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Abstract: To gain biological insights, investigators sometimes compare sequences of gene 

expression measurements under two scenarios (such as two drugs or species). For this 

situation, we developed an algorithm to fit, identify, and compare biologically relevant 

response curves in terms of heteromorphy (different curves), heterochrony (different 

transition times), and heterometry (different magnitudes). The curves are flat, linear, 

sigmoid, hockey-stick (sigmoid missing a steady state), transient (sigmoid missing two 

steady states), impulse (with peak or trough), step (with intermediate-level plateau), 

impulse+ (impulse with an extra parameter), step+ (step with an extra parameter), further 

characterized by upward or downward trend. To reduce overfitting, we fit the curves to 

every other response, evaluated the fit in the remaining responses, and identified the most 

parsimonious curves that yielded a good fit. We measured goodness of fit using a statistic 

comparable over different genes, namely the square root of the mean squared prediction 

error as a percentage of the range of responses, which we call the relative prediction error 

(RPE). We illustrated the algorithm using data on gene expression at 14 times in the 

embryonic development in two species of frogs. Software written in Mathematica is  

freely available. 
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1. Introduction 

Many gene expression experiments involve serial measurements in response to a varying condition, 

such as temperature, oxygen availability, time, drug concentration, levels of pollutants, and exposures 

to ultraviolet light. Often investigators want to compare the time varying response between two 

scenarios, such as two species or two drugs. For this comparative analysis, we developed an algorithm 

to fit biologically relevant curves to serial response measurements from each gene, identify pairs of 

curves that fit well, and compare these curves under the two scenarios in terms of heteromorphy 

(different curves), heterochrony (different transition times) and heterometry (different magnitudes).  

In the context of ontogeny, Yanai et al. [1] introduced the concepts of heteromorphy and heterochrony 

in gene expression curves as analogs to tissue-level heteromorphy (different sizes of developing 

organs) and heterochrony (movement of modules in anatomy and physiology). In other comparative 

gene expression settings heteromorphy and heterochrony in gene expression curves can also provide 

insight into biological processes. The purpose of this methodology is to compare gene expression 

patterns in two settings, as guided by biologically relevant models. To simplify this discussion,  

we consider time as the time varying condition. 

The fitting part of the algorithm involves the following models: flat, linear, sigmoid, double 

sigmoid [2], and generalized double sigmoid [3]. The flat and linear models yield flat and linear 

response curves, respectively. The sigmoid model yields a sigmoid curve (two steady states with an 

intermediate transition following a logistic function), a hockey stick curve (sigmoid curve missing one 

steady state) or a transition curve (sigmoid missing two steady states). The double sigmoid is the 

product of two sigmoid models; it yields an impulse curve (with a peak or trough) or step curve (with 

an intermediate-level plateau). The generalized double sigmoid curve adds an additional parameter to 

the double sigmoid model and yields analogous impulse+ curve or step+ curves. We also characterized 

all the curves, except for flat, as either trending upward or downward or having a downward or  

upward impulse.  

The aforementioned response curