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Abstract: Resveratrol is a well-known dietary polyphenol because it has a variety of beneficial
biological activities. The fungus Beauveria bassiana is one of the most frequently used microorganisms
for the biotransformation of polyphenols. Recently, resvebassianol A (2), a glycosylated metabolite
of resveratrol by B. bassiana, was isolated and structurally elucidated. It was demonstrated to
exhibit antioxidant, regenerative, and anti-inflammatory activities with no cytotoxicity. Here, we
report the first total synthesis of resvebassianol A, 4′-O-β-(4′′′-O-methylglucopyranosyl)resveratrol
(2), and its regiomer, 3-O-β-(4′′′-O-methylglucopyranosyl)resveratrol (3). Key reactions include (i)
the construction of a stilbene core via a novel Heck reaction of aryl halides and styrenes, and (ii)
glycosylation with unnatural methylglucopyranosyl bromide. The glycosylation step was carefully
optimized by varying the bases and solvents. Resveratrol metabolites 2 and 3 were obtained at 7.5%
and 6.3% of the overall yield, respectively.
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1. Introduction

Resveratrol (1, trans-3,5,4-trihydroxystilbene) is an important dietary polyphenol and
naturally occurring phytoalexin found in grapes, red wine, berries, peanuts, olive oil,
etc. [1–3]. It is produced by plants in response to environmental stress and fungal attack
through the induction of resveratrol synthetase [4,5]. Resveratrol was first isolated from
the roots of the white hellebore lily (Veratrum grandiflorum O. Loes) in 1940 [6]. Most of the
biological activities of resveratrol have been shown by its trans stilbene isomer, while the
cis stilbene isomer also occurs naturally [7]. Resveratrol exerts numerous biological activi-
ties such as antioxidant, anti-infective, anti-inflammatory, anti-ischemic, cardioprotective,
neuroprotective, anti-aging, anti-viral, anti-obesity, and anti-cancer effects [8–18]. Recently,
it was revealed that its ability to activate various deacetylase enzymes (sirtuins) could be
responsible for the various biological properties and delay aging [19,20].

Despite their pharmacological activities, various in vivo studies have shown that
the potential of polyphenols is impaired by their insolubility in water, ultraviolet light
instability, poor intestinal absorption, short half-life, rapid clearance, low bioavailability,
and rapid metabolism [21,22]. The introduction of a glycosyl moiety on polyphenols not
only helps to enhance the solubility of substrates but also reduces their toxicity, which
ultimately increases the activity of biosynthetic intermediates [23]. Moreover, the sugar
moiety of polyphenol glycosides might play a major role in their absorption, resulting in
an acceptable concentration in the circulatory streams [24]. Polyphenols are subjected to
enzymatic oxidation by polyphenol oxidases in plants, during food processing, and also
after human consumption, which can be protected by glycosylation [25]. The incorporation
of sugar moieties into different types of pharmacophores, natural products, or prodrugs
has been proven to improve anti-cancer activities [26].

Several glycosyl derivatives of resveratrol have been recognized in the roots of
Poligonum cuspidatum such as piceid (3-O-β-D-glucosyl resveratrol), resveratroloside (4′-O-
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β-D-glucosylresveratrol), and 4′-O-β-D-glucosyl piceatannol [27]. Piceid has been shown
to exhibit a broad range of biological activities [28].

The fungus Beauveria bassiana is the most frequently used biocatalyst and has been used
to transform more than 300 bioactive compounds [29,30]. For instance, B. bassiana ATCC
7159 has been used for the biotransformation of curvularin and kaempferol, leading to the
production of new metabolites resulting from 4-O-methyl glucosylation of the substrate,
and was highly selective among different hydroxyl groups in the same molecule [30].
Recently, resvebassianol A (2) shown in Figure 1, was identified through biotransformation
of resveratrol by B. bassiana and exhibited important pharmacological activities such as
inhibition of inflammatory cytokine expression and cell rejuvenation. Moreover, compared
with resveratrol, resvebassianol A proved to be less toxic and more stable [31].

Several synthetic approaches for the formation of glycosidic bonds to phenolic OH in
resveratrol have been reported. Direct coupling of resveratrol with a bromo-glucuronide
donor was performed by Wang et al. for the synthesis of two glycoconjugates [32]. Cou-
pling of resveratrol with glucuronyl bromide was performed using silver carbonate as an
activator, in order to produce glucuronide-conjugated resveratrol in low yield, possibly due
to the low solubility of resveratrol in organic solvents. Lucas et al. synthesized resveratrol
3-O-β-D-glucuronide by coupling a trichloroacetimidate glycosyl donor with protected
resveratrol using TMSOTf and BF3.OEt2 as promoters [3]. Learmonth also synthesized two
glucuronide conjugates of resveratrol, in which palladium-catalyzed Heck coupling of an
iodo-O-β-D-glucuronate derivative and its corresponding styrene was adopted [33].

The structural uniqueness and natural resource scarcity of resvebassianol A for biolog-
ical evaluation prompted us to develop an efficient synthetic method for the metabolite. In
this study, we report the total synthesis of resvebassianol A (2), a metabolite of resveratrol
by B. bassiana, and its regiomer, 3-O-β-(4′′′-O-methylglucopyranosyl)resveratrol (3).
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2. Materials and Methods
2.1. Chemical Reagents

All chemicals and solvents were reagent grade and were purchased from Sigma
Aldrich (Saint Louis, MO, USA), TCI (Tokyo, Japan), and Alfa Aesar (Haverhill, MA, USA).
All reagents were used directly without further purification.

2.2. Purification and Instrumentation

All reactions were carried out in an inert atmosphere in flame-dried glassware. Re-
actions were monitored by thin-layer chromatography using 0.25 mm silica gel plates
and visualized using UV 254/286 nm. Flash chromatography was carried out using silica
gel 60 (230–400 mesh, Merck, Darmstadt, Germany) as the stationary phase. 1H and 13C
NMR spectra were recorded using a 600 MHz NMR spectrometer (Bruker, Billerica, MA,
USA) with deuterochloroform (CDCl3), methanol-d4 (CD3OD), or DMSO-d6 (CD3)2SO.
Data for 1H NMR spectra are reported as chemical shifts (multiplicity, coupling constants,
integration), and multiplicities are reported as s = singlet, d = doublet, t = triplet, q =
quartet, septet = septet, m = multiplet and/or multiple resonances, number of protons,
and coupling constant (J). High-resolution mass spectra (HRMS) were recorded using
electrospray ionization (ESI) mass spectroscopy on a JEOL JMS- 700 (FAB and EI) and an
Agilent 6530 Q-TOF LC/MS/MS system (ESI).

2.3. General Experimental Procedure
2.3.1. Synthesis of Methyl 4, 6-O-Benzylidene-α-D-Glucopyranoside (13)

Methyl α-D-glucopyranoside 8 (10 g, 51.5 mmol) was dissolved in anhydrous N,N-
dimethylformamide (100 mL) under a N2 atmosphere, p-toluene sulfonic acid (1.62 g, 9.4
mmol) was added, followed by the addition of benzaldehyde dimethyl acetal (9.2 mL, 61.8
mmol), and the solution was stirred under N2 for 16 h. After completion of the reaction,
triethylamine (4 mL) was added to the reaction, which was then diluted with ethyl acetate.
The organic layer was subsequently washed with saturated sodium bicarbonate and brine,
dried over Na2SO4, and concentrated in vacuo. The residue was purified by silica gel
column chromatography (methanol/dichloromethane = 30:1) to yield product 13 (12 g,
93%) as a white solid. 1H NMR (600 MHz, CDCl3) δ 7.49–7.47 (m, Ph, 2H), 7.36–7.34 (m,
Ph, 3H), 5.49 (s, 1H), 4.70 (d, J = 3.9 Hz, 1H), 4.25 (dd, J = 6, 6 Hz, 1H), 3.87 (t, J = 9 Hz, 1H),
3.76–3.74 (m, 1H), 3.69 (t, J = 12, 1H), 3.57–3.53 (m, 2H), 3.43 (t, J = 12 Hz, 1H), 3.39 (s, 3H),
2.93 (d, J = 6 Hz, 1H); 13C NMR (151 MHz, CDCl3) δ 137.0, 129.2, 128.3, 126.4, 101.9, 99.9,
80.9, 72.7, 71.4, 68.9, 62.3, 55.5; HRMS (ESI): mass calcd for C14H18O6 [M + H]+, 283.1176;
found, 283.1168.

2.3.2. Synthesis of Methyl 2,3-di-O-Benzyl-4,6-O-Benzylidene-α-D-Glucopyranoside (14)

Methyl 4,6-O-benzylidene-α-D-glucopyranoside 13 (11.5 g, 40.73 mmol) was dissolved
in anhydrous N,N-dimethylformamide (100 mL) under a N2 atmosphere. The solution
was cooled to 0 ◦C in an ice bath, after which NaH (60% dispersion in mineral oil, 4 g,
163 mmol) was added, and the reaction was stirred for 1 h at room temperature. The
solution was cooled to 0 ◦C, and benzylbromide (14.5 mL, 122 mmol) was added dropwise.
The solution was stirred at room temperature overnight, after which methanol (10 mL)
was added, and the mixture was concentrated under reduced pressure. The residue was
dissolved in CH2Cl2 (200 mL), washed with water (2 × 75 mL) and brine (1 × 75 mL), and
dried over MgSO4. The residue was purified by silica gel column chromatography (ethyl
acetate/n-hexane = 1:7) to yield product 14 (17.5 g, 92%) as a white solid compound. 1H
NMR (600 MHz, CDCl3) δ 7.49 (d, J = 6, 2H), 7.39–7.21 (m, 13H), 5.54 (s, 1H), 4.91 (d, J = 12
Hz, 1H), 4.84 (dd, J = 12 Hz, 2H), 4.70 (d, J = 12 Hz, 1H), 4.60 (d, J = 6 Hz, 1H), 4.26 (dd, J =
12, 6 Hz, 1H), 4.05 (t, J = 9 Hz, 1H), 3.84–3.80 (m, 1H), 3.70 (t, J = 9 Hz, 1H), 3.60 (t, J = 9Hz,
1H), 3.55 (dd, J = 3 Hz, 1H), 3.39 (s, 3H); 13C NMR (151 MHz, CDCl3) δ 138.8, 138.2, 137.5,
129.0, 128.5, 128.4, 128.3, 128.2, 128.1, 128, 127.7, 126.1, 101.3, 99.3, 82.2, 79.2, 78.6, 75.4, 73.8,
69.1, 62.4, 55.4; HRMS (ESI): mass calcd for C28H30O6 [M + H]+, 463.2115; found, 463.2112.
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2.3.3. Synthesis of Methyl 2,3,6-tri-O-Benzyl-α-D-Glucopyranoside (15)

Methyl 2,3-di-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside 14 (17.25 g, 38 mmol)
was dissolved in anhydrous CH2Cl2 (100 mL) under a N2 atmosphere, and the solution
was cooled to 0 ◦C. Et3SiH (30 mL, 186 mmol) and trifluoroacetic acid (14 mL, 186 mmol)
were added, and the solution was stirred at 0 ◦C for 4 h. The reaction was quenched with
Et3N and methanol. CH2Cl2 was added, and the solution was washed with water and
brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The mixture
was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:4) to afford
product 15 (12 g, 91%) as a colorless oil. 1H NMR (600 MHz, CDCl3) δ 7.37–7.26 (m, 15H), 5
(d, J = 12 Hz, 1H), 4.76 (dd, J = 12 Hz, 2H), 4.76–4.63 (m, 2H), 4.59 (d, J = 12 Hz, 1H), 4.54 (d,
J = 12, 1H), 3.79 (t, J = 12, 18 Hz, 1H), 3.71–3.68 (m, 3H), 3.61 (t, J = 12, 18 Hz, 1H), 3.54 (dd,
J = 6 Hz, 1H), 3.38 (s, 3H), 2.33 (s, 1H); 13C NMR (151 MHz, CDCl3) δ 138.8, 138.1, 138.0,
128.6, 128.5, 128.4, 128.1, 128.0, 128.0, 127.9, 127.7, 127.6, 98.2, 81.5, 79.6, 77.2, 77.0, 76.8, 75.4,
73.6, 73.2, 70.7, 69.9, 69.5, 55.3; HRMS (ESI): mass calcd for C28H32O6 [M + NH4]+, 482.2537;
found, 487.2525.

2.3.4. Synthesis of Methyl 2,3,6-Tri-O-Benzyloxy-4-O-Methyl-α-D-Glucopyranoside (16)

NaH (60% dispersion in mineral oil, 1.5 g, 63 mmol) was added to a solution of
methyl 2,3,6-tri-O-benzyloxy-α-D-glucopyranoside 15 (11.5 g, 25 mmol) in anhydrous N,N-
dimethylformamide (100 mL) at 0 ◦C. The reaction mixture was stirred for 1 h at 0 ◦C, and
methyl iodide (3.8 mL, 63 mmol) was added to the reaction mixture. The reaction mixture
was stirred overnight at room temperature. The reaction was quenched with methanol
and ice-cold water and then extracted with ethyl acetate. The collected organic layers were
washed with brine, dried with Na2SO4, and concentrated under reduced pressure. The
mixture was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:7)
to yield product 16 (11.2 g, 95%) as a viscous liquid. 1H NMR (600 MHz, CDCl3) δ 7.39–7.26
(m, 5H), 4.93 (d, J = 10.8, 1H), 4.83–4.74 (m, 2H), 4.67–4.57 (m, 3H), 4.51 (d, J = 12.1 Hz, 1H),
3.86 (s, 1H), 3.66 (dd, J = 22.7, 7.1 Hz, 3H), 3.50 (dd, J = 9.7, 3.5 Hz, 1H), 3.46 (s, 3H), 3.37
(s, 3H), 3.33 (s, 1H); 13C NMR (151 MHz, CDCl3) δ 138.9, 138.2, 138.0, 128.4, 128.4, 128.3,
128.1, 128.0, 127.9, 127.8, 127.6, 127.6, 98.2, 82.1, 79.6, 79.4, 75.7, 73.5, 73.4, 70.1, 68.6, 60.7,
55.2; HRMS (ESI): mass calcd for C29H34O6 [M + NH4]+, 496.2694; found, 496.2688.

2.3.5. Synthesis of Methyl 4-O-Methyl-α-D-Glucopyranoside (17)

Pd (10%)/C (3 g) was added to a solution of methyl 2,3,6-Tri-O-benzyloxy-4-O-methyl-
α-D-glucopyranoside 16 (11 g, 22 mmol) in anhydrous methanol (100 mL), and the mixture
was stirred under an atmosphere of hydrogen at room temperature for 24 h. The catalyst
was filtered out, and the solvents were removed under reduced pressure. The crude residue
was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:1) to afford
the viscous product 17 (4.6 g, 95%). 1H NMR (600 MHz, CD3OD) δ 4.69 (s, 1H), 3.78 (d, J =
11.7 Hz, 1H), 3.70 (dq, J = 12.2, 6.9, 4.4 Hz, 2H), 3.57 (s, 3H), 3.53–3.47 (m, 1H), 3.44 (d, J =
7.9 Hz, 1H), 3.40 (s, 3H), 3.10 (t, J = 9.3 Hz, 1H); 13C NMR (151 MHz, CD3OD) δ 99.7, 79.6,
73.7, 72.1, 71.2, 60.8, 59.5, 54.2; HRMS (ESI): mass calcd for C8H16O6 [M + H]+, 209.1020;
found, 209.1033.

2.3.6. Synthesis of Methyl 2,3,6-tri-O-Acetyl-α-D-Glucopyranoside (18)

Compound 17 (4.5 g, 22 mmol) was dissolved in acetic anhydride (25 mL, 217 mmol)
and pyridine (25 mL, 217 mmol) and stirred at room temperature for 12 h. After completion
of the reaction, pyridine and acetic anhydride were removed in vacuo. The residue was
dissolved in CH2Cl2 and washed with dilute HCl. The organic layer was collected, washed
with brine, dried with MgSO4, and concentrated under reduced pressure. The mixture was
purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:4) to afford the
viscous product 18 (5.1 g, 71%). 1H NMR (600 MHz, CDCl3) δ 5.50–5.42 (m, 1H), 4.88–4.79
(m, 2H), 4.35 (d, J = 10.0 Hz, 1H), 4.30–4.24 (m, 1H), 3.88–3.81 (m, 1H), 3.42 (d, J = 3.7 Hz,
3H), 3.39 (d, J = 3.9 Hz, 3H), 3.34 (dd, J = 12.6, 6.3 Hz, 1H), 2.12 (d, J = 3.9 Hz, 3H), 2.08
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(d, J = 6.0 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ 170.7, 170.4, 169.8, 96.8, 77.8, 71.9, 71.1,
68.2, 62.7, 60.1, 55.3, 20.9, 20.8, 20.8; HRMS (ESI): mass calcd for C14H22O9 [M + NH4]+,
352.1602; found, 352.1605.

2.3.7. Synthesis of 1,2,3,6-Tetra-O-Acetyl-4-O-Methyl-α-D-Glucopyranoside (19)

To a stirred solution of 18 (5 g, 15 mmol) in acetic anhydride (50 mL) at 0 ◦C, boron
trifluoride ether (2 mL, 15 mmol) was added. The solution was warmed to room tempera-
ture and allowed to stir for 2 h. Then, the solution was poured into an ice-cold saturated
solution of NaHCO3 and extracted with ethyl acetate. The combined organic layers were
separated, dried over MgSO4, and concentrated under reduced pressure. The mixture
was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:2) to yield
the viscous product 19 (4.1 g, 75%). 1H NMR (600 MHz, CDCl3) δ 6.25 (t, J = 3.1 Hz, 1H),
5.45 (ddd, J = 10.2, 9.2, 2.4 Hz, 1H), 5.0 (ddd, J = 10.3, 3.7, 2.7 Hz, 1H), 4.35–4.31 (m, 1H),
4.28–4.24 (m, 1H), 3.99–3.92 (m, 1H), 3.45 (d, J = 2.3 Hz, 3H), 3.43 (d, J = 2.2 Hz, 1H), 2.16 (d,
J = 2.3 Hz, 3H), 2.12–2.09 (m, 6H), 2.01 (d, J = 2.4 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ
170.6, 170.0, 169.9, 169.0, 89.2, 71.7, 71.0, 69.6, 62.3, 60.5, 20.9, 20.8, 20.5; HRMS (ESI): mass
calcd for C15H22O10 [M + NH4]+, 380.1551; found, 380.1545.

2.3.8. Synthesis of 2,3,6-O-Triacetyl-4-O-Methylglucopyranosyl bromide (6)

A solution of HBr (10 mL, 33 wt% in acetic acid) was added dropwise to a stirred
solution of compound 19 (3.7 g, 10 mmol) in CH2Cl2 (50 mL) at 0 ◦C. The solution was
stirred at room temperature for 4 h. After completion of the reaction, the reaction mixture
was quenched carefully with ice water and diluted with CH2Cl2 and water. The organic
layer was separated and washed with saturated NaHCO3 and brine. The organic layer was
dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was
purified by silica gel column chromatography (ethylacetate/n-hexane 1:4) to yield the light
yellow liquid 6 (2.8 g, 73%). This compound was unstable, and after drying, it was used for
further reactions. 1H NMR (600 MHz, CDCl3) δ 6.53 (d, 1H, J = 3.7 Hz), 5.57 (t, J = 9.6 Hz,
1H), 4.75 (dd, J = 10.0, 3.8 Hz, 1H), 4.39 (d, J = 12.4 Hz, 1H), 4.31 (dd, J = 12.4, 4.0 Hz, 1H),
4.15 (d, J = 10.1 Hz, 1H), 3.45 (d, J = 9.7 Hz, 4H), 2.12 (d, J = 6.6 Hz, 6H), 2.10 (s, 3H); 13C
NMR (151 MHz, CDCl3) δ 170.5, 170.1, 169.6, 86.8, 76.6, 73.2, 71.8, 70.9, 61.8, 60.3, 20.9, 20.8,
20.7.

2.3.9. Synthesis of 3,5-bis(tert-Butyldimethylsilyloxy) Benzaldehyde (20)

To a well-stirred solution of 3,5-dihydroxybenzaldehyde 9 (2 g, 14.48 mmol) and DI-
PEA (5.3 mL, 43.4 mmol) in N,N- dimethylformamide (20 mL), tert-butylchlorodimethylsilane
(6.55 g, 43.4 mmol) was added at 0 ◦C, and the reaction mixture was stirred for 3 h at room
temperature. The reaction mixture was diluted with CH2Cl2 and washed with saturated
aqueous NaCl, and the combined organic layers were dried over anhydrous Na2SO4 and
concentrated under reduced pressure. The residue was purified by silica gel column chro-
matography (ethyl acetate/n-hexane = 1:20) to afford 20 (5.1 g, 96%) as a colorless oil. 1H
NMR (600 MHz, CDCl3) δ 9.9 (s, 1H), 7.0 (s, 2H), 6.6 (s, 1H), 1.0 (s, 18H), 0.2 (s, 12H); 13C
NMR (151 MHz, CDCl3) δ 191.9, 157.3, 138.3, 118.4, 114.4, 25.7, 25.6, 18.2; HRMS (ESI):
mass calcd for C19H34O3Si2[M + H]+, 367.2119; found, 367.2113.

2.3.10. Synthesis of (5-Vinyl-1,3-Phenylene)bis(oxy)bis(tert-Butyldimethylsilane (21)

A mixture of methyltriphenylphosphonium bromide (7.3 g, 20.4 mmol) and potassium
tert-butoxide (2.2 g, 20 mmol) in anhydrous THF was refluxed for 1 h for in situ generation
of methylenetriphenylphosphorane. Upon returning to room temperature, a solution of
3,5-di(tert-butyldimethylsilyloxy) benzaldehyde 20 (5 g, 13.6 mmol) in anhydrous THF
was added dropwise, and the reaction was heated to reflux overnight. After completion
of the reaction, ethyl acetate was added, and the solution was washed with water, dried
over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue
was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:25) to yield
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product 21 (3.4 g, 68%) as a colorless oil. 1H NMR (600 MHz, CDCl3) δ 6.6 (dd, J = 17.4,
10.9 Hz, 1H), 6.5 (s, 2H), 6.3 (s, 1H), 5.7 (d, J = 17.5 Hz, 1H), 5.2 (d, J = 10.9 Hz, 1H), 1.0 (s,
18H), 0.2 (s, 12H); 13C NMR (151 MHz, CDCl3) δ 156.6, 139.4, 136.7, 113.9, 111.7, 111.5, 25.7,
25.7, 18.2; HRMS (ESI): mass calcd for C20H36O2Si2[M + H]+, 365.2327; found, 365.2333.

2.3.11. Synthesis of 5-Vinylbenzene-1,3-diol, [3,5-Dihdroxy Styrene] (12)

To a solution of (5-vinyl-1,3-phenylene) bis(oxy)bis(tert-butyldimethylsilane) 21 (3
g, 8.2 mmol) in anhydrous THF (15 mL), TBAF (4 mL, 14 mmol) was added at 0 ◦C, and
the reaction mixture was stirred for 3 h at room temperature. The volume was reduced
by rotary evaporation, and ethyl acetate was added. The organic layer was washed with
water, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure.
The residue was purified by silica gel column chromatography (ethyl acetate/n-hexane =
1:1) to yield product 12 (1.2 g, 92%) as a viscous pale oil. 1H NMR (600 MHz, CD3OD) δ 6.6
(dd, J = 17.4, 11.0 Hz, 1H), 6.4 (s, 2H), 6.2 (s, 1H), 5.6 (d, J = 17.6 Hz, 1H), 5.1 (d, J = 10.8
Hz, 1H); 13C NMR (151 MHz, CD3OD) δ 158.2, 139.6, 137.0, 112.3, 104.4, 101.8, 35.6, 35.2;
HRMS (ESI): mass calcd for C8H8O2[M + H]+, 137.0597; found, 137.0621.

2.3.12. Synthesis of 5-Vinyl-1,3-Phenylene Diacetate (3,5-Diacetoxystyrene) (5)

Acetic anhydride (2 mL, 22 mmol) was added dropwise to a solution of compound 12
(1 g, 7.3 mmol), pyridine (1.9 mL, 22 mmol), and DMAP (26 mg, 0.219 mmol) in CH2Cl2
at 0 ◦C. The reaction mixture was stirred at room temperature for 12 h. The solution was
concentrated under reduced pressure, and the residue was purified by silica gel column
chromatography (ethyl acetate/n-hexane = 1:4) to yield 5-vinyl-1,3-phenylene diacetate 5
(1.12 g, 70%) as a clear oil. 1H NMR (600 MHz, CDCl3) δ 7.0 (s, 2H), 6.8 (s, 1H), 6.6 (dd, 1H,
J = 17.1, 11.2 Hz), 5.7 (d, 1H, J = 17.5 Hz), 5.3 (d, 1H, J = 10.8 Hz), 2.3 (s, 6H); 13C NMR (151
MHz, CDCl3) δ 169.0, 151.2, 139.9, 135.3, 116.7, 115.9, 114.7, 21.0; HRMS (ESI): mass calcd
for C12H12O4[M + NH4]+, 238.1074; found, 238.1085.

2.3.13. Synthesis of 4-Iodophyenyl Acetate (11)

To a well-stirred mixture of 4- iodophenol 7 (2 g, 9 mmol) in dry pyridine (6 mL), acetic
anhydride (1.75 mL, 18 mmol) was added at room temperature under N2. The mixture
was then stirred for 12 h. After completion of the reaction, water was added and extracted
with CH2Cl2. The organic layer was dried over MgSO4 and concentrated under reduced
pressure. The residue was purified by silica gel column chromatography (dichloromethane
100%) to yield product 11 (2.2 g, 95%) as a white solid. 1H NMR (600 MHz, CDCl3) δ 7.7–7.6
(m, 2H), 6.9–6.8 (m, 2H), 2.3 (s, 3H); 13C NMR (151 MHz, CDCl3) δ 169.1, 150.5, 138.5, 123.8,
89.9, 21.1; HRMS (ESI): mass calcd for C8H7 IO2[M + NH4]+, 279.9827; found, 279.9826.

2.3.14. Synthesis of 4-Iodophenyl-2′,3′,6′-O-triacetyl-4′-O-Methylglucopyranoside (4)

To a mixture of iodophenol 7 (259 mg, 1.9 mmol) and 2,3,6-O-triacetyl-4-methylglucop
yranosyl bromide 6 (730 mg, 1.9 mmol) in CHCl3, benzyltributylammonium chloride
(60 mg, 0.19 mmol) and potassium carbonate (665 mg, 4.8 mmol) were added and stirred at
room temperature for 24 h. The reaction mixture was neutralized with 1 N HCl, and the
organic layer was separated. The organic layer was washed with water-saturated NaHCO3
and brine, dried over MgSO4, and concentrated under reduced pressure. The residue
was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:4) to yield
product 4 (565 mg, 57%) as a white solid. 1H NMR (600 MHz, CDCl3) δ 7.56–7.54 (m, 2H),
6.74 (dd, J = 8.9, 2.7 Hz 2H), 5.22 (t, J = 9.3 Hz, 1H), 5.12 (dd, J = 9.6, 7.7 Hz, 1H), 4.98 (d, J =
7.8 Hz, 1H), 4.38 (dd, J = 12.0, 2.4 Hz, 1H), 4.24 (dd, J = 12.1, 5.6 Hz, 1H), 3.67 (ddd, J = 10.1,
5.7, 2.4 Hz, 1H), 3.43 (d, J = 2.5 Hz, 4H), 2.08 (d, J = 8.5 Hz, 6H), 2.03 (d, J = 2.5 Hz, 3H);
13C NMR (151 MHz, CDCl3) δ 170.5, 170.0, 169.6, 156.7, 138.4, 119.2, 98.7, 86.0, 77.5, 74.7,
73.1, 71.5, 62.7, 60.5, 20.9, 20.8, 20.7; HRMS (ESI): mass calcd for C19H23IO9[M + NH4]+,
540.0725; found, 540.0712.
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2.3.15. Synthesis of (E)-1”-(3,5-Diacetoxy)-2”-(4′-O-2′′′,3′′′,6′′′-Triacetyl-4′′′-O-Methyl-β-D
Glucopyranosidophenyl) Ethene (22)

