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Abstract: Although the hallmarks of Alzheimer’s disease (AD) are amyloid beta plaques and neu-
rofibrillary tangles, there is growing evidence that neuroinflammation, mitochondrial dysfunction
and oxidative stress play important roles in disease development and progression. A major risk factor
for the development of AD is diabetes, which is also characterized by oxidative stress and mitochon-
drial dysfunction along with chronic, low-grade inflammation. Increasing evidence indicates that in
immune cells, the induction of a pro-inflammatory phenotype is associated with a shift from oxidative
phosphorylation (OXPHOS) to glycolysis. However, whether hyperglycemia also contributes to this
shift is not clear. Several different approaches including culturing BV2 microglial cells in different
carbon sources, using enzyme inhibitors and knocking down key pathway elements were used in
conjunction with bacterial lipopolysaccharide (LPS) activation to address this question. The results
indicate that while high glucose favors NO production, pro-inflammatory cytokine production is
highest in the presence of carbon sources that drive OXPHOS. In addition, among the carbon sources
that drive OXPHOS, glutamine is a very potent inducer of IL6 production. This effect is dampened
in the presence of glucose. Together, these results may provide new prospects for the therapeutic
manipulation of neuroinflammation in the context of diabetes and AD.

Keywords: glycolysis; oxidative phosphorylation; reactive oxygen species; mitochondria; cytokines;
diabetes

1. Introduction

Alzheimer’s disease (AD) is the most common age-associated disease but there are no
treatments that can prevent, delay, slow or stop its progression. While AD is characterized
by both the abnormal aggregation of hyperphosphorylated tau protein which gives rise
to neurofibrillary tangles and amyloid β (Aβ) accumulation in extracellular plaques [1],
neuroinflammation and oxidative stress are thought to be important contributors to AD
pathology and neurodegeneration [2–5]. Indeed, there is now substantial genetic and
experimental evidence indicating that the enhanced activation of glial cells (both microglia
and astrocytes) in the brain results in inflammatory consequences that are important
for the progression of AD and may even help to drive AD pathology independently of
Aβ deposition or tau aggregation [4]. However, the causes of this neuroinflammation
remain unclear.

A number of epidemiological studies have suggested a link between diabetes and
AD [6,7], with an increased risk ranging from 1.5- to 2-fold. Moreover, this link appears to
be strongly associated with the chronic hyperglycemia that is the hallmark of diabetes and is
thought to be the major cause of diabetic complications [8,9]. Furthermore, hyperglycemia
leads to oxidative stress, which is due to the accumulation of reactive oxygen species (ROS)
that are generated at least partly as a result of mitochondrial dysfunction and are central to
the pathological consequences of diabetes [10–12]. Together, these observations suggest
that hyperglycemia could play a critical role in the exacerbation of neuroinflammation and
oxidative stress that contribute to the development and progression of AD.

Antioxidants 2021, 10, 109. https://doi.org/10.3390/antiox10010109 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0003-0694-0610
https://doi.org/10.3390/antiox10010109
https://doi.org/10.3390/antiox10010109
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10010109
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/2076-3921/10/1/109?type=check_update&version=1


Antioxidants 2021, 10, 109 2 of 13

Increasing evidence suggests that metabolic reprogramming plays a critical role in
immune cell activation [13,14]. In macrophages and dendritic cells, the induction of a
pro-inflammatory phenotype is associated with a shift from oxidative phosphorylation
(OXPHOS) to glycolysis [15,16]. The available evidence suggests that this also occurs in
microglia [17–21]. However, whether this switch can be enhanced by hyperglycemia and
the role that it plays in the induction of the hallmarks of a pro-inflammatory phenotype in
microglia, including increased NO production and pro-inflammatory cytokine synthesis, is
not entirely clear.

In order to better understand how both high glucose and mitochondrial dysfunction
could contribute to neuroinflammation in the context of AD, I decided to focus on microglial
cells, the resident immune cells of the brain. For these studies, I used the mouse BV2
microglial cell line for several reasons. First, a large number of cells were needed for
these studies which was much more than could be efficiently generated using primary
cultures. Second, the BV2 cell line has been very well characterized, is considered an
excellent in vitro microglial cell model [22] and has been used to demonstrate a metabolic
shift in response to a pro-inflammatory stimulus such as bacterial lipopolysaccharide
(LPS) [17,19]. Third, using a cell line rather than primary cells greatly reduces experiment-
to-experiment variability. Importantly, there is growing evidence that microglia in the aging
brain undergo significant changes that result in a chronically activated phenotype [23,24].
Whether additional stresses such as those that occur in the context of diabetes could
further exacerbate this age-related pro-inflammatory phenotype and thereby contribute
to the development of AD is not clear. In the experiments described herein, the BV2 cells
were exposed to both LPS and a variety of different treatments designed to modulate
glucose levels, mitochondrial function and oxidative stress in order to determine whether
these treatments could enhance an ongoing pro-inflammatory response. The results show
that both high glucose and mitochondrial dysfunction modulate the pro-inflammatory
phenotype of microglial cells in distinct ways that could be detrimental to brain function.

