-oocyte fusion ability [106,117–120]. The OS also
caused damage to sperm DNA, which is the main factor that contributes to the transmission
of defective paternal DNA to a fetus [121]. The ROS produced malondialdehyde (MDA)
from its action on membrane lipids which are mutagenic aldehydic lipid peroxidation
products in seminal plasma and can be used as an infertility measurement tool [122,123].
The effect of Se on male sperm functions has been summarized in Figure 2.

Figure 2. The Se supplementation enhanced the expression of TOAC, GPX, SOD, testosterone and
LH; decreased the level of ROS, OS, MDA and consequent DNA damage. The sperm functional and
structural parameters are increase and consequent male fertility and reproductive function.
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3.1.3. Role of Selenium in Ketosis and Fatty Liver Control

As discussed earlier, negative energy balance and oxidative stress cause many metabolic
diseases, including ketosis in periparturient dairy cattle (Figure 1). It is well documented
that periparturient cattle utilize their body fat to cope with the negative balance of en-
ergy [124]. The fatty acids are considered an essential source of energy in perinatal cattle.
Thus, an increase in the concentration of ketone bodies and non-esterified fatty acids in
plasma and decrease in blood glucose after delivery can be observed in dairy cattle. These
changes may lead to oxidative stress and metabolic diseases like ketosis and fatty liver in
dairy cattle [125,126]. The decrease in selenium concentration and total antioxidant capacity
(TAOC) has been documented in cattle with clinical and subclinical ketosis [127]. Ren et al.
has demonstrated that selenium improves glyconeogenesis and enhance the antioxidant
system resulting in the reduction in the incidences of metabolic diseases such as fatty liver
and kestosis in periparturient dairy cattle [128]. Furthermore, they documented that Se
treatment down-regulated the expression of alpha S1 casein (CSN1S1), apolipoprotein A-I
(APOA1), apolipoprotein C-II (APOC2) and up-regulated the macrophage-stimulating
protein (MST1), chromogranin-A (CGA) in periparturient cattle. It has been documented
that down-regulation of APOA1, APOC2, and CNS1S1 is associated with reducing the lipid
activity, thus controlling the excessive fat mobilization, thereby reducing the chances of ke-
tosis and fatty liver [129]. Moreover, the oxidized low-density lipoprotein (LDL) oxidation
has been inhibited by MST1 which is essential for liver lipid and glucose metabolism [130].

4. Antioxidant Properties of Vitamin E and Their Role in Dairy Cattle Health

Vitamin E, a fat-soluble vitamin, is a strong antioxidant agent protecting cell mem-
branes from the lipid peroxidation chain reaction [131] by acting in synergy with Se [132].
The cell membrane of immune cells consists of polyunsaturated fatty acids, which are sen-
sitive to lipid peroxidation by ROS [112]. Exposure to aluminum created oxidative stress in
mice, while antioxidative status was restored in mice followed by vitamin E injection [133].
Vitamin E readily exchanges and equilibrates between lipoproteins [134,135], and being
an integral component of lipid membranes, it plays a protective role of lipid membranes
from the attack of reactive oxygen [136,137]. It is the chain-breaking antioxidant and the
first line of defense against lipid peroxidation, shielding cell membranes from free radi-
cal damage [138]. Vitamin E increases the functional efficiency of neutrophils to protect
against oxidative damage following the intracellular killing of ingested bacteria [139].
α-Tocopherol, the most active form of vitamin E has been reported in many antioxidative
processes [68,140,141]. Because of antioxidative property, vitamin E has an impact on the
prevention of chronic diseases [142].

The α-Tocopherol is the most available bioactive form of vitamin E and has shown
strong antioxidative and immunoregulatory properties in dairy cattle [143]. In addition,
α-tocopherol prevents the proinflammatory status, enhances immunity and is linked to
greater energy and reduces the susceptibility to infections in calves [144]. Similarly, Kuhn
et al. documented that α-tocopherol (10 µM) significantly inhibited the loss of bovine
mammary endothelial cell barrier integrity induced by pro-oxidant. Furthermore, they
reported that α-tocopherol has antioxidant properties which effectively prevents the bovine
mammary endothelial cell damage and loss of function caused by oxidant challenge [145].
In addition, Mokhber-Dezfouli et al. reported that intramuscular injection of vitamin E sig-
nificantly decreased the concentration of malondialdehyde (MDA), and lipid peroxidation
and increased plasma antioxidant activity 4 hr after birth in calves [146]. The increased
level of MDA and decreased level of total antioxidant capacity (TAOC) has been observed
around parturition, which shows that the cows were under oxidative stress during the tran-
sition period [147]. Vitamin E improves the killing ability of neutrophils [148] and humoral
immunity in calves [29], while its deficiency impairs the function of macrophages and
neutrophils [149]. It has been documented that Vitamin E supplementation significantly
improved the overall performance, energy metabolism and alteration in fat depot mass
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by reducing the oxidative stress in perinatal dairy cows [150]. For ease, the antioxidant
properties of vitamin E are summarized in Table 2.

Table 2. The antioxidant properties of vitamin E.

