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Abstract: Sorghum is one of the most important food and feed cereal crops and has been gaining
industrial importance in recent years for its biofuel, nutraceutical and antioxidant values. A ge-
netic profile variation study was undertaken for the accumulation of phytochemicals in 61 diverse
sorghum accessions differing in their growth habitat and grain color through non-targeted Gas
Chromatography–Mass Spectrometry (GC-MS/MS) analysis. Mass Spectrometry–Data Indepen-
dent AnaLysis (MS-DIAL) and MetaboAnalyst identified 221 metabolites belonging to 27 different
phytochemicals. Tropical and temperate sorghums were distinct in their metabolic profiles with
minimum overlaps, and 51 different metabolites were crucial in differentiating the two groups.
Temperate sorghums had the ability to accumulate more of phenolic acids, phytosterols, flavonoids,
carotenoids, and tropical sorghums for stress-related amino acids, sugars and fatty acids. Grain-
color-based Partial Least Square–Discriminant Analysis (PLS-DA) analysis identified 94 Variable
Importance in Projections (VIP) metabolites containing majority of flavonoids, phenylpropanoids and
phytosterols. This study identified two sorghum lines (IS 7748 and IS 14861) with rich amounts of
antioxidants (catechins and epicatechins) belonging to the group of condensed tannins that otherwise
do not accumulate commonly in sorghum. Out of 13 metabolic pathways identified, flavonoid
biosynthesis showed the highest expression. This study provided new opportunities for developing
biofortified sorghum with enhanced nutraceutical and therapeutics through molecular breeding and
metabolic engineering.
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1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) is the fifth important cereal crop globally after
rice (Oryza sativa L.), wheat (Triticum aestivum L.), maize (Zea mays L.) and barley (Hordeum
vulgare L.), with 40.1 million ha under cultivation and 57.9 million metric tonnes of grain
production [1,2]. Sorghum is highly adapted to marginal and stressful environments and
remains the crop of choice in semi-arid regions [2]. Sorghum has diverse applications,
such as grain as food and feed, fodder and forage sorghum for pasture and hay in live-
stock feed, broomcorn sorghum for making brooms and sweet sorghum for biofuel and
syrup production. Sorghum is used for industrial applications such as biscuit industries,
therapeutics, synthesis of organic compounds, and utility items. A declining trend in
sorghum consumption in recent years is attributed to increasing urbanization and a lack
of diversified value-added products in sorghum. Under a changing climatic scenario,
sorghum can be considered as a better alternative to rice, wheat or maize due to its high
adaptability to marginal environments [3,4].

Antioxidants 2021, 10, 1511. https://doi.org/10.3390/antiox10101511 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-9814-1319
https://orcid.org/0000-0002-8803-7662
https://orcid.org/0000-0001-6632-3361
https://orcid.org/0000-0002-0649-8853
https://doi.org/10.3390/antiox10101511
https://doi.org/10.3390/antiox10101511
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10101511
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox10101511?type=check_update&version=1


Antioxidants 2021, 10, 1511 2 of 23

Changing human lifestyles and increased frequency due to the occurrence of new
diseases, namely, obesity, diabetes and cardio vascular diseases, requires a change in the
human diet [5]. In this context, sorghum has been rated as a valuable and economically
functional food due to the possession of unique bioactive compounds, namely, flavonoids,
phytosterols and polyphenols, exhibiting immense health benefits, including anti-cancer
and antioxidant potentials [6–11]. Sorghum bran is a rich source of various phytochem-
icals and antioxidants [12,13]. Antioxidant activities can be attributed to their phenolic
compounds [6,14–17].

Sorghum grains are used to produce functional snacks [18–21], beverages [22–24],
food colorants [25], meat preservatives [26] and animal feed [27]. Therapeutic potentials
of sorghum indicated its suitability to patients with diabetes and cardiovascular prob-
lems [28,29]. Encapsulated sorghum tannins rich in antioxidants were found to reduce
the rate of gastric digestion and found to exhibit anti-hyperglycaemic effects [30,31]. Non-
targeted metabolomics in the kernels of diverse rice and maize genotypes using GC-MS
and UHPLC-MS/MS revealed the genotypic differences in the accumulation of bioactive
compounds [32,33]. Tugizimana et al. (2019) [34] conducted metabolomic analysis of
disease responsiveness in three different sorghum accessions and identified key path-
ways reprogrammed during disease progression. Turner et al. (2016) [35] analyzed the
metabolome profiles of 11 sorghum lines and revealed that accumulation of primary and
secondary metabolites are tightly related to photosynthesis and biomass accumulation.
In another study, 217 metabolites differentiating white, red and purple sorghum grains
were identified [36]. Brewing sorghum accessions exhibited higher levels of antioxidant
properties due to the possession of phenolic acids and proanthocyanidins [8]. Normally,
most sorghums contain common antioxidants, namely, phenoloic acids, flavonoids and
anthocyanins, but accumulation of effective antioxidant “condensed tannins” is rarely
reported [37]. In the present study, a large-scale non-targeted metabolomic analysis was
carried out in a set of 61 sorghum accessions differing in grain color and geographical
origin. Results of this study unravelled the metabolome complexity and nutraceutical,
therapeutic and antioxidant potential of sorghum grains. Outcomes of this study provide a
pathway for dissecting the genetic control of metabolite accumulation in sorghum, which
will in turn accelerate the development of biofortified sorghum varieties through metabolic
engineering and molecular breeding.