2. Materials and Methods
2.1. Materials

Bacterial lipopolysaccharide (LPS), iodoacetic acid (IAA), 2-deoxyglucose (2DG), in-
domethacin, 2-thenoyltrifluoroacetone (TTFA), oligomycin, rotenone, antimycin A and
myxothiazol were from Sigma Aldrich (St. Louis, MO, USA). GKT137831, zileuton,
PD146176, idebenone, piericidin A, trifluoromethoxy carbonylcyanide phenylhydroazone
(FCCP), S-ethyl isothiourea (SEITU) and 1400W were from Cayman Chemical (Ann Arbor,
MI, USA). GSK2795039 was from MedChem Express (Monmouth Junction, NJ, USA). All
other chemicals were from Sigma Aldrich.

2.2. BV2 Cell Culture and Treatment

Mouse BV2 microglial cells (obtained from Dr. Grace Y. Sun (University of Missouri
at Columbia, MO, USA) were routinely grown in low-glucose (5 mM) DMEM (Thermo
Fisher/Gibco, Waltham, MA, USA) supplemented with 10% fetal calf serum (FCS) (Gibco)
and antibiotics (Gibco) at 10% CO2. For all of the assays unless otherwise noted, the cells
were plated at 5 × 105 cells in 35 mm tissue culture dishes. After overnight growth, the cells
were transferred to high-glucose (25 mM) DMEM supplemented with 10% FCS and treated
with 25 ng/mL LPS alone or in the presence of the different compounds which were added
30 min before the treatment with LPS. After 24 h, the medium was removed, spun briefly to
remove floating cells and 100 µL was assayed for nitrite, the stable oxidative end product
of NO and therefore a measure of its production, using 100 µL of the Griess Reagent (Sigma
Aldrich) in a 96 well plate. After incubation for 10 min at room temperature, the absorbance
at 550 nm was read on a Molecular Devices microplate reader. The remaining culture
supernatants were stored at −20 ◦C until used to determine their levels of IL6 and TNFα
using ELISAs (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s
instructions. In order to control for differential effects of the various treatments on cell
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survival, the cells left in the dishes after removal of the culture supernatants were assayed
for viability using the MTT assay as described previously [25]. NO or cytokine production
was normalized to the MTT assay results. Because the absolute levels of NO or cytokine
production varied somewhat from experiment to experiment, in order to compare the
results from different experiments, the levels were normalized to the level seen with LPS
alone. Absolute levels of nitrite ranged from 8 to 12 µM, IL6 from 400 to 700 ng/mL and
TNFα from 300 to 500 ng/mL in the different experiments. In all cases, the absolute levels
of nitrite, IL6 and TNFα in the untreated BV2 cells were minimal.

2.3. Manipulation of Carbon Source

To alter the carbon source used by the cells for metabolism, the approach described
by Lanning et al. [26] was used. Briefly, 5 × 105 cells BV2 cells were grown overnight in
35 mm dishes. The cells were rinsed twice in phosphate-buffered saline (PBS) and then the
cells were put into DMEM containing the desired carbon source. To do this, phenol red
free DMEM without glucose, pyruvate or glutamine (Gibco) with 10% dialyzed FCS and
antibiotics was used as a base and then glucose, pyruvate or glutamine was added from
frozen stocks as needed to a final concentration of 10 mM each. The cells were then treated
with LPS and analyzed as described above for NO and cytokine production.

2.4. Intracellular ATP Assay

Intracellular ATP was determined using lysates from cells exposed to the different
carbon sources in the absence or presence of 10 µM IAA or 10 µM rotenone. Briefly,
1 × 106 BV2 cells were plated in 60 mm dishes. After 24 h of culture, the cells were rinsed
and the medium was exchanged with medium containing each of the different carbon
sources and IAA or rotenone was added as indicated to block glycolysis or mitochondrial
respiration, respectively. After 4 h, the cells were washed twice in cold PBS without
calcium or magnesium and then scraped into lysis buffer containing 50 mM HEPES, pH 7.4,
150 mM NaCl, 50 mM NaF, 1.5 mM MgCl2, 1 mM EDTA, 10 mM sodium pyrophosphate,
1 mM Na3VO4 and 1% Triton X-100. Lysates were incubated at 4 ◦C for 30 min, then
cleared by centrifugation at 14,000× g for 10 min. ATP levels were determined using
a chemiluminescent kit from ThermoFisher/Invitrogen and normalized to total cellular
protein as determined using the bicinchoninic acid (BCA) assay (ThermoFisher/Pierce).

2.5. Transfection

For siRNA transfection, BV2 cells were plated in 60 mm dishes at 1 × 106 cells/dish
and 20 pmol IF1 siRNA (#sc-141374) or iNOS siRNA (#sc-36092) from Santa Cruz Biotech-
nology (Dallas, TX, USA) or control siRNA (#1027280) from Qiagen (Germantown, MD,
USA), were used along with RNAi max (ThermoFisher/Invitrogen) according to the manu-
facturer’s instructions. The average reduction in IF1 levels was 85% and in iNOS levels
was 90%.

2.6. Western Blotting

Sample Preparation: For Western blotting, 5 × 105 BV2 cells per 35 mm dish were grown
for 24 h prior to the indicated treatments. Total protein extracts were prepared by rinsing
the cells twice with ice-cold PBS without calcium or magnesium, scraping the cells into lysis
buffer containing 1× protease inhibitor cocktail and 1× phosphatase inhibitor cocktail and
incubating on ice for 30 min. Extracts were sonicated and cleared by centrifugation. The
supernatants were stored at −70 ◦C until analysis. Protein concentrations were quantified
by the BCA assay and adjusted to equal concentrations. Thereafter, 5× Western blot sample
buffer (74 mM Tris-HCl, pH 8.0, 6.25% SDS, 10% β-mercaptoethanol, 20% glycerol) was
added to a final concentration of 2.5× and samples were boiled for 5 min.

Western blotting: For SDS-PAGE, equal amounts of cellular protein, typically 10–20 µg
per lane, were used. All samples were separated using 4–12% Criterion XT Precast Bis-Tris
Gels (Biorad, Hercules, CA, USA). Proteins were transferred to nitrocellulose membranes
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and the quality of protein measurement, electrophoresis and transfer determined by stain-
ing with Ponceau S. Membranes were blocked with 5% skim milk in TBS-T (20 mM Tris
buffer pH 7.5, 0.5 M NaCl, 0.1% Tween 20) for 1 h at room temperature and incubated
overnight at 4 ◦C in the primary antibody diluted in 5% BSA in TBS/0.05% Tween 20. The
primary antibodies used were: rabbit anti-IF1 antibody from Santa Cruz Biotechnology
(#sc134962, 1/1000) and mouse anti-iNOS antibody (#610431, 1/1000) from BD Transduc-
tion Labs (San Jose, CA, USA). Subsequently, blots were washed in TBS/0.05% Tween 20
and incubated for 1 h at room temperature in horseradish peroxidase-goat anti-rabbit or
goat anti-mouse (Biorad) diluted 1/5000 in 5% skim milk in TBS/0.1% Tween 20. After
additional washing, protein bands were detected by chemiluminescence using the Super
Signal West Pico Substrate (ThermoFisher/Pierce). For both primary antibodies, the same
membrane was re-probed for actin (HRP-conjugated rabbit anti-actin (#5125, 1/20,000)
from Cell Signaling (Danvers, MA, USA)). Autoradiographs were scanned using a Biorad
GS800 scanner. Band density was measured using the manufacturer’s software. Relative
protein expression was normalized to actin band density. Each Western blot was repeated
at least three times with independent protein samples.

2.7. Statistical Analysis

All of the experiments were performed at least three times and a minimum of three
independent experiments were used for statistical analyses. The results were analyzed
for statistically significant differences at the p < 0.05 level using the t-test or analysis of
variance (ANOVA) test and Tukey’s post test for individual group means comparisons
as appropriate.

3. Results

To determine whether high glucose enhances the production of NO and/or pro-
inflammatory cytokines in LPS-stimulated microglia, BV2 microglial cells routinely grown
in low- (5 mM) glucose medium were treated overnight with LPS in either low- or high-
(25 mM) glucose medium and then the levels of nitrite as an index of NO production,
and IL6 and TNFα in the culture supernatants were determined. As shown in Figure 1A,
while high glucose significantly increased the production of NO, it had no effect on either
IL6 or TNFα production. As a complement to these studies, BV2 cells routinely grown
in low-glucose medium were transferred to high-glucose medium in the presence of
iodoacetic acid (IAA), an inhibitor of GAPDH, a key enzyme in the glycolytic pathway, or
2-deoxyglucose (2-DG), a competitive inhibitor of phosphoglucoseisomerase, another key
enzyme in glycolysis, and LPS was added. As shown in Figure 1B, while both IAA and
2DG were effective at preventing the LPS-mediated increase in NO production, neither
had a significant effect on IL6 production and IAA actually increased TNFα production.
Together, these studies suggested that the role of high glucose and increased glycolysis in
exacerbating the pro-inflammatory phenotype in microglia was not as straightforward as
previous studies would indicate.

To further explore this idea, BV2 cells were treated with LPS in the presence of different
carbon sources that favor either glycolysis or oxidative phosphorylation (OXPHOS). This
approach was previously used to study the metabolism of cancer cells [26]. First, to show
that the approach was effective at promoting either glycolysis or OXPHOS in the BV2 cells,
they were transferred to the different carbon sources and then treated with either IAA,
an inhibitor of glycolysis, or rotenone, an inhibitor of OXPHOS [26]. After 4 h, the cells
were harvested and cell extracts assayed for ATP. As shown in Figure 2A, in BV2 cells
grown in a carbon source that supports both glycolysis and OXPHOS (glucose, pyruvate
and glutamine), neither IAA nor rotenone had a strong effect on ATP levels. However, in
BV2 cells grown only in glucose, IAA but not rotenone significantly reduced ATP levels. In
contrast, in BV2 cells grown in pyruvate or glutamine, carbon sources that favor OXPHOS,
IAA had little or no effect while rotenone greatly reduced ATP levels. Thus, the different
carbon sources are used for energy production by the BV2 cells as expected.
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Figure 1. High glucose enhances NO production in LPS-treated BV2 microglial cells. (A) BV2 cells
grown in low-glucose medium were treated with 25 ng/mL LPS for 24 h in either low-glucose (5 mM)
or high-glucose (25 mM) medium. The cell culture supernatants were assayed for NO, IL6 and TNFα
production. (B) BV2 cells grown in low-glucose medium were transferred to high-glucose medium
in the absence or presence of 10 µM IAA or 10 mM 2-DG and treated with 25 ng/mL LPS for 24 h.
The cell culture supernatants were assayed for NO, IL6 and TNFα production. The results are the
average of a minimum of three independent experiments. *** p < 0.001 as compared to LPS alone. ns,
not significant.

The effects of the different carbon sources on NO and cytokine production were exam-
ined next. Surprisingly, none of the individual carbon sources promoted the production
of NO (Figure 2B) or the induction of iNOS (Figure 2C) in response to LPS treatment nor
did the combination of glucose and pyruvate. While the combinations of glucose and glu-
tamine and glutamine and pyruvate stimulated some iNOS induction and NO production
in response to LPS treatment, neither combination was as effective as the combination
of all three carbon sources. In contrast, both IL6 and TNFα production were seen in the
presence of each of the individual carbon sources. However, while TNFα production was
either slightly reduced or unaffected by growth in a single carbon source, IL6 production
was unaffected by growth in pyruvate alone but greatly enhanced by growth in glutamine
alone. Furthermore, both pyruvate or especially glutamine alone were more effective
at promoting IL6 production in the absence of glucose than in the presence, suggesting
that glycolysis actually dampens LPS-induced IL6 production. Moreover, these results,
along with the low- and high-glucose medium experiments, suggested that NO production
and cytokine production can proceed independently of each other and are not necessarily
regulated in tandem.

This idea was further investigated in studies with NO inhibitors. Two different
NO inhibitors, SEITU and 1400W, were tested. As expected, both of these inhibitors
dramatically decreased LPS-induced NO production but had little or no effect on cytokine
production, even in the almost complete absence of NO (Figure 2D). Similar results were
obtained using iNOS siRNA (Figure 2D).

To further explore the role of mitochondria in NO and cytokine production by LPS-
stimulated BV2 cells, a variety of electron transport chain (ETC) inhibitors were tested
for their effects on NO, IL6 and TNFα production (Figure 3). For all of these studies, a
wide range (1–10 µM) of inhibitor concentrations was tested initially and then further
experiments focused on concentrations that did not induce significant toxicity. The effects
of the inhibitors depended on the ETC complex that was targeted. Both of the complex I
inhibitors, rotenone and piericidin A, at low doses, increased NO and cytokine production
(Figure 3A,B). Interestingly, the effects were significant only at the lowest (low nanomolar)
concentrations of the inhibitors tested. In contrast, the complex II inhibitor, TTFA, reduced
the production of both NO and cytokines (Figure 3C) while the complex III inhibitors, an-
timycin and myxothiazol, had little effect on either NO or cytokine production (Figure 3C).
The results with TTFA, antimycin and myxothiazol are only shown for the highest con-
centration tested that did not kill the cells. However, lower concentrations of antimycin A
and myxothizaol also had no effects (not shown) and lower concentrations of TTFA were
less effective (not shown). Interestingly, uncoupling mitochondria with FCCP greatly de-
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creased NO and cytokine production (Figure 3D). However, while inhibiting ATP synthase
with oligomycin reduced NO production by 50%, it had no effect on IL6 production and
dramatically increased TNFα production (Figure 3D). Together, these results suggest that
mitochondrial activity contributes to both NO and cytokine production in LPS-stimulated
microglia but that the effects are highly dependent on the site of activity.
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Figure 2. Different carbon sources have distinct effects on NO and cytokine production in LPS-
treated BV2 cells. (A) BV2 cells were grown overnight in low-glucose medium and then transferred
to medium containing only the indicated carbon source and either untreated or treated for 4 h with
10 µM IAA or rotenone. Cells extracts were prepared and assayed for ATP, the levels of which were
normalized to the protein content of the extracts. The results are the average of a minimum of three
independent experiments. * p < 0.05, *** p < 0.001 as compared to cells not treated with IAA or
rotenone. ns, not significant. (B) BV2 cells were grown overnight in low-glucose medium and then
transferred to medium containing the indicated carbon source(s) and then treated with 25 ng/mL LPS
for 24 h. The cell culture supernatants were assayed for NO, IL6 and TNFα production. The results
are the average of a minimum of three independent experiments. * p < 0.05, *** p < 0.001 as compared
to medium containing glucose, pyruvate and glutamine. ns, not significant. (C) BV2 cells were
grown overnight in low-glucose medium and then transferred to medium containing the indicated
carbon source(s) and then left untreated or treated with 25 ng/mL LPS for 24 h. Cell extracts were
prepared and equal amounts of protein analyzed by SDS-PAGE and Western blotting for iNOS and
actin as a loading control. (D) BV2 cells were grown overnight in low-glucose medium and then
transferred to high-glucose medium before treatment with 25 ng/mL LPS for 24 h in the absence or
presence of 10 µM of the iNOS inhibitors SEITU or 1400W. As a complement to the inhibitors, cells
were transfected overnight with iNOS siRNA. The next day, the cells were plated for experiments
and grown overnight in low-glucose medium and then transferred to high-glucose medium before
treatment with 25 ng/mL LPS for 24 h. In all cases, the cell culture supernatants were assayed for
NO, IL6 and TNFα production. The results are the average of a minimum of three independent
experiments. *** p < 0.001 as compared to LPS alone.
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uncoupling the mitochondria with FCCP can reduce ROS production [27]. This idea was 
addressed using several different approaches. First, since complex I is known to be a 
source of mitochondrial ROS production and inhibition of this complex can enhance ROS 
production [27], it was asked how paraquat (PQ), a compound that stimulates ROS pro-
duction from complex I by a different mechanism from rotenone and piericidin A [29], 
affects LPS-induced NO and cytokine production in the BV2 cells. As shown in Figure 4A, 
low concentrations of PQ enhanced LPS-induced NO and cytokine production while 
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Figure 3. Effects of mitochondrial inhibitors on NO and cytokine production in LPS-treated BV2
cells. BV2 cells were grown overnight in low-glucose medium and then transferred to high-glucose
medium before treatment with 25 ng/mL LPS for 24 h. (A) Cells were treated with LPS alone or
in the presence of the indicated concentrations of the complex I inhibitor rotenone. (B) Cells were
treated with LPS alone or in the presence of the indicated concentrations of the complex I inhibitor
piericidin A. (C) Cells were treated with LPS alone or in the presence of 10 µM of the complex II
inhibitor TTFA or 5 nM of the complex III inhibitor antimycin A or 2.5 nM of the complex III inhibitor
myxothiazol. (D) Cells were treated with LPS alone or in the presence of 10 µM of the ATP synthase
inhibitor oligomycin or 10 µM of the mitochondrial uncoupler FCCP. The cell culture supernatants
were assayed for NO, IL6 and TNFα production. The results are the average of a minimum of
three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001 as compared to LPS alone. ns,
not significant.