To a solution of 3,5-diacetoxystyrene 5 (235 mg, 1.07 mmol) and compound 4 (560 mg,
1.07 mmol) in acetonitrile, palladium(II) acetate (0.012 mg, 0.053 mmol), benzyltriethylam-
monium chloride (243 mg,1.07 mmol), and tributylamine (0.68 mL, 2.9 mmol) were added
and stirred at 100 ◦C for 2 h, N2. After 2 h, the mixture was cooled to room temperature,
filtered through a short Celite pad, and then evaporated to dryness. The residue was taken
up in dichloromethane, washed with diluted HCl, water, and brine, dried over anhydrous
MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by
silica gel column chromatography (ethyl acetate/n-hexane = 1:2) to yield compound 22
(361 mg, 55%) as a white crystal. 1H NMR (600 MHz, CDCl3) δ 7.41 (d, J = 8.5 Hz, 2H), 7.10
(s, 2H), 7.02 (d, J = 16.2 Hz, 1H), 6.97 (d, J = 8.5 Hz, 2H), 6.91 (d, J = 16.2 Hz, 1H), 6.80 (s,
1H), 5.26 (t, J = 9.3 Hz, 1H), 5.17 (t, J = 8.7 Hz, 1H), 5.07 (d, J = 7.8 Hz, 1H), 4.42 (d, J = 11.9
Hz, 1H), 4.29 (dd, J = 11.9, 5.4 Hz, 1H), 3.74–3.68 (m, 1H), 3.46 (s, 4H), 2.30 (s, 6H), 2.11 (d, J
= 5.5 Hz, 6H), 2.06 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 170.6, 170.1, 169.7, 169.0, 156.8,
151.3, 139.7, 131.9, 129.7, 127.9, 126.0, 117.1, 116.8, 114.2, 98.7, 77.6, 74.8, 73.1, 71.6, 62.7, 60.5,
21.1, 20.9, 20.8, 20.7; HRMS (ESI): mass calcd for C31H34O13[M + NH4] +, 632.2338; found,
632.2342.

2.3.16. Synthesis of 4′-O-β- (4′′′-O-Methylglucopyranosyl)Resveratrol (2)

Compound 22 (350 mg, 0.58 mmol) was dissolved in methanol (20 mL) and 0.2 M
methanolic solution of sodium methoxide (20 mL). The resulting mixture was stirred for
1 h at room temperature. After completion of the reaction, the mixture was concentrated
under reduced pressure. The residue was purified by silica gel column chromatography
(methanol/dichloromethane = 1:8) to obtain the final compound 2 (195 mg, 85%) as a white
powder. 1H NMR (600 MHz, (CD3)2CO) δ 8.23 (s, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.04 (d, J =
7.6 Hz, 3H), 6.97 (s, 1H), 6.56 (s, 2H), 6.28 (s, 1H), 4.96 (d, J = 7.7 Hz, 1H), 4.64 (s, 1H), 4.40
(d, J = 3.4 Hz, 1H), 3.84 (dd, J = 10.8, 4.5 Hz, 1H), 3.80–3.75 (m, 1H), 3.70 (dd, J = 11.7, 5.1
Hz, 1H), 3.63 (dd, J = 8.8, 3.3 Hz, 1H), 3.57 (s, 3H), 3.51–3.43 (m, 2H), 3.31 (d, J = 5.2 Hz, 1H),
3.22 (t, J = 9.3 Hz, 1H). 13C NMR (151 MHz, (CD3)2CO) δ 158.7, 157.5, 139.7, 131.5, 127.7,
127.5, 127.3, 116.6, 104.9, 102.0, 100.6, 79.2, 77.1, 76.1, 74.0, 61.2, 59.7; HRMS (ESI): mass
calcd for C21H24O8[M + H]+, 405.1544; found, 405.1551.

2.3.17. Synthesis of
3-Hydroxy-5-Vinylphenyl-2′,3′,6′-tri-O-Acetyl-4′-O-Methyl-β-D-Glucopyranoside (10)

To a solution of dihydroxystyrene 12 (248 mg, 1.8 mmol) and 2,3,6-O-triacetyl-4
methylglucopyranosyl bromide 6 (700 mg, 1.8 mmol) in CHCl3, benzyltributylammonium
chloride (56 mg, 0.18 mmol) and potassium carbonate (636 mg, 4.6 mmol) were added
and stirred at room temperature for 24 h. The reaction mixture was neutralized with 1 N
HCl, and the organic layer was separated. The organic layer was washed with saturated
NaHCO3 and brine, dried over MgSO4, and concentrated under reduced pressure. The
residue was purified by silica gel column chromatography (ethyl acetate/n-hexane = 1:2) to
yield product 10 (320 mg, 40%) as a white product. 1H NMR (600 MHz, CDCl3) δ 6.59 (d, J
= 17.1 Hz, 3H), 6.42 (s, 1H), 6.04 (s, 1H), 5.69 (d, J = 17.5 Hz, 1H), 5.25–5.23 (m, 2H), 5.13 (t, J
= 8.6 Hz, 1H), 5.02 (d, J = 7.7 Hz, 1H), 4.42 (d, J = 11.8 Hz, 1H), 4.26 (dd, J = 11.7, 5.6 Hz, 1H),
3.71–3.69 (m, 1H), 3.45 (d, J = 12.0 Hz, 4H), 2.10 (d, J = 10.5 Hz, 6H), 2.05 (s, 3H); 13C NMR
(151 MHz, CDCl3) δ 170.3, 170.0, 158.1, 157.0, 140.0, 136.2, 114.9, 108.2, 107.1, 104.1, 98.7,
77.7, 74.8, 73.0, 71.7, 62.8, 60.5, 20.9, 20.8, 20.7; HRMS (ESI): mass calcd for C21H26O10[M +
NH4]+, 456.1864; found, 456.1875.

2.3.18. Synthesis of
3-Acetoxy-5-Vinylphenyl-2′,3′,6′-tri-O-Acetyl-4′-O-Methyl-β-D-Glucopyranoside (23)

Compound 10 (310 mg, 0.7 mmol) in CH2Cl2 (5 mL) at room temperature was added
to pyridine (0.1 mL, 1.06 mmol) and 4-dimethylaminopyridine (0.001 mg), and acetic
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anhydride (0.1 mL, 1.06 mmol) was added dropwise. The resulting mixture was stirred for
1 h. The mixture was diluted with CH2Cl2 and water. The organic phase was separated
and washed with dilute hydrochloric acid, water, and brine, dried over anhydrous MgSO4,
filtered, and dried under reduced pressure. The residue was purified by silica gel column
chromatography (ethyl acetate/n-hexane = 1:4) to yield product 23 (288 mg, 85%) as a
white solid. 1H NMR (600 MHz, CDCl3) δ 6.86 (dd, J = 30.6, 2.0 Hz, 2H), 6.65–6.56 (m, 2H),
5.74–5.68 (m, 1H), 5.31–5.20 (m, 2H), 5.14 (ddt, J = 10.5, 7.8, 1.1 Hz, 1H), 5.05 (d, J = 7.7 Hz,
1H), 4.40 (dq, J = 12.0, 1.6 Hz, 1H), 4.27–4.20 (m, 1H), 3.75–3.68 (m, 1H), 3.47–3.39 (m, 5H),
2.27 (dd, J = 2.4, 1.1 Hz, 3H), 2.09 (dd, J = 2.3, 1.1 Hz, 3H), 2.07 (dd, J = 2.3, 1.1 Hz, 3H),
2.04 (dd, J = 2.3, 1.1 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 170.6, 170.0, 169.7, 169.1, 157.5,
151.5, 140.0, 135.6, 115.6, 114.2, 112.1, 109.8, 98.6, 77.7, 74.7, 73.1, 71.5, 62.9, 60.4, 21.1, 20.9,
20.7, 20.7; HRMS (ESI): mass calcd for C23H28O11[M + NH4]+, 498.1970; found, 498.1985.

2.3.19. Synthesis of (E)-1”-(3-Acetoxy-5-O-2′′′,3′′′,6′′′-Triacetyl-4′′′-O-Methyl-β-D
Glucopyranosidophenyl)- 2”-(4′-Acetoxyphenyl) Ethene (24)

To a solution of 4-iodophenylacetate 11 (147 mg, 0.56 mmol), compound 23 (270 mg,
0.56 mmol) in acetonitrile was added with palladium(II) acetate (0.006 mg, 0.028 mmol),
benzyltriethylammonium chloride (128 mg, 0.56 mmol), and tributylamine (0.36 mL, 1.5
mmol) and stirred at 100 ◦C for 2 h under nitrogen. After 2 h, the mixture was cooled to
room temperature, filtered through a short Celite pad, and then evaporated to dryness.
The residue was taken up in dichloromethane, washed with diluted hydrochloric acid,
water, and brine, dried over anhydrous MgSO4, filtered, and concentrated under reduced
pressure. The residue was purified by silica gel column chromatography (ethyl acetate/n-
hexane = 1:2) to yield product 24 (275 mg, 80%) as a white crystal. 1H NMR (600 MHz,
CDCl3) δ 7.5 (d, J = 8.0 Hz, 2H), 7.1–7.0 (m, 3H), 7.0–6.9 (m, 3H), 6.6 (s, 1H), 5.3 (t, J = 9.2
Hz, 1H), 5.2 (t, J = 8.5 Hz, 1H), 5.1 (d, J = 7.6 Hz, 1H), 4.4 (d, J = 11.9 Hz, 1H), 4.3 (dd, J =
11.4, 5.8 Hz, 1H), 3.7 (s, 1H), 3.5 (s, 4H), 2.3 (s, 6H), 2.1 (s, 3H), 2.1 (s, 6H); 13C NMR (151
MHz, CDCl3) δ 170.6, 170.1, 169.7, 169.0, 156.8, 151.3, 139.7, 131.9, 129.8, 127.9, 126.0, 117.1,
116.8, 114.2, 98.7, 77.6, 74.8, 73.1, 71.6, 62.7, 60.5, 21.1, 20.9, 20.8, 20.7; HRMS (ESI): mass
calcd for C31H34O13[M + H]+, 637.1999; found, 637.2014.

2.3.20. Synthesis of 3-O-β-(4′′′-O-Methylglucopyranosyl) Resveratrol (3)

Compound 24 (260 mg, 0.64 mmol) was dissolved in methanol (20 mL), and 0.2
M methanolic solution of sodium methoxide (20 mL) was added at room temperature.
The resulting mixture was stirred for 1 h. The mixture was concentrated to dryness
under reduced pressure. The residue was purified by silica gel column chromatography
(methanol/dichloromethane = 1:8) to yield product 3 (217 mg, 84%) as a white powder. 1H
NMR (600 MHz, (CD3)2CO) δ 7.36 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 16.3 Hz, 1H), 6.85 (d, J =
16.3 Hz, 1H), 6.79 (d, J = 8.1 Hz, 2H), 6.72 (s, 1H), 6.64 (s, 1H), 6.41 (s, 1H), 4.86 (d, J = 7.7
Hz, 1H), 3.81 (d, J = 12.0 Hz, 1H), 3.65 (dd, J = 12.0, 4.6 Hz, 1H), 3.59 (t, J = 9.0 Hz, 1H), 3.52
(s, 3H), 3.46–3.37 (m, 2H), 3.16 (t, J = 9.3 Hz, 1H); 13C NMR (151 MHz, (CD3)2CO) δ 159.3,
158.8, 157.7, 139.9, 128.7, 127.9, 125.4, 115.6, 107.3, 105.3, 102.9, 100.8, 79.2, 77.1, 76.1, 74.1,
61.2, 59.6; HRMS (ESI): mass calcd for C21H24O8[M + NH4]+, 405.1544; found, 405.1551.
The spectra of the above mentioned compounds is displayed in the part of Supplemental
Material.