2. Materials and Methods
2.1. Genetic Materials

Present study was carried out in a subset of 61 sorghum accessions exhibiting wider
geographic and genetic diversity with varied grain color obtained from National Bureau
of Plant Genetic Resources (NBPGR), New Delhi, India (Supplementary Table S1 and
Figure 1). The study materials were representative of five different grain color categories:
black (2), brown (21), red (17), white (20) and yellow (1). All the accessions (10 plants each
accession) were evaluated in a randomized block design during Rabi season (October to
March) 2019 at Agricultural Research Station, Kovilpatti, India (Latitude 9.17′ N, Longitude
77.88′ E) [38] under dryland condition. Three panicles were selfed prior to flowering
to avoid outcrossing. Seeds from the selfed panicles were used for color grading and
metabolomics studies.

2.2. Grading of Grain Color

Grains of all the accessions were graded using Royal Horticulture Society (RHS)
color chart [39]. Grain color, namely, black, brown, yellow, red or white, was assigned
by matching with the sorghum descriptor color grade following the standards of the
International Board for Plant Genetic Resources, Rome, Italy [40] (Figure 1).
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pled with AxION iQT’s MASS IQ software for data acquisition with DB-5 MS Capillary 
Standard non-polar column (30Mts, ID: 0.25 mm, Film: 0.25 IM, (Perkin Elmer Inc, Akron, 
OH, USA) ). One mL of methanolic extract of the sample was injected into the column 
using helium as the carrier gas. GC-MS/MS analysis was performed with mass range scan 
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Figure 1. Assigning grain color to the diverse sorghum accessions using Royal Horticulture Society
(RHS) color chart.

2.3. Extraction of Secondary Metabolites and Gas Chromatography-Mass Spectrometry Analysis

Secondary metabolites were extracted from the grains of 61 accessions using Soxhlet
extraction procedure [41]. Ten grams of grain samples were powdered using mixer grinder,
packed with countryman filter paper and kept in the extraction chamber. Boiling flask
with 300 mL sonicated 100% methanol (High Performance Liquid Chromatography, HPLC)
grade was attached with the extraction chamber provided with a condenser above it.
Extraction was started by heating the flask to an initial temperature of 40 ◦C for 10 min
followed by heating at 60 ◦C for 10 min and finally increased to 80 ◦C till the completion of
five cycles. The collected methanol extract was collected in a conical flask and air-dried
until the volume of extract reached 5 mL. Gas chromatography-MS/MS analysis was
performed using Perkin Elmer 680 GC (Perkin Elmer Inc, Akron, OH, USA) instrument
coupled with AxION iQT’s MASS IQ software for data acquisition with DB-5 MS Capillary
Standard non-polar column (30 Mts, ID: 0.25 mm, Film: 0.25 IM, (Perkin Elmer Inc, Akron,
OH, USA)). One mL of methanolic extract of the sample was injected into the column using
helium as the carrier gas. GC-MS/MS analysis was performed with mass range scan of
50–1000 m/z, 70 eV was applied for fragmentation and precursor ions were isolated with
an isolation window of 10 m/z. Raw mass spectra obtained were converted to .abf format
using ABF converter <www.reifycs.com/AbfConverter/> (accessed on 19 November 2020)
for further analysis.

2.4. Data Processing and Peak Annotation

MS-DIAL (mass spectrometry-data independent analysis) was used for processing
the data in .abf format [42], from which MS/MS was performed in data-dependent mode
(Supplementary Figure S1). Based on the grain color, samples were grouped into four,
namely, brown (21), red (17), white (20) and others (black (2); yellow (1). The processed mass
spectra data consisting of peak masses and its area intensities were generated using default
MS-DIAL parameters. This included MS1 and MS2 being centroid; ion mode-positive; mass
range 0–1000 m/z; retention time range 0–30 min; mass tolerance of 0.25 m/z; retention time
tolerance (5 s); minimum peak width and height 5 and 1000; deconvolution parameters
(sigma value—0.5); data filtering (inter-quantile range); normalization (normalization by

www.reifycs.com/AbfConverter/
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sum); data transformation (log); and data scaling (mean centering). Annotation was done
on MS-DIAL using publicly available libraries in “.msp format” from MassBank of North
America (MoNA), including Massbank and HMDB <http://www.hmdb.ca/> (accessed
on 19 November 2020), by comparing the processed mass spectra data against the libraries
with 80% identification score cut off [43].

2.5. Statistical Analysis

The processed data were used to perform statistical analysis using the web platform
‘MetaboAnalyst 5.0’ www.metaboanalyst.ca (accessed on 19 November 2020) [44] with the
missing values being replaced by 1/5 of minimum positive values of their correspond-
ing variables. Analyses, including univariate model like one way analysis of variance
(ANOVA), multivariate models such as principal component analysis (PCA), partial least
squares discriminant analyses (PLS-DA) and hierarchical clustering were performed for
understanding metabolite variation and identifying significant metabolites. Fold change
analysis was performed by keeping a threshold value of two for determining up-regulated
and down-regulated metabolites between colored and white grain groups, followed by
mapping the regulated metabolites in sorghum secondary metabolism pathway using
MapMan <https://mapman.gabipd.org/> (accessed on 19 November 2020) [45].

2.6. Pathway Mapping

Significant metabolites exhibiting contrasting differences between different color
groups were mapped onto metabolic pathways using MetaboAnalyst 5.0 [44,46]. Mum-
michog algorithm was used to predict the pathway analysis of the processed data using
Kyoto Encyclopaedia of Genes and Genomes (KEGG) database <www.genome.jp/kegg/
pathway.html> (accessed on 19 November 2020) [47]. False discovery ratio for the pathway
analysis was set to ≤0.05.

3. Results
3.1. Genetic Variation for Grain Color

Based on the descriptors and color chart of Royal Horticulture Society, 61 sorghum
accessions were classified into black, brown, red, yellow and white grains (Supplementary
Table S1; Figure 1). Adequate care was taken to include sorghum accessions representing
all the major grain color groups, namely, black (203A; 2 accessions), brown (164A and 164B;
21 accessions), red (165A, 165B, 166A and 166B; 17 accessions), white (155A, 155B, 155C
and 155D; 20 accessions) and yellow (6D; 1 accession).

3.2. Metabolic Profile

Mass spectrometry data analysis identified a total of 221 known compounds (Sup-
plementary Figure S2; Supplementary Table S2), including varied classes of primary and
secondary metabolites (Figure 2) mapping onto 27 sub-pathways listed in KEGG database
(Table 1). These 221 metabolites belonged to diverse categories of metabolism (Figure 2).
Among the metabolites, predominant ones were in the order of carboxylic acids (50),
flavonoids (35), amino acids (25), phenylpropanoids (21) and sesquiterpenoids (10).

Many of the metabolites were mapped onto therapeutically important pathways such
as flavonoid, phenylpropanoid, valine, leucine and isoleucine, steroid, carotenoid and
terpenoid biosynthesis, as described in KEGG database (Figure 3). Abundance of these
metabolites varied greatly between diverse sorghum accessions.

http://www.hmdb.ca/
www.metaboanalyst.ca
https://mapman.gabipd.org/
www.genome.jp/kegg/pathway.html
www.genome.jp/kegg/pathway.html
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Table 1. List of significant metabolites differentiating diverse sorghum accessions.

S. No. Compound Class PLS-DA
VIP Score

ANOVA
p Value

1 Naringenin Flavonoids 2.1346 9.53 × 10−9

2 (+)-Catechin Flavonoids 1.9378 9.88 × 10−7

3 Cinnamaldehyde Phenylpropanoids 1.8646 1.39 × 10−6

4 Stigmasterol Steroids 1.8592 3.71 × 10−6

5 (−)Epicatechin Flavonoids 1.7997 1.25 × 10−5

6 alpha-Isopropylmalate Carboxylic acids 1.7905 0.00013398

7 trans-Cinnamate Phenylpropanoids 1.7703 0.00015462

8 L-Leucine Amino acids 1.755 0.00017873

9 Luteolin Flavonoids 1.7147 1.82 × 10−5

10 Sitosterol Steroids 1.607 0.00022826

11 Antheraxanthin Carotenoids 1.6026 0.00039374

12 L-Valine Amino acids 1.5648 0.00047442

13 Apigenin Flavonoids 1.5496 1.54 × 10−7

14 Caffeyl alcohol Phenylpropanoids 1.5412 0.00017893

15 5′-Prenyleriodictyol Flavonoids 1.5036 7.06 × 10−6

16 Kaempferol-3-O-arabinoside Flavonoids 1.4855 1.57 × 10−5

17 Genistein Flavonoids 1.4852 0.00021481

18 Coniferyl aldehyde Phenylpropanoids 1.4738 0.00034236

19 Eriodictyol Flavonoids 1.4696 7.06 × 10−6

20 Hesperetin Flavonoids 1.4548 5.14 × 10−5

21 (−)-Epigallocatechin Flavonoids 1.4533 9.29 × 10−5

22 Abscisate Apocarotenoids 1.4504 0.00072293

23 2-Coumarinate Phenylpropanoids 1.4217 0.00079068

24 Lutein Carotenoids 1.4109 0.0012749

25 Abscisic aldehyde Sesquiterpenoids 1.3993 0.0021929

26 L-Isoleucine Amino acids 1.3974 0.00065042

27 Phosphoenolpyruvate Carboxylic acids 1.3583 0.00078092

28 Shikimate 3-phosphate Carboxylic acids 1.355 0.00098977

29 Propanoyl-CoA Fatty acids 1.3536 0.0012642

30 L-Tryptophan Amino acids 1.3512 0.0019882

31 4-Coumarate Phenylpropanoids 1.3482 0.0013115

32 Lupeol Triterpenoids 1.3391 0.0013742

33 Geranylgeranyl diphosphate Diterpenoids 1.3276 0.00068171

34 Farnesyl diphosphate Sesquiterpenoids 1.3202 0.0024475

35 Phenylpyruvate Carboxylic acids 1.3156 0.0026778

36 Dodecanoic acid Fatty acids 1.3156 0.0031825

37 Squalene Triterpenoids 1.314 0.0023789

38 D-Citramalate Carboxylic acids 1.3084 0.0026724

39 (9Z)-Hexadecenoic acid Fatty acids 1.3059 0.0030008

40 (+)-Neomenthol Monoterpenoids 1.3013 Nil
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Table 1. Cont.

S. No. Compound Class PLS-DA
VIP Score

ANOVA
p Value

41 (S)-2-Acetolactate Carboxylic acids 1.2963 0.0021652

42 2-trans,6-trans-Farnesal Sesquiterpenoids 1.2927 0.0022391

43 8-Oxogeranial Monoterpenoids 1.2855 0.0024556

44 Zeaxanthin Carotenoids 1.2822 0.0034374

45 Citraconate Carboxylic acids 1.268 Nil

46 Glyceraldehyde 3-phosphate Organophosphate 1.2647 0.019693

47 Carlactone Lactones 1.2632 0.0048748

48 Spermidine Amino acids 1.2617 0.0029642

49 (−)-Epiafzelechin Flavonoids 1.254 0.00313

50 3-Dehydroshikimate Carboxylic acids 1.2521 0.0066344

51 Naringin Flavonoids 1.2499 0.0072895

52 Eriocitrin Flavonoids 1.2455 0.0078144

53 Brassicasterol Steroids 1.2425 0.0095876

54 4-Coumaryl alcohol Phenylpropanoids 1.2412 0.010089

55 9-cis-10′-Apo-beta-carotenal Apocarotenoids 1.2407 0.011766

56 Campesterol Steroids 1.2378 0.012192

57 Dihydrokaempferol Flavonoids 1.2158 0.013448

58 Pentahydroxyflavanone Flavonoids 1.2083 0.0040772

59 (S)-2-Aceto-2-hydroxybutanoate Carboxylic acids 1.2022 0.0052647

60 Kaempferol Flavonoids 1.2011 0.0067844

61 Kaempferide Flavonoids 1.2 0.0042311

62 Caffeic aldehyde Phenylpropanoids 1.1981 0.0075665

63 p-Coumaraldehyde Phenylpropanoids 1.1949 0.0099842

64 (R)-2,3-Dihydroxy-3-
methylpentanoate Carboxylic acids 1.1919 0.011751

65 8′-Hydroxyabscisate Carboxylic acids 1.1914 0.0042353

66 2-Oxoisocaproate Carboxylic acids 1.1623 0.0075086

67 beta-D-Glucopyranosyl abscisate Carboxylic acids 1.1606 0.0099713

68 9′-cis-Neoxanthin Carotenoids 1.1532 0.00491

69 Presqualene diphosphate Triterpenoids 1.1516 0.0094175

70 Ferulate Phenylpropanoids 1.1463 0.010938

71 L-Phenylalanine Amino acids 1.1446 0.012012

72 1-Deoxy-D-xylulose 5-phosphate Sugar Phosphates 1.1438 0.003749

73 beta-Tocopherol Prenol lipids 1.1416 Nil

74 Luteolin 7-glucoside Flavonoids 1.1386 0.012662

75 2′,5-Dimethoxyflavone Flavonoids 1.1308 0.012898

76 Eriodictyol-7-O-glucoside Flavonoids 1.1293 0.013856

77 Homoeriodictyol Flavonoids 1.1217 0.01464

78 Naringenin chalcone Flavonoids 1.1173 0.0147

79 Indoleglycerol phosphate Sugar Phosphates 1.1098 Nil

80 Taxifolin Flavonoids 1.1027 0.017069
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Table 1. Cont.

S. No. Compound Class PLS-DA
VIP Score

ANOVA
p Value

81 (S)-3-Methyl-2-oxopentanoate Carboxylic acids 1.0996 0.0040564

82 Fustin Flavonoids 1.0924 0.015207

83 Galangin Flavonoids 1.0867 0.015721

84 Phloretin Flavonoids 1.0832 0.016724

85 Garbanzol Flavonoids 1.0786 0.016737

86 Apigenin-7-O-glucoside Flavonoids 1.0737 0.017055

87 (S)-2,3-Epoxysqualene Triterpenoids 1.0709 Nil

88 Chorismate Carboxylic acids 1.0667 0.020117

89 2-C-Methyl-D-erythritol 4-phosphate Fatty Alcohols 1.0543 0.019126

90 5-Hydroxyconiferaldehyde Phenylpropanoids 1.0501 0.017298

91 Caffeoyl-CoA Phenylpropanoids 1.0492 0.017933

92 p-Coumaroyl-CoA Phenylpropanoids 1.0328 0.01822

93 L-Tyrosine Amino acids 1.0116 0.01873

94 Demethylphylloquinol Prenol lipids 1.0104 0.01881

PLS-DA, partial least square-discriminant analysis; VIP, variable importance in projections; ANOVA, analysis of variance; p, probability level.

3.3. Grain Metabolome of Temperate and Tropical Sorghums

To understand the grain metabolome differences between the tropical and temperate
sorghums, metabolite content of 13 temperate sorghum lines was compared against 48 trop-
ical sorghum lines. PLS-DA analysis revealed that the first two components separated
the temperate and tropical sorghum with limited overlaps (Figure 4). Distinct grouping
of sorghum lines based on their grain metabolome suggests that tropical and temperate
sorghum may have entirely different metabolic machinery for their adaptation to their
environments.

To differentiate the tropical and temperate sorghums based on their grain metabolome,
PLS-DA analysis and heat map analysis was performed, which revealed 51 variable im-
portance in projection (VIP) metabolites significantly varying between the tropical and
temperate sorghums (Figure 5), including eight phenylpropanoids, five flavonoids and
two sterols. This analysis identified 42 metabolites higher in temperate and 9 metabolites
higher in tropical sorghums. It was observed that phenylpropanoids, sterols, amino acids
and flavonoids can be used to differentiate between the tropical and temperate sorghum.
Temperate sorghum grains were found to have increased levels of phenylpropanoids,
flavonoids, steroids and amino acids (Figure 5). In contrast, tropical sorghums had higher
levels of L-Proline, L-Glutamic acids, L-Arabinose, D-Erythrose 4 P and a few other carbo-
hydrates and fatty acids.
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3.4. Hierarchical Clustering

Hierarchical clustering was performed to understand the metabolic diversity among
the 61 diverse sorghum accessions and grouped into two major clusters with 18 accessions
possessing brown and red pericarps (164A, 165A, 166A and 166B) and the second cluster
of 43 accessions predominantly possessing light red (164B, 165B) and white pericarps
(Figure 6).
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3.5. Multivariate and Univariate Analyses

Multivariate analysis such as PCA and PLS-DA was performed to measure the genetic
variation for accumulation of secondary metabolites. PCA in the 61 diverse sorghum
accessions provides a preliminary estimate of the overall metabolic differences between
different grain color groups and the degree of variability between samples within the
group. PCA revealed that the first two components, PC1 (24.3%) and PC2 (7.3%), explain a
cumulative variance of 31.6% (Figure 7). To group the diverse sorghum genotypes differing
in grain color using the grain metabolome data, PLS-DA analysis was performed according
to the first two components. PLS-DA model explained a cumulative variance of 26.4%
(Figure 8), which identified 94 metabolites having VIP score of more than 1, indicating
that these metabolites may be responsible for the metabolic variation between different
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colored sorghum grains (Table 1). Among the 94 VIP scored metabolites, 29 metabolites
were flavonoids, followed by carboxylic acids (15 metabolites) and phenylpropanoids
(13 metabolites). Four different uncommon “condensed tannins” such as catechins, epicate-
chins, epigallocatechins and epiafzelechin were detected in a few brown and black sorghum
accessions. Heat map showing the abundance or expression levels of the top 50 metabolites
having VIP score >1 is shown as described in Figure 9. Among the 94 metabolites with
high VIP scores, flavonoids, phenylpropanoids and steroids contributed significantly to
PC1, and they were abundant in red, brown and black grain sorghums.
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grain color category.

Univariate analysis of variance (one-way ANOVA) was performed for identifying sig-
nificant metabolites differing between different colored grain sorghum accessions. Among
the 221 metabolites detected, 89 metabolites were significantly different between the acces-
sions (Table 1). Results of one-way ANOVA were similar to the results of PLS-DA analysis.

3.6. Fold Change Analysis

Abundance of the metabolites in the colored grains (red, brown, yellow and black)
was compared against their respective abundance in the white grains, which identified
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161 up-regulated, 2 down-regulated and 58 unchanged metabolites in colored sorghum
grains when compared to white grains (Supplementary Table S3; Figure 10). Pattern
of accumulation and changes in the abundance of metabolites indicated that secondary
metabolites were relatively more abundant in colored sorghum grains than in the white
grain sorghum. Metabolites involved in the mevanolate and non-mevanolate pathways did
not show any significant difference between white and colored sorghum types. White and
colored sorghum grains did not differ significantly in their glucosinolates, cyanogenic gly-
cosides and phenolics (Figure 10). Metabolites belonging to terpenoids, phenylpropanoids,
flavonoids, lignins, alkaloids and carotenoids showed significant difference in their accu-
mulation between the white and colored sorghum grains. Overall, colored sorghum grains
were found to contain significantly elevated levels of these health-benefiting secondary
metabolites (Figure 10).
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3.7. Mapping of Significant Metabolites onto Metabolic Pathways

Pathway mapping using KEGG database identified 13 significant metabolic path-
ways showing FDR value ≤ 0.05 (Table 2; Figure 11). Flavonoid pathway showed the
highest −log (p) value of 18.9 followed by valine, leucine and isoleucine biosynthesis
(13.1); phenylalanine, tyrosine and tryptophan biosynthesis (7.9); and phenylpropanoid
biosynthesis (7.3).
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Table 2. List of metabolic pathways significantly contributing to grain color diversity.

S. No. Pathway Name Raw p −log(p) FDR

1 Flavonoid biosynthesis 1.19 × 10−19 18.923 1.15 × 10−17

2 Valine, leucine and isoleucine biosynthesis 7.69 × 10−14 13.114 3.69 × 10−12

3 Phenylalanine, tyrosine and tryptophan biosynthesis 1.37 × 10−8 7.8637 4.38 × 10−7

4 Phenylpropanoid biosynthesis 5.40 × 10−8 7.2676 1.30 × 10−6

5 Tyrosine metabolism 8.19 × 10−8 7.087 1.57 × 10−6

6 Ubiquinone and other terpenoid-quinone biosynthesis 1.16 × 10−6 5.9359 1.85 × 10−5

7 C5-Branched dibasic acid metabolism 9.51 × 10−6 5.0218 0.000114

8 Isoquinoline alkaloid biosynthesis 9.51 × 10−6 5.0218 0.000114

9 Sesquiterpenoid and triterpenoid biosynthesis 4.03 × 10−5 4.3947 0.00043

10 Arginine and proline metabolism 0.000133 3.8767 0.001275

11 Biosynthesis of secondary metabolites - unclassified 0.002016 2.6955 0.017596

12 Valine, leucine and isoleucine degradation 0.004638 2.3336 0.037106

13 Carotenoid biosynthesis 0.006374 2.1956 0.047071

FDR, false discovery rate is a measure of error; −log(p) represents significance at probability (p) ≤ 0.05.
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4. Discussion

Recent advancements in food technology have caused sorghum grain to become one
of the major ingredients in the food industry due to its gluten-free nature. Hence, they
serve as an alternate food for patients with diabetes, cardiovascular problems, obesity,
immunological disorders and celiac disease [28,29,48]. Speciality grain sorghum is reported
to contain bioactive compounds such as phenolic compounds, including phenolic acids
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(benzoic and cinnamic acids), flavonoids (3-deoxyanthocyanidins), condensed tannins
(proanthocyanidins, flavin-3-ols), lignin and stilbenes produced through phenylpropanoid
pathway [9,16] possessing anti-microbial activity, and anti-inflammatory and anticancer
activities [49,50]. Several in-vitro studies have reported on the strong anti-oxidative and
anti-inflammatory capacity of sorghum compounds [51,52]. According to the phenolic
profile and color, sorghum is broadly classified into five types: white, black, brown, red and
yellow [40]. Black sorghum is reported to have the highest total phenolic contents when
compared to other colored (brown, red, yellow and white) sorghums [11]. However, a large
number of conserved and widely diversified sorghum germplasms are underutilized. This
is mainly due to lack of information on the genetic diversity and genetic basis of metabolic
traits of economic importance.

Several studies have reported nutritional benefits (e.g., Fe, Zn and carotenoids) of
sorghum [53–55], but limited attempts have been made to measure the genetic diversity
of sorghum for its secondary metabolite accumulation and therapeutic properties. Plant
metabolomics may help us to dissect the relationship between biological processes and phe-
notypes as well as their nutritive potential [56]. Non-targeted metabolomics is applied in
various crops to measure genetic variation for nutritional/therapeutic traits and thus allow
researchers to achieve genetic improvement of specific metabolites/biomarkers [32,33,36,57].
The present study was performed to measure genetic variation for accumulation of sec-
ondary metabolites in a diverse set of sorghum germplasm lines through non-targeted
metabolomics using GC-MS/MS, paving the way for breeding fortified sorghum varieties.

Inclusion of sorghum accessions differing in grain color and growth habitat helped to
assess the inter relationship with metabolite accumulation. Understanding the pattern of
secondary metabolites accumulation helped to identify molecular factors underlying plant
adaptation to diverse environments and nutritional/health benefits. GC-MS/MS analysis
of grain metabolome in 61 diverse sorghum accessions identified a total of 221 known
metabolites (Supplementary Table S2). These 221 metabolites were from different classes of
primary and secondary metabolites (Figure 2) with significant role in 27 sub-pathways listed
in KEGG database (Figure 3). The accessions were with clear distribution for carboxylic
acids (50), flavonoids (35), amino acids (25), phenylpropanoids (21) and sesquiterpenoids
(10) and were predominant in sorghum metabolome.

Metabolite profiling enabled one to understand the metabolic basis of accessions adap-
tation to widely varying environments. First two components of PLS-DA distinguished
tropical and temperate sorghum accessions with minimum overlaps (Figure 4). Clustering
based on grain metabolome revealed that these accessions possess metabolic machineries
for adaptation to their environments. It was noticed that relative abundance of 51 different
metabolites was significantly different between tropical and temperate sorghum lines based
on PLS-DA (Figure 5). Different metabolites of amino acids, phenylpropanoids, flavonoids
and a few sugars can be used to differentiate between the tropical and temperate sorghum
(Figure 5). In general, temperate accessions possessed higher levels of metabolites such
as phenylpropanoids, amino acids, flavonoids and steroids, whereas tropical accessions
were rich in carbohydrate metabolites and stress-related amino acids. Tropical sorghums
from Cameroon, Chad, Ethiopia, Kenya, Nigeria, Sudan, Uganda and Israel accumulated
significantly higher levels of nine metabolites, including L-proline, L-arabinose, L-glutamic
acid and glyceraldehyde 3 phosphate (Figure 5). Similar observations were reported in
rice [32], where stress-tolerance-related metabolites were identified in the grains of tropical
indica when compared to temperate japonica rice grains. PCA and PLS-DA analyses on
grain metabolome showed that the metabolite compositions of brown and red pericarp
grains are distinctly different from the white grain sorghum (Figures 7 and 8).

The detected 221 different metabolites from the 61 accessions belonged to 27 classes of
metabolites mapped onto 27 KEGG pathways. One-way ANOVA and PLS-DA identified
89 significant and 94 VIP metabolites, respectively. Most of the significant metabolites
belonged to flavonoid (flavanones, flavones, flavan-3-ols, flavonols and dihydroflavonols),
phenylpropanoids, condensed tannins and sterols, which have tremendous health benefits,
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including antioxidant anti-cancer properties [58,59]. Out of 221 metabolites detected, 35
were under the class of flavonoids. Heat map and fold change analysis of this study
(Figures 9 and 10) indicated that most of these flavonoids and other therapeutic metabolites
are more abundant in dark red pericarp than in light red and white pericarp accessions.
These metabolites could be used as biomarkers for discriminating diverse colored sorghum
genotypes. Overall, the metabolome data generated in the grains of diverse sorghum
genotypes suggests that the metabolome of colored grain sorghum are quite different from
that of white sorghum.

The rare flavanones metabolites (naringenin and eriodictyol) possessing anti-cancer
properties [60] were found in the brown- and red-colored sorghum accessions IS 9442, IS
10877, IS 10634 and IS 8569 (Table 3). No white-colored sorghums were found to contain
significantly elevated levels of these secondary metabolites. Similar results were reported
earlier in sorghum by Taylor and Awika (2017) [61]. Flavones including luteolin and api-
genin were found to be abundant in the grains of brown, red and black sorghum accessions
viz. IS 10634, IS 9442, IS 9378, IS 12267, IS 14535, IS 15098 and IS 11818 (Table 3). Apigenin
was demonstrated to induce apoptosis of colorectal cancer cells and to activate estrogenic
activities [50]. Condensed tannins, including catechin, epicatechin, epigallocatechin and
epiafzelechin, detected in the grains of colored sorghum lines (IS 12166, IS 15098, IS 7748, IS
9378 and IS 14861) were reported to exhibit antioxidant, anti-inflammatory and anticancer
activities [7,17,62,63]. Very interestingly, sorghum grains studied were found to accumulate
nutraceutically important phytosterols viz. stigmasterol (IS 7748, IS 8826, IS 12330 and
IS 12267) and sitosterol (IS 7748, IS 8826 and IS 12267) [64]. Phytosterols are functional
foods known for their cholesterol-lowering ability [65]. Common dietary sources of phy-
tosterols are vegetable oils, cereal products, vegetables and fruit. On the contrary, this
study has identified sorghum lines rich in phytosterols, namely, stigmasterol and sitosterol
(cholesterol-lowering ability and anti-cancer). Stigmasterols are used as a precursor for
industrial production of semisynthetic progesterone, an important regulatory and tissue
rebuilding hormone, as well as an intermediary in the biosynthesis of androgens, estrogens
and corticoids [66]. Stigmasterol is also used as one of the precursors in the synthesis of
vitamin D3 [67]. The sorghum accessions listed in Table 3 are rich in key nutraceuticals and
therapeutic compounds and can be further used for trait introgression to improve adapted
breeding lines.