These observations suggested that mitochondrial ROS induction might play a role
in the stimulation of NO and cytokine production by LPS in the BV2 cells since all three
ETC complexes can give rise to ROS production [27], as can oligomycin treatment [28],
while uncoupling the mitochondria with FCCP can reduce ROS production [27]. This idea
was addressed using several different approaches. First, since complex I is known to be
a source of mitochondrial ROS production and inhibition of this complex can enhance
ROS production [27], it was asked how paraquat (PQ), a compound that stimulates ROS
production from complex I by a different mechanism from rotenone and piericidin A [29],
affects LPS-induced NO and cytokine production in the BV2 cells. As shown in Figure 4A,
low concentrations of PQ enhanced LPS-induced NO and cytokine production while higher
concentrations of PQ reduced NO production but further enhanced cytokine production.
As a complement to these studies, the effects of the mitochondrially directed antioxidant
MitoQ were also tested. As shown in Figure 4B, MitoQ had a similar dose-dependent,
inhibitory effect on both NO and cytokine production but even the highest concentration
shown (2.5 µM) only reduced the levels of all three by ~50%. Concentrations higher than
2.5 µM demonstrated significant toxicity. In addition, the coenzyme Q10 analogue and
mitochondrial antioxidant idebenone [30] was also tested. It had a very modest effect
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on both NO and cytokine production resulting in ~25% reduction in the levels of all
three but only at 10 µM, the highest concentration tested (Figure 4C). It has been argued
that NADPH:quinone oxidoreductase (NQO1) is critical for the antioxidant activity of
idebenone [30] so idebenone may be less effective in cells with low levels of this enzyme.
However, the BV2 cells express high levels of NQO1 (not shown) so a lack of NQO1 is
unlikely to be a factor in the modest effect of idebenone. As a complement to these studies,
the effect of the knockdown of ATPase inhibitory factor 1 (IF1) on LPS-induced NO and
cytokine production was examined since this physiological inhibitor of ATP synthase was
shown to contribute to mitochondrial ROS production in cancer cells [31]. As shown in
Figure 4D, loss of IF1 by ~85% reduced LPS-induced NO and cytokine production by ~40–
50%, similar to results obtained with MitoQ. Together, the results shown in Figures 3 and 4
suggested that different mitochondrial sources of ROS make distinct contributions to LPS-
induced NO and cytokine production. They also further highlighted the disconnection
between NO and cytokine production. In addition, since most only reduced cytokine
production by 50% or less, they prompted an investigation into whether other sources
of ROS also contribute to the pro-inflammatory phenotype and differentially affect LPS-
stimulated NO and cytokine production.
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Figure 4. Effects of modulators of mitochondrial ROS levels on NO and cytokine production in
LPS-treated BV2 cells. BV2 cells were grown overnight in low-glucose medium and then transferred
to high-glucose medium before treatment with 25 ng/mL LPS for 24 h. (A) Cells were treated with
LPS alone or in the presence of the indicated concentrations of paraquat. (B) Cells were treated with
LPS alone or in the presence of the indicated concentrations of MitoQ. (C) Cells were treated with
LPS alone or in the presence of the indicated concentrations of idebenone. (D) Cells were transfected
overnight with control siRNA (ct si) or IF1 siRNA (IF1 si). Inset shows representative levels of IF1
knockdown. The next day, the cells were plated for experiments and grown overnight in low-glucose
medium and then transferred to high-glucose medium before treatment with 25 ng/mL LPS for
24 h. The cell culture supernatants were assayed for NO, IL6 and TNFα production. The results are
the average of a minimum of three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001 as
compared to LPS alone for (A–C) or ct si + LPS for (D). ns, not significant.
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To investigate this idea further, two other sources of cellular ROS production were
examined to determine their effects on LPS-induced NO and cytokine production. Both
NADPH oxidases (NOXs) and lipoxygenases (LOXs) promote ROS or lipid peroxide
production, respectively, from various sites within cells and have been implicated in
inflammation [5,32,33] so inhibitors of members of these families of enzymes were tested.
For NOX inhibition, both the dual NOX1/4 inhibitor GKT137831 and the NOX2 inhibitor
GSK2795039 were used since both NOX4 and NOX2 are known to be expressed in microglial
cells [5] and NOX4 can be found in mitochondria [27]. For LOXs, both the ALOX15
inhibitor PD146176 and the ALOX5 inhibitor zileuton were tested since both of these LOXs
are expressed by the BV2 cells (not shown). Neither the NOX1/4 inhibitor GKT137831
(Figure 5A) nor the ALOX5 inhibitor zileuton (Figure 5B) had any effect on either LPS-
induced NO or cytokine production at concentrations up to 10 µM. In contrast, the ALOX15
inhibitor PD146176 was highly effective at lowering LPS-induced NO and IL6 production
and also, but less robustly, TNFα production (Figure 5B). Surprisingly, the NOX2 inhibitor
GSK2795039 had no effect on NO or TNFα production and significantly enhanced IL6
production (Figure 5A). The non-specific COX inhibitor indomethacin was also tested
(Figure 5B). While it moderately reduced LPS-induced NO and IL6 production, it slightly
enhanced TNFα production. These results suggest that one or more products of LOXs and
specifically ALOX15 play an important role in promoting NO and cytokine production in
response to LPS treatment.
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Figure 5. Effects of NOX, LOX and COX inhibitors on NO and cytokine production in LPS-treated
BV2 cells. BV2 cells were grown overnight in low-glucose medium and then transferred to high-
glucose medium before treatment with 25 ng/mL LPS for 24 h. Cells were treated with LPS alone or
in the presence of (A) 10 µM of the NOX2 inhibitor GSK2795039 or the NOX1/4 inhibitor GKT137831;
(B) 10 µM of the 5LOX inhibitor zileuton, the 15LOX inhibitor PD146176 or the COX inhibitor
indomethacin. The cell culture supernatants were assayed for NO, IL6 and TNFα production. The
results are the average of a minimum of three independent experiments. *** p < 0.001 as compared to
LPS alone. ns, not significant.