3. Results and Discussion
3.1. Retrosynthesis

Metabolite 2 and its regiomer 3 consist of a glycone attached to the aglycone moiety.
The glycone moiety is 4-O-methyl glucopyranose, whereas the aglycone is a functional
resveratrol featuring a stilbene core with a polyhydroxy group. Metabolite 2 is a structure in
which 4-O-methylglucopyranose is attached to the 7-position hydroxyl group of resveratrol,
whereas its regiomer 3 consists of a glycosyl moiety attached to the 3-position hydroxyl
group of resveratrol. The synthesis of both metabolites involves a glycosylation reaction
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that introduces methylated glucose as the core reaction and the Heck reaction to form a
stilbene skeleton [34].

Schemes 1 and 2 provide a retrosynthetic methodology for the synthesis of both
metabolites 2 and 3. Stilbene moiety 2 and its regiomer 3 were constructed via palladium-
catalyzed Heck coupling. The rate-limiting step of the glycosylation reaction was per-
formed with selectively protected compound 6 and commercially available iodophenol 7.
Compound 10 was obtained from the glycosylation of compound 6 and styrene 12, which
was synthesized from readily available dihydroxy benzaldehyde 9.
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3.2. Chemistry

The reaction commenced with the preparation of the glycosyl donor, 4-O-methylglycop
yranosyl bromide 6, as shown in Scheme 3, which involves eight steps from commercially
available methyl-α-D-glucopyranoside 8. Regioselective protection of 4, 6-diol from the
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starting material was accomplished by the introduction of a 4,6-O-benzylidene group
using benzaldehyde dimethyl acetal under acidic conditions, yielding protected compound
13. 2,3-Di-O-benzylation of 13 generated 14 using NaH and BnBr. Further regioselective
opening of the benzylidene ring of intermediate 14 was conducted with the help of tri-
ethylsilane (TES) and trifluoroacetic acid (TFA) to obtain alcohol 15 [35]. Methylation of
compound 15 with NaH and MeI in N, N-dimethylformamide yielded product 16, fol-
lowed by hydrogenolysis to yield product 17. Acetylation of the hydroxy groups of 17 was
performed using pyridine and acetic anhydride to yield 18, followed by the replacement of
an anomeric methoxy group with an acetoxy group using boron trifluoride diethyl etherate
to yield 19. Finally, grafting of the anomeric acetoxy group was performed to incorporate
bromine using HBr (33% in acetic acid) to yield acylated glycosyl bromide 6 at 73% [36]. As
the final compound, 4-O-methylglucopyranosyl bromide 6, has poor chemical stability, it is
suitable to obtain a large amount of acetate compound 19 and synthesize 6 immediately
when necessary.
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3,5-Dihydroxystyrene 12 and 3,5 diacetoxyystyrene 5 were synthesized from com-
mercially available 3,5-dihydroxy benzaldehyde 9 according to Scheme 4. Protection of
the hydroxy group of 9 with TBDMS yielded 20, and the Wittig reaction yielded olefin 21
using methyltriphenylphosphonium bromide under basic conditions. The TBDMS group
in intermediate 21 was removed using tetrabutylammonium fluoride (TBAF) to furnish
dihydroxy styrene 12, and further acetylation of both hydroxy groups resulted in 12 at 70%
yield.
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After obtaining 6 and 12, the next target was to synthesize substrates 4 and 10, which
participate in the Heck reaction for the synthesis of the stilbene core.

We performed glycosylation of both iodophenol 7 and dihydroxystyrene 12 separately
with 4-O-methylglycopyranosyl bromide 6 under different reaction conditions, as shown in
Tables 1 and 2. Using Ag2CO3 in acetonitrile produced low-yield glycoside products 4 and
10 up to 16% and 19%, respectively. We attempted to improve glycosylation using a phase
transfer catalyst (TBAB) in a two-phase system (aqueous NaOH and K2CO3) in CHCl3.
Unfortunately, the reaction yielded trace amounts. The reaction was incomplete, and the
substrate was recovered for reuse. Bromide compound 6 can be decomposed into glycal by
an alkaline water phase and phenoxide anion [37]. Therefore, excess use of water in the
reaction lowers the yield of the compound. After utilizing several conditions (Tables 1 and
2), the glycosylation reaction under the phase transfer catalyst BnNBu3Cl and K2CO3 as a
base at room temperature yielded product 4 at 57% yield. The desired mono-glucosylated
product 10 was obtained at 40% yield along with the undesired di-glucosylated product as
a mixture, which was separated by column chromatography.

Table 1. Optimization of glycosylation reaction for synthesis of 4 a.
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Table 2. Optimization of glycosylation reaction for synthesis of 10 a.
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4. Conclusions

In conclusion, an efficient total synthesis was performed for the preparation of resve-
bassianol A (2, a metabolite of resveratrol by Beauveria bassiana) and its regiomer (3) through
glycosylation and a palladium-catalyzed Heck reaction. Resvebassianol A and regiomer 3
were synthesized in 11 and 12 linear steps, with overall yields of 7.5% and 6.3%, respectively.
Incorporation of 4-O methyl glyosyl was performed through the glycosylation reaction
and was optimized using a phase transfer catalyst with varying bases. This resulted in
an elevated yield of up to 40% and 57%, respectively. Thus, this method can be helpful
for the synthesis of metabolites that are difficult to obtain from plant sources and through
microbial biotransformation. This strategy can also be used for the synthesis of other
related metabolites.
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