Pathway analysis was performed to identify key metabolic pathways contributing
to variation in grain color. Results revealed that grain color diversity in sorghum was
attributed to flavonoid pathway (−log (p) = 18.923), followed by valine, leucine and
isoleucine biosynthesis (−log (p) = 13.114), phenylalanine, tyrosine and tryptophan biosyn-
thesis (−log(p) = 7.8637) and phenylpropanoid biosynthesis (−log (p) = 7.2676). Similar
studies with three cultivars on non-targeted metabolomic analysis were conducted earlier
by Xia and Wishart (2010) [46] and Zhou et al., (2020) [36]. In this study, firstly in sorghum,
large-scale detailed grain antioxidants and metabolome profiling analyses using advanced
bioinformatics tools in sorghum accessions diversified origins, growth habitats and grain
colors were studied, with significant results.
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Table 3. List of accessions enriched with nutraceutical and therapeutic metabolites and their potential applications.

Scheme Class Metabolites Enriched Sorghum
Accessions Uses References

1 Squalene Triterpenoids IS 7748, IS 9108, IS 9262, IS 10968 Anti-cancer, anti-bacterial and
cholesterol-lowering ability [68–70]

2 Stigmasterol Steroids IS 7748, IS 8826, IS 12330, IS 12267 Anti-cancer and cholesterol-lowering ability, reduces
risk of cardiovascular diseases [71–73]

3 Sitosterol Steroids IS 7748, IS 8826, IS 12267 Prevention of cervical cancer, lowers cholesterol level [74]

4 Lutein Carotenoids IS 9378, IS 12330, IS 14542 Delays/inhibits age-related macular degeneration,
improves cardiovascular health, and anti-cancer [75,76]

5 Zeaxanthin Carotenoids IS 14861, IS 12290, IS 7748
Protective factor in age-related macular degeneration

(AMD), reduces diabetic retinopathy and inhibits
cataract growth

[77–79]

6 (+)-Catechin Flavonoids IS 12166, IS 15098, IS 7748, IS 9378, IS 14861 Prevents/reduces skin damage; antioxidant;
anti-inflammatory; anti-viral; and anti-cancer [80]

7 (−)-Epicatechin Flavonoids IS 15191, IS 7748, IS 8962, IS 14861, IS 12330 Anti-diabetic, cytotoxic to cancer cells, antioxidant
and anti-angiogenic [81]

8 Naringenin Flavonoids IS 9442, IS 10877, IS 10634, IS 8569, IS 10877 Anti-cancer, cardiovascular protection, anti-viral
(against hepatitis C virus) and weight control [82]

9 Apigenin Flavonoids IS 12267, IS 9442, IS 10634, IS 14535,
IS 15098, IS 11818 Anti-cancer, activation of estrogen [50]

10 Genistein Flavonoids IS 8826, IS 12267 Anti-tumor [83]

11 (−)-Epigallocatechin Flavonoids IS 14316, IS 15061, IS 15098, IS 10634,
IS 12330 Anti-inflammatory, anti-cancer and antioxidant [80]

12 Hesperetin Flavonoids IS 8826, IS 12267 Antioxidant, lowers blood cholesterol [84]

13 Kaempferol-3-O-arabinoside Flavonoids IS 9442, IS 12267, IS 12166, 1S 8826,
IS 15098, IS 10634, IS 10877

Chemotherapeutic drug, antioxidant and
anti-inflammatory [85]

14 Luteolin Flavonoids IS 10634, IS 9442, IS 9378, IS 12267 Anti-cancer, anti-hypertensive and anti-inflammatory [86]

15 Eriodictyol Flavonoids IS 12330, IS 8826, IS 9378, IS 14316 Anti-cancer, anti-inflammatory and anti- oxidant [87]
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5. Conclusions

The present study was aimed at unravelling metabolic signatures in the grains of a
subset of 61 diverse sorghum accessions differing in origin, growth habitat and grain color.
GC-MS/MS analysis identified a total of 221 different metabolites mapping with a signifi-
cant role in 27 sub-pathways listed in KEGG database. The results of PCA and PLS-DA
analysis revealed distinguished the clustering of accessions differing in their grain color and
metabolite variations. Further, metabolic signatures explained the adaptability of sorghum
accessions to varied growth conditions (tropical vs. temperate). Antioxidants such as
flavonoids, condensed tannins, phenolic acids, phenylpropanoids, phytosterols and amino
acids were more predominant in the dark-colored (brown, black and red) sorghum grains
than in the white-colored grains. Overall, this study paves the way for further genetic and
molecular studies through association mapping and omics approaches to identify genetic
factors determining the accumulation of nutraceuticals and therapeutically important
metabolites in sorghum. Further, identified genetic stocks of sorghum rich in nutraceutical
compounds may be utilized in food fortification and bio-fortification programs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10101511/s1. Figure S1: GC-MS/MS acquired peak data processing and annotation
using MS-DIAL; Figure S2: GC-MS/MS derived chromatograms of sorghum grains differing in grain
color; Table S1: Details of sorghum accessions used (grain color descriptor, origin and type); Table S2.
List of metabolites identified in the grains of 61 diverse sorghum accessions; Table S3. Abundance
ratio of 163 metabolites showing more than 2 fold change between colored and white grain sorghums.
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