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Abstract: In this study, protein profiling was performed on gastric cancer tissue samples in order
to identify proteins that could be utilized for an effective diagnosis of this highly heterogeneous
disease and as targets for therapeutic approaches. To this end, 16 pairs of postoperative gastric
adenocarcinomas and adjacent non-cancerous control tissues were analyzed on microarrays that
contain 813 antibodies targeting 724 proteins. Only 17 proteins were found to be differentially
regulated, with much fewer molecules than the numbers usually identified in studies comparing
tumor to healthy control tissues. Insulin-like growth factor-binding protein 7 (IGFBP7), S100
calcium binding protein A9 (S100A9), interleukin-10 (IL-10) and mucin 6 (MUC6) exhibited the
most profound variations. For an evaluation of the proteins’ capacity for discriminating gastric cancer,
a Receiver Operating Characteristic curve analysis was performed, yielding an accuracy (area under
the curve) value of 89.2% for distinguishing tumor from non-tumorous tissue. For confirmation,
immunohistological analyses were done on tissue slices prepared from another cohort of patients
with gastric cancer. The utility of the 17 marker proteins, and particularly the four molecules with the
highest specificity for gastric adenocarcinoma, is discussed for them to act as candidates for diagnosis,
even in serum, and targets for therapeutic approaches.

Keywords: gastric cancer; adenocarcinoma; affinity based proteomics; antibody microarrays;
biomarker identification

1. Introduction

Gastric cancer is currently the second leading cause of cancer-related death worldwide [1]. The
median survival time is 24 months and the overall five-year survival rate is between 10% and 30%.
Mortality has remained unchanged over the past three decades. Curative therapy commonly involves
surgical resection of the complete stomach or part of it. However, the response is quite poor [2]. This
can be attributed to an extended asymptomatic period and the resulting difficulty in detecting early
stages of the disease. Early diagnosis improves the long-term survival of patients substantially. Also,
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a single therapeutic target—human epidermal growth factor receptor 2 (HER2)—is currently used
for gastric cancer treatment [3]. The identification of potential target molecules of high specificity is
therefore urgently required.

Gastric cancer is a heterogeneous disease, a fact that is reflected by its clinical and pathological
classification. The heterogeneity is responsible for an individually widely diverse clinical outcome [4].
The vast majority (95%) of gastric cancer cases are adenocarcinomas [5]. They arise from secretory
epithelia in the inner lining of gastric mucosa, which can be subdivided into intestinal and diffuse (as
well as indeterminate) types according to the Lauren classification [6]. Based on tumor invasiveness
and differentiation, the adenocarcinomas are graded into four subtypes, T1 to T4. An alternative
classification system of the World Health Organization divides gastric cancer into papillary, tubular,
mucinous and poorly cohesive (as well as mixed) carcinomas [7]. Most of the adenocarcinomas
diagnosed belong to the advanced cancer stages T3 and T4 and are accompanied by lymph node
metastases. Without tumor resection, they exhibit a median survival period of merely five months [8].

Currently, gastric adenocarcinomas are often diagnosed on the basis of the localization of the
tumor cells and their invasiveness. There are very few molecular biomarkers available to grade gastric
cancer according to its invasiveness [8]. Growth factor receptors such as EGFR, c-met and ERBB2 have
been used as predictors of later stages of malignancy, but with a high degree of uncertainty. CCL18
combined with particular T-cell receptors is employed as a prognostic indicator in early stages of gastric
cancer [9]. A recent study performed by The Cancer Genome Atlas Research Network (TCGA) [10]
revealed four classes of gastric cancer based on a combined analysis of somatic copy number, whole
genome sequencing, DNA methylation profiling, mRNA and miRNA sequencing as well as results
from reverse phase protein arrays. A new molecular classification was suggested, dividing gastric
cancer into four subtypes: (i) tumors positive for Epstein-Barr virus, which display recurrent PIK3CA
mutations; (ii) extreme DNA hypermethylation and amplification of JAK2, CD274 and PDCD1LG2;
(iii) microsatellite unstable tumors, which show elevated mutation rates, including mutations of genes
encoding targetable oncogenic signaling proteins; and (iv) tumors with chromosomal instability, which
show marked aneuploidy and focal amplification of receptor tyrosine kinases. This classification
scheme underlines the complexity of gastric cancer molecular fingerprints. The high degree of
gastric cancer heterogeneity emphasizes the urgent need for robust molecular classifiers as well as
new potential targets for therapy, which are common between tumors and exhibit a high degree of
specificity for cancer.