4. Discussion

One of the major observations from these studies is that mitochondrial activity is
required for a full immune response in microglial cells. A number of studies have shown
that the induction of inflammation in microglia cells by LPS or related molecules shifts
microglial metabolism from mitochondrial OXPHOS to glycolysis [17,19,34], resulting in a
decrease in mitochondrial ATP production. However, the data presented here using the
different carbon sources show that a full immune response is only seen in the presence of
carbon sources that can drive both glycolysis and OXPHOS. These results are supported
by the anti-inflammatory effects of both the mitochondrial uncoupler FCCP and the com-
plex II inhibitor TTFA. The results with FCCP are supported by the observation that in
microglia cells lacking the mitochondrial uncoupling protein UCP2, the response to LPS
is exacerbated [35]. In macrophages, succinate, the substrate of complex II, is increased
in response to LPS treatment [36] although in this context the proinflammatory effects of
succinate were associated with the stabilization of HIF1α and the induction of interleukin
1β but not IL6 or TNFα. Furthermore, succinate dehydrogenase, the complex II enzyme,
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was shown to play a key role in the pro-inflammatory phenotype in macrophages, at
least with respect to interleukin 1β production [37]. In contrast, complex III inhibitors
had no effect on LPS-induced NO or cytokine production in the BV2 cells, low doses of
complex I inhibitors moderately enhanced both NO and cytokine production and, while
the ATP synthase inhibitor oligomycin reduced NO production, it had no effect on IL6
production and increased TNFα production. Together, these observations suggest that
specific signals arise from complex II activity that require a coupled mitochondrion and
drive LPS-dependent inflammation. As discussed below, the results as well as the literature
suggest that one of those signals could be mitochondrial ROS.

ROS have been implicated in the innate immune response in multiple studies (for
reviews see [5,32,38]). There is evidence for several different sources for ROS including
mitochondria, NOXs and LOXs. The results presented here indicate that in BV2 cells, the
activity of mitochondria and potentially 15LOX are major contributors to the LPS-induced
production of NO and cytokines. The results also suggest that there may be multiple
sources of ROS within mitochondria which are all dependent on the membrane potential
since TTFA, MitoQ and IF1 knockdown each only reduced NO and cytokine production
by 40–50% while FCCP was much more effective. Indeed, the anti-inflammatory effects of
FCCP are fully consistent with the dependence of mitochondrial ROS production on the
protonmotive force [27]. Furthermore, mild mitochondrial uncoupling has been suggested
as a therapeutic strategy for the regulation of mitochondrial ROS levels [27]. With regards
to the 15LOX inhibitor PD146176, it should be noted that there is evidence that it can act
not only as a 15LOX inhibitor but also as a radical trapping antioxidant [39]. However, the
same study demonstrated a similar antioxidant activity for zileuton which was ineffective
in the BV2 cell experiments.