Vitamin E Treatment Possible Outcomes References

Vitamin E parenteral administration
Prevented suppression of TAS and GPx

[19]Increased humoral immune response,
Enhanced daily growth in calves

1 mg/kg of Vitamin E subcutaneous supplement

Enhance immunity and antioxidant system

[22]
Regulated tumor necrosis factor-alpha (TNF-α),
interleukin-1 (IL-1), interferon gamma (IFNγ), SOD and
GPx in calves

γ-tocopherol

Prevented cellular damage and loss of function of primary
bovine mammary endothelial cells (BMECs) caused by
oxidant challenge

[145]Decreased cell cytotoxicity and enhanced cell viability
Reduced lipid peroxidation and apoptosis caused
oxidative challenge

Vitamin E intramuscular injection (40 IU/kg
body weight)

Enhanced antioxidant activity

[146]
Suppressed lipid peroxidation
Decreased MDA values in plasma
Increased α-tocopherol in plasma of calves

Vitamin E supplementation

Prevented oxidative stress caused by aluminum in rats

[133]

Enhanced antioxidative status in rats
Decreased lipid peroxidation
Suppressed MDA concentration in plasma of rats
Decreased Plasma thiobarbituric acid-reacting
substances (TBARS)

Vitamin E supplementation

Enhanced antioxidative status and suppressed oxidative
stress in perinatal cattle
Enhanced GSH-Px concentration
Decreased the SOD level

[43]

Vitamin E supplementation

Decreased the SOD, MDA and catalase (CAT) level
Enhanced the activity of TAOC, phagocytic activity (PA) of
granulocytes and lymphocyte proliferation assay (LPA) in
transition dairy cows

[151]

Vitamin E supplementation (A review) Enhanced the antioxidant capacity and immunity in
transition dairy cattle [112]

Vitamin E supplementation Reduced tissue peroxidation in chicken [152]

Vitamin E supplementation Reduced lipid peroxidation in meat and enhance
antioxidative status [153]

Vitamin E supplementation Enhanced the antioxidative status in dairy cattle [154]

α-tocopherol supplementation Enhanced antioxidant status
Suppressed lipid peroxidation [155]

Vitamin E injection Decreased Plasma thiobarbituric acid-reacting substances
(TBARS) in muscle [156]

Vitamin E Role in Cattle Health

A severe decrease in vitamin E level of blood during the transition period in dairy
cattle has been observed [157,158]. Consequently, it has been investigated that the low
level of vitamin E decreases in plasma during the periparturient period which is associ-
ated with intramammary infections [159]. In addition, the dairy cattle having vitamin
E concentration in plasma lowers than 3mg/mL at calving were more susceptible to
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clinical mastitis [160]. The supplementation of vitamin E has been documented for its
positive effect on antioxidant status; enhance immunity, overall peripartum reproductive
performance and energy improvement of transition dairy cows [161]. Thus, vitamin E
has gotten a growing interest, especially in preventing mammary infections of perinatal
dairy cows [162]. Consistently, previously published studies had reported that vitamin
E supplementation during perinatal period could reduce the chances of bovine masti-
tis [163,164]. Moreover, the administration of vitamin E in combination with Se enhanced
the immunity and antioxidant status and showed more effective outcomes in preventing
intramammary infections [160,165]. They further documented that somatic cell counts were
significantly reduced in milk in response to vitamin E and Se treatment, which shows their
effectiveness in reducing the incidences of mastitis. Consistently a study has documented
that parenteral injections of vitamin E (2100 mg) for two weeks before and on calving day
decrease the incidences of mastitis in dairy cows [166]. Similarly, a study documented that
supplementation of α-Tocopherol (1 g/cow/day) for 30 days before and up to 60 days after
calving significantly increased milk production and reduced the incidence of mastitis in
Jersey cattle in India [167]. Vitamin E regulates the immunity and balances the oxidative
status which is the main reason that exposes dairy cattle to udder infection and retained
placenta [168–170]. Allison and Laven [171] documented that vitamin E is more effective
against environmental udder pathogens such as Escherichia coli and Streptococcus uberis
which are not normal inhabitants of skin or udder but gain entry during the periparturient
period when the teat canals are open in dairy cows. Moreover, vitamin E reduces the
oxidative stress in the udder and enhances immunity which usually declines during the
transition period in dairy cattle [171].

In addition to antioxidant and immune regulatory properties, vitamin E also has an
essential role in energy metabolism which is also a critical factor that exposes dairy cattle
to oxidative stress and consequently to infections [172,173]. There is growing evidence
that oxidative stress during perinatal period in dairy cows causes metabolism disturbance
which may lead to the retained placenta [145]. Oxidative stress and immune disturbances
are also considered the common factors that predispose periparturient cows to the retained
placenta and consequent fertility issues [174–176]. The incidence of retained placenta
was reported to be greater in dairy cattle having deficiency of vitamin E and Se [177]. A
deficiency of vitamin E during the transition period relatively reduces the intake of green
fodder, which induces the accumulation of lipid peroxides in the placenta, resulting in
retained placenta [150,178]. It has been demonstrated that supplementation of a sufficient
quantity of vitamin E in plasma during the periparturient period significantly reduced the
cases of retained placenta [179]. Consistently, a study documented that vitamin E injections
for seven days significantly reduced the occurrence of retained placenta [178]. Similarly,
vitamin E injections (2100 mg) for two weeks before and on the day of calving prevent the
incidences of retained placenta [154]. Consistently, another study documented that the
injection of vitamin E (3000 IU) on the 21st day and the 5th day before parturition may
contribute to reducing the incidence of retained placenta in dairy cattle [156]. Another study
has shown that presupplementation of vitamin E decreased the incidence of stillbirth and
retained placenta and improved the reproductive performance in dairy cattle by reducing
oxidative stress [151,179].

5. Conclusions

To sum up, redox balance has an essential role in the regulation of several biological
processes. However, when the imbalance occurs between the production of oxidants
and the animal body natural antioxidant system, it may lead to serious health issues in
periparturient dairy cattle. Therefore, the external antioxidant source may contribute
to balance the situation of oxidative stress. Vitamin E and Se are well studied for their
antioxidant and immune regulating properties. Thus the proper supplementation of Se and
vitamin E during the periparturient period could be a good choice to relieve the oxidative
stress and the consequent consequences related to health in dairy cattle.
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