As indicated by the TCGA study, omics-technologies can act as excellent tools for the identification
of biomarkers. DNA microarrays and, more recently, sequencing were widely employed for screening
studies on biomarkers at genomic and transcript levels. However, inconsistencies in the validation
of biomarkers identified by various genomic approaches have been reported. This fact as well as
substantial advances in technology led recently to the strong emergence of proteome analyses for
biomarker discovery. Rather than analyzing the basic information encoded in the DNA sequence,
proteome analyses study molecular end products that are actually functional and thus responsible
for many vital cellular activities. While the basic molecular reasons for the occurrence of tumors may
vary widely, particular functional aspects are likely to be common nevertheless. Also for this reason,
proteins are the molecule class that is targeted by most cancer drugs.

Affinity-based analysis processes are widely used in studies that aim at the discovery of protein
biomarkers, irrespective of the actual assay format. Mass spectrometry or Western blotting, for
example, take advantage of antibodies for purification or detection, respectively. Antibody microarrays
are the most complex platform for affinity-based protein analysis. During the last 15 years, they
have developed enormously by optimization of many experimental factors and facets—from efficient
antibody attachment and blocking procedures, via improved sample isolation and labeling protocols,
to incubation and detection processes that allow quantitative measurements. Meanwhile, they permit
a highly sensitive, accurate and reproducible detection in a highly multiplexed manner of proteins
isolated from any type of specimen, even if available sample quantities are very small [11–13]. The
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number of targets that have been studied in an individual analysis varies from several dozens to
thousands [14]. Technically, there is basically no upper limit in the number of molecules that can be
dealt with in parallel. The current most limiting factor is the availability of appropriate antibodies,
although there are some 2.37 million binders listed in the database antibodypedia (version 9 of 23
March 2016; www.antibodypedia.com). With respect to quality assessment, elaborate procedures have
been established which permit antibody microarray analyses to be performed with an accuracy and
reproducibility that meet the standards for application in cancer diagnosis and prognosis in a clinical
setting (e.g., [15,16]). Read-out sensitivities down to attomolar concentration or even single-molecule
detection have been reported [17,18].

As an immunoassay, antibody microarrays are close to assay formats that are well established
and accepted in clinical diagnostics. Thus, they represent an effective tool for biomarker discovery
and also warrant a relatively quick and simple translation of results into a format that is applicable in
clinical practice. We have used high-content antibody microarrays to profile gastric tumor and adjacent
non-tumorous tissue samples. In most studies, the control samples are isolated from another group
of tissue donors, thus adding another degree of complexity. The approach taken here should allow
the identification of biomarkers of the highest possible specificity in tumor tissue; ignoring personal
differences, for example, such molecules could be most useful for common diagnostic and therapeutic
purposes. Immunohistochemistry was then applied to confirm the variations in the abundance of
proteins, which were found to be the most discriminative.

2. Materials and Methods

2.1. Protein Isolation and Labeling

Sixteen primary tumors from patients diagnosed with gastric adenocarcinoma, who had not
received any treatment prior to tumor resection, were obtained at the Department of Gastroenterology
of the University Medical Centre in Ljubljana. During the resection process, also adjacent tissue
surrounding each tumor was removed. Written informed consent had been given by the patients
and sample collection had been approved by the institutional ethics committee. The tissue pairs
were immediately snap-frozen in liquid nitrogen and stored at ´80 ˝C until use. Total protein
extract was prepared and fluorescently labeled as described in detail previously [19]. Briefly, the
tissues were pulverized while still frozen in the presence of liquid nitrogen. The material was
lysed for 30 min on ice in 10 volumes of lysis buffer composed of 50 mM carbonate buffer (pH 8.5),
20% glycerol, 1.0 mM MgCl2, 5.0 mM EDTA, 1.0 mM phenylmethanesulfonyl fluoride, 1.0 U/mL
benzonase (Merck Biosciences, Schwalbach, Germany), Halt protease and phosphatase inhibitor
mixture (Thermo Scientific, Bonn, Germany), 0.5% Nonidet P-40 substitute, 1.0% cholic acid, 0.25%
n-dodecyl-maltoside (GenaXXon Bioscience, Ulm, Germany), and 0.5% amidosulfobetaine-14. Cell
debris was pelleted by 20 min centrifugation at 4 ˝C and 13,000 rpm. The protein concentration was
determined with the Bicinchoninic Acid Protein Assay Reagent (BCA) kit (Thermo Scientific) according
to the manufacturer’s protocol. Before labeling, each protein extract was adjusted to a concentration
of 1 mg/mL.

Each sample of extracted proteins was separately fluorescently labeled by reaction with the
NHS-esters of the dyes DY-549 and DY-649 (Dyomics, Dresden, Germany) at a molar dye/protein ratio
of 1:18, assuming that the average weight of a protein is 60 kDa. Labeling was carried out in lysis
buffer in the dark at 4 ˝C for 1 h. Then, unreacted dye was quenched by adding 2.5% hydroxylamine
for 30 min at 4 ˝C. The non-incorporated and inactivated dye molecules were removed with a zeba
spin-desalting column with a cut-off of 3.5 kDa (Thermo Scientific). The labeled protein samples were
stored frozen at ´20 ˝C in the presence of protease inhibitor cocktail (Roche Diagnostics, Mannheim,
Germany). To exclude any bias potentially introduced by the fluorescent dyes, the labels were swapped
between tumor and control samples.
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2.2. Microarray Production

The antibody microarray used for this study contained 813 antibodies directed against 724
cancer-related proteins [15]. The antibodies had been selected based on previous transcription profiles
obtained from different cancer entities as well as a literature and database search on cancer-related
proteins. The antibodies (1 mg/mL) were printed in quadruplicates on epoxysilane-coated slides
(Nexterion-E, Schott, Jena, Germany) using the contact printer (MicroGrid-2, Biorobotics, Cambridge,
UK) with SMP3B pins (Telechem, Sunnyvale, CA, USA) at a humidity of 40% to 45% in 50 mM
carbonate buffer (pH 8.5), containing 0.005% Tween-20, 5% trehalose and 1 mM magnesium chloride.
After spotting, the slides were allowed to equilibrate at a humidity of 40% to 45% overnight and then
stored at 4 ˝C in dry and dark conditions until use.

2.3. Microarray Incubation, Scanning, and Image Processing

Sample incubation on the antibody microarrays was performed on a HS4800 hybridization
station (Tecan, Männedorf, Switzerland). First, slides were allowed to settle at room temperature
for about 30 min before being washed with phosphate buffered saline (PBST: 137 mM NaCl, 12 mM
phosphate, 2.7 mM KCl, pH 7.4 with 0.1% Tween-20). After blocking with a casein-based blocking
solution (Candor Biosciences, Weißensberg, Germany) for 1 h at room temperature, 5 µg of each labeled
protein sample was taken up in blocking buffer containing 1% Triton and 1x protease inhibitor (Roche).
Tumour samples were mixed with the extracts isolated from the respective adjacent non-tumorous
tissue but labeled with a different fluorescent dye. Incubation on the microarrays was for 8 h at 4 ˝C.
Then, the microarrays were washed with PBST, rinsed with water and dried.

2.4. Data Analysis and Sample Classification

Scanning of the slides was performed with a PowerScanner (Tecan) at a resolution of 10 µm,
maintaining laser power and the photomultiplier constant. Relevant parameters, such as the
concordance of the two colour detection channels, were carefully validated throughout. Spot
segmentation was performed with GenePix Pro 6.0 software package (Molecular Devices, Sunnyvale,
CA, USA). The complete data set is made available as Supplemental Table 1. The spot signals were
analysed with R-Bioconductor using a one-factorial linear model fitted with LIMMA package, which
resulted in a t-test based on moderated statistics. Adjusted p-values were calculated [20]; protein
variations with p-values less than 0.05 were considered significant. There was not cut-off on the
basis of the degree of variation; the only measure was significance. After sample normalization, an
unsupervised hierarchical clustering was performed to check for technical and handling artifacts in
the data. In order to show how the single-channel, log2 expression signals of the arrays can be used for
discriminating between tumor and non-tumorous tissue, a Random Forest classifier [20] was trained
using tissue type as response variable and the log2 protein expression signals of IGFBP7, S100A9,
IL-10 and MUC6 as explanatory variables. This model was validated with 500 bootstrap iterations,
resulting in (out-of-bag) a receiver operating characteristic curve and a corresponding area under the
curve (AUC) value. For training and validating the classifier, the R-packages randomForest [21] and
caret [22] were applied, using the default settings for classification.

2.5. Immunohistochemistry

Immunohistochemistry analysis was performed on paraffin sections of five tissue samples.
Deparaffinization and rehydration was performed on the sections via Roticlear and a diluted
series of alcohol. Thereafter, the samples were boiled twice in 10 mM citrate buffer for 10 min.
The slides were incubated at 4 ˝C overnight with a 1:100 dilution of primary antibodies IGFBP7
(ab171085, Abcam, Cambridge, UK) or S100A9 (ab24111, Abcam), respectively. Then, biotinylated
secondary horse anti-mouse antibody (diluted 1:200; Vector, BA-2000) was added and incubated
for 45 min. For chromogen staining, streptavidin-HRP conjugate (1:100; Perkin Elmer, NEL700001KT)
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was added followed by biotinyl-tyramide. Antibody detection was performed by staining with
3,31-diaminobenzidine (DAB) and counterstaining with Haemalaun. After that, sections were
rehydrated, fixed in ethanol/xylol and examined microscopically.

3. Results

Sixteen tumor tissue samples (Table 1) were surgically removed along with adjacent normal tissue
from patients diagnosed with gastric adenocarcinoma. Total protein was extracted and analyzed
on high content microarrays that consisted of 813 antibodies directed against 724 cancer-related
proteins [15]. The sample pairs were labeled with two different fluorescent dyes and incubated
together on the microarrays. After incubation and image acquisition, the data was normalized in
order to account for differences in labeling efficiencies (Supplemental Table S1). The resulting signal
intensities were subjected to an unsupervised clustering for the identification of any factor that may
introduce a bias. The samples were found clustered according to the tissue type, suggesting that the
clustering and segregation of normal and tumor samples were based on the differential abundance
of proteins. No other factor, such as patient gender or patient age, date of surgery, order of protein
preparation, labeling, array incubation or scanning, could be identified that may have influenced
the clustering.

Table 1. Characteristics of the tumor samples.