As noted above, knockdown of IF1, a physiological inhibitor of ATP synthase [40],
reduced the production of NO, IL6 and TNFα by a similar amount as MitoQ. IF1 overex-
pression promotes mitochondrial hyperpolarization and mitochondrial ROS production
and this can be inhibited by MitoQ in tumor cells [31], suggesting that a major effect of Mi-
toQ in the context of LPS-induced NO and cytokine production in the BV2 cells could be via
a reduction in ROS generated through hyperpolarization of the mitochondrial membrane.
This idea is consistent with the results with the mitochondrial uncoupler FCCP which also
reduced both NO and cytokine production in response to LPS treatment in the BV2 cells
although FCCP was more effective than either MitoQ or IF1 knockdown. However, it is
not consistent with the results with the ATP synthase inhibitor oligomycin which, similar
to IF1 overexpression, should increase the mitochondrial membrane potential but which
in the LPS-treated BV2 cells reduced NO production and had no effect on IL6 production.
In nerve cells, oligomycin was found to induce a huge increase in ROS production [28]
and so the results with this compound in the BV2 cells may also reflect this difference
between the effects of a modest (50% with IF1 overexpression [31]) and a massive (360%
with oligomycin [28]) increase in ROS production.

Another important observation is that while LPS-induced NO, IL6 and TNFα pro-
duction all appear to require some mitochondrial activity, IL6 seems to be particularly
sensitive to the levels of glutamine in the culture medium. Glutamine has long been known
to be important to the function of immune cells [41] but its precise role is still not clear.
Glutamine is also required for the growth of some tumor cells and inhibition of glutamine
metabolism has been investigated as a potential anti-cancer treatment [42]. Glutamine
metabolism results in the production of several products that can contribute to energy
production via non-canonical entry into the TCA cycle [42]. However, why that would
specifically stimulate IL6 production is not obvious. Glutamine also stimulates activation
of the mTOR pathway [42], which is known to contribute to the inflammatory response in
microglial cells [43], but in this published study, rapamycin inhibited NO and TNFα pro-
duction as well as IL6 production. Thus, although this is an exciting and novel observation,
further elucidation of the mechanisms underlying this activity of glutamine are beyond the
scope of this manuscript.
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It is also important to note that these studies indicate that the LPS-induced production
of NO, IL6 and TNFα can be uncoupled. First, the different carbon sources have distinct
effects on NO, IL6 and TNFα production. Second, the various stimulators and inhibitors of
glycolysis also have distinct effects on NO, IL6 and TNFα production as do some of the
different mitochondrial and other enzyme inhibitors. Third, inhibitors of iNOS have little
or no effect on either IL6 or TNFα production. Together, these observations has important
implications for studies on neuroinflammation and anti-inflammatory compounds since
it is clearly not sufficient to look at only one or even two readouts of inflammation to
determine whether a compound has truly broad based pro- or anti-inflammatory effects.

This study also has several limitations. First, the effects of most of the treatments on
cellular metabolism was not assessed. Thus, while it is assumed that the various treatments
did produce the expected changes in cellular metabolism, this was not confirmed by
direct testing. Second, no studies were performed to directly tie the effects of the various
treatments to neuronal dysfunction or AD. Nevertheless, the work presented in this paper
provides the basis for further studies to address these questions.

5. Conclusions

These studies were initiated to explore the idea that diabetes-related hyperglycemia
could play a role in the exacerbation of age-related chronic neuroinflammation and thereby
contribute to the development and/or progression of AD. However, while the results
indicate that high glucose contributes to the LPS-induced production of NO, it does not
seem to further exacerbate the production of either IL6 or TNFα under the same condi-
tions. In contrast, mitochondrial dysfunction, which is also implicated in both diabetes
and AD [44], and specifically inhibition of complex I, does contribute to the enhanced
production of cytokines as well as NO under pro-inflammatory conditions. Thus, these
results suggest a two-step mechanism whereby age-dependent activation of microglia
is further enhanced by stresses related to diabetes as well as potentially other insults.
Importantly, the results also suggest that the pro-inflammatory effect of mitochondrial
dysfunction could also contribute to the exacerbation of neuroinflammation in the context
of Parkinson’s disease (PD) since both rotenone and PQ significantly enhanced markers of
neuroinflammation at low nanomolar concentrations and both toxins are associated with
PD [45]. Furthermore, consistent with what is shown in this study, there is evidence that
low doses of rotenone and LPS act synergistically to activate microglia and induce neurode-
generation in mixed primary mesencephalic neuron–glia cultures [46]. Thus, although the
results do not support the original hypothesis that high glucose exacerbates the activation
of microglial cells by a pro-inflammatory stimulus by enhancing glycolysis, instead they
strongly suggest that alterations in mitochondrial function synergize with inflammatory
stimuli to produce a more robust pro-inflammatory response. This observation could have
important implications for the treatment of age-related neurodegenerative diseases.
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