Sample
Number

Patient
Gender Patient Age Location in

Stomach
Tumour
Grade

Lauren
Classification

Number of Positive
Lymph Nodes

1 Male 84 Corpus 2 Intestinal 1
2 Male 78 Cardia 2 Intestinal 0
3 Male 60 Cardia 3 Intestinal 7
4 Male 71 Cardia 3 Diffuse 5
5 Male 61 Antrum 4 Mixed 8
6 Female 72 Antrum 3 Intestinal 2
7 Female 77 Antrum 3 Intestinal 0
8 Male 72 Antrum 4 Mixed 0
9 Male 85 Antrum 3 Mixed 0
10 Male 56 Corpus 3 Diffuse 1
11 Male 72 Cardia 3 Intestinal 21
12 Male 53 Corpus 1 Intestinal 0
13 Male 53 Spread 3 Intestinal 12
14 Male 60 Spread 2 Intestinal 10
15 Male 73 Corpus 3 Intestinal 12
16 Female 69 Spread 3 Intestinal 16

Of the 724 proteins against which there were antibodies on the array, only 17 proteins exhibited
significantly differential abundance in the normal and tumor patient samples (Figure 1; Table 2). This
number is surprisingly small, given the fact that the antibodies target mostly proteins, which are
tumor-associated. In other analyses using the same platform, but comparing tumor versus healthy
tissue (rather than non-tumorous material from next to the tumor), more than half of the proteins
identified by the microarray antibodies always exhibited significant variation (e.g., [21,22]). One reason
for the very few changes observed in gastric cancer could be its high degree of heterogeneity. While
some proteins are differentially expressed in some tumors, only few proteins are similarly different in
abundance in most or all samples. Another explanation could be that tissue that is located adjacent
to the tumor is not that different molecularly to the actual tumor tissue, although no tumor cells
are present.
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Figure 1. Volcano plot of protein expression variations. Protein expression in tumor and adjacent
non-tumorous tissues was compared by means of the antibody microarray. The degree of variation and
its significance are shown; the horizontal red line indicates an adjusted p-value of 0.05. The black dots
represent the proteins analyzed. While most of them fall below this threshold, 17 proteins exhibited
significant differences. Some protein names are given; the complete list and the relevant data are shown
in Table 2.

Table 2. Proteins that exhibited significant abundance variations between tumor and adjacent
non-tumorous tissue.

Protein Variation log2FC Adj. p-Value Swissprot No. Full Protein Name

Proteins with most significant and strongest variation in expression

IGFBP7 2.04 8.99 ˆ 10´7 Q16270 Insulin-like growth factor-binding protein 7
S100A9 2.08 3.54 ˆ 10´6 P06702 S100 calcium binding protein A9

IL10 1.16 4.96 ˆ 10´5 P22301 Interleukin 10
MUC6 ´2.70 4.96 ˆ 10´5 Q6W4X9 Mucin 6

Other proteins of higher abundance in tumor

CNN2 0.71 7.77 ˆ 10´3 Q99439 Calponin-2
CCR5 0.33 2.26 ˆ 10´2 P51681 C-C chemokine receptor type 5
MPRI 0.43 2.41 ˆ 10´4 P11717 Cation-independent mannose-6-phosphate receptor
OCLN 0.58 2.53 ˆ 10´2 Q16625 Occludin
AQP1 0.94 3.80 ˆ 10´2 P29972 Aquaporin 1

Other proteins of lower abundance in tumor

YETS2 ´0.73 7.37 ˆ 10´3 Q9ULM3 YEATS domain-containing protein 2
CD14 -0.09 1.07 ˆ 10´2 P08571 Monocyte differentiation antigen CD14

TNPO3 ´0.75 2.35 ˆ 10´2 Q9Y5L0 Transportin-3
BCAS1 ´0.72 2.53 ˆ 10´2 O75363 Breast carcinoma-amplified sequence 1
RAB1A ´0.44 2.53 ˆ 10´2 P62820 Ras-related protein Rab-1A
DKK3 ´0.74 2.53 ˆ 10´2 Q9UBP4 Dickkopf-related protein 3
CKS2 ´0.88 2.97ˆ 10´2 P33552 Cyclin-dependent kinases regulatory subunit 2

HUCE1 -0.79 2.97ˆ 10´2 O43159 Cerebral protein 1

FC: Fold Change.

Within the group of 17 proteins, four exhibited the most pronounced expression difference:
IGFBP7, S100A9 and IL-10 were found strongly up-regulated in tumor, while MUC6 was markedly less
abundant compared to the reference tissue. The power of discriminating tumor and control samples
was determined for the markers individually or in combination. The complete data set obtained
from the microarray analysis yielded discrimination worse than that of the four proteins with the
strongest variation alone. Their combined signature was found to perform best. A clustering based
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on the four markers led to a separation of the non-tumorous and tumor tissues (Figure 2). While
yielding a good discrimination of tumor and non-tumorous samples, separation was not perfect.
A particular example was the sample pair isolated from patient No. 12: both specimens behaved
nearly identically as indicated by their clustering. They were the only sample pair isolated from a
patient with a tumor grading of 1. However, two other tumors—T-1 and T-11—were also not overly
different from the average control tissue, although clearly distinct from their matched non-tumorous
control sample. A principle component analysis produced a very similar picture. The addition of other
marker molecules improved the separation of individual sample pairs. None of them was applicable
to several pairs, however, and all of them decreased the overall performance.
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Figure 2. Hierarchical clustering of the samples. Based on the expression of IGFBP7, S100A9, IL-10
and MUC6, the samples were subjected to hierarchical clustering. In most cases, there was a clear
separation of non-tumorous and tumor samples. Below, for each sample, the age of the patients, from
whom the tissues were isolated as well as the tumor grades are shown.

Apart from a variation between individual tumors, the distance of the non-tumorous tissues
from the actual tumor location in the patient did differ. Unfortunately, no annotated information
is available about this. Variation in the difference between tumors and controls could therefore be
brought about by both biological as well as experimental heterogeneity. The accuracy of discriminating
between tumor and adjacent non-tumorous tissue was evaluated more quantitatively by a Receiver
Operating Characteristic curve analysis. An AUC value of 89.2% was calculated (Figure 3) with
the four marker molecules. For confirmation, immunohistochemistry analyses were performed on
samples representing tumor or tissue obtained from healthy individuals. In all cases, the results were
in agreement with the microarray data (e.g., Figure 4).
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Figure 4. Typical results of immunohistochemical analyses. Marker molecules identified by the
microarray analysis were validated and confirmed by immunohistochemistry (magnification ˆ100) on
tissue slices made from an independent set of tumor tissues and stomach samples from donors who
had no cancer. Dark brown color is indicative of the presence of the respective protein.

4. Discussion

We focused our study on a comparison of gastric tumors and tissues close to them, rather than
comparing stomach tissues from healthy donors and patients with gastric adenocarcinoma. Thereby,
we aimed at avoiding any markers for effects such as inflammation, which are related to carcinogenesis
but are not necessarily specific for cancer. While the number of samples was relatively small, the study
design was such that identified markers had to be rather selective for tumor. The analysis yielded
only relatively few proteins that exhibited significant differences in expression. While this was partly
expected, the very low number came as a surprise. One reason could be a kind of cancer field defect,
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which is defined as a biological cancerization process in which the cells of relatively large areas beyond
the actual tumor are exhibiting changes similar to the ones of the actual tumor [23–25]. As opposed to
intercellular communication in the microenvironment, any molecules responsible for such a field defect
had to be transported over relatively longer distances, since the non-tumorous tissue samples studied
here had a distance to the tumor of up to one centimeter. Heterogeneity could be another explanation
for the small number of differentially expressed proteins. While it should be less pronounced at the
protein level, there could nevertheless be different protein combinations that result in a particular
cancer phenotype. The number of common proteins would then be small. However, particularly these
molecules may be essential for the tumor and may consequently be specific markers for diagnosis as
well as proteins that are prime target candidates for therapy.

Among the few significantly different proteins were four molecules—IGFBP7, S100A9, IL-10 and
MUC6—that were set apart from the others by their degree of variation, which was both particularly
strong and significant. In combination, they were able to differentiate tumor tissue from adjacent
non-tumorous tissue with good accuracy. The immunohistochemical analysis indicates that the
discriminative power may be even better when comparing healthy and tumor tissues. However, the
number of samples analyzed was too small to validate this assumption sufficiently. Currently, we
are in the process of studying this on a much larger number of patient and control samples. In this
early-stage trial, we also aim at investigating the prognostic power of the biomarkers.

IGFBP7 was the molecule that exhibited the most significant variation. There have been conflicting
reports about the correlation of its expression and tumor progression and survival. A recent study
showed that an elevated IGFBP7 expression level in gastric cancer is associated with invasion,
tumor progression and recurrence as well as poor survival [26]. As opposed to this, decreased
IGFBP7 expression was also reported to be associated with tumor progression and poor survival
in gastric cancer [27]. These controversial results could be explained by the fact that IGFBP7 is not
homogeneously expressed [28] and that IGFBP7 signaling in stromal fibroblasts could override the
tumor-suppressor function on epithelial cells.

S100A9 is a member of the S100 family and is overexpressed in various forms of cancer. It was
reported to be up to five times more abundant in the plasma of patients with colorectal cancer, revealing
its high diagnostic potential [29]. Immunohistochemistry analyses of gastric cancer samples showed
that S100A9 was exclusively located in inflammatory cells, such as macrophages and neutrophils,
infiltrating primary tumor tissues while all gastric cancer cells or cells adjacent to gastric mucosa did
not express S100A9 [30]. Surprisingly, patients with a high S100A9 cell count had a favorable prognosis.
S100A9 induces phosphorylation of MAPK and promotes the activation of NF-κB [31]. Several studies
have therefore examined a possible role in tumor cell migration and invasion [32,33]. The molecular
mechanisms of S100A9 in gastric cancer invasion and migration are not fully understood, however.

IL-10 is a cytokine with immunosuppressive properties which is frequently elevated in the tumor
microenvironment and correlates with a bad outcome [34]. It has been reported to be elevated in the
blood of gastric cancer patients [35]. IL-10 represses the expression of inflammatory cytokines, such as
TNF-α, Interleukin-6 and Interleukin-1-β, in macrophages. This role of IL-10 fostered the assumption
that it undermines the immune response to cancer [36]. Upregulation of IL-10 has been suggested to
be responsible for the persistence of inflammation and might facilitate tumor progression [37].

MUC6 is a highly glycosylated, secreted mucin that is involved in forming a physical barrier,
which is critical for the protection of the epithelium. Its low expression was reported to contribute to
the malignant transformation of gastric epithelial cells [38]. In general, mucins function by limiting the
inflammatory responses at the interface with the environment. Deregulation of mucin production has
therefore provided an important link between inflammation and cancer [39].

5. Conclusions

Overall, the particular set-up of our analysis—a comparison of tumors to non-tumorous tissues
that had been directly adjacent to the tumors—identified a few markers which had been implicated
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in the carcinogenesis of gastric tumors before. More importantly, however, it ruled out a lot of
other potential markers, in particular candidates that had been suggested on the basis of mRNA or
protein profiling analyses comparing tissues from patients and healthy donors [40], which may not be
tumor-specific, however. In addition, because of the pairwise evaluation of samples isolated from the
same patient, the influence of variations between the individual donors could be ruled out. Instead,
the analysis focused exclusively on the differences between tumor and non-tumorous tissues. Toward
an application for diagnostic purposes, further studies need to be performed. In particular, abundance
variations of these specific markers in plasma or serum of cancer patients would be of high utility. It is
more likely that markers, which exhibit a strong expression increase, will be useful to such ends.

Supplementary Materials: The supplementary material is available online at http://www.mdpi.com/2076-3905/
5/3/19/s1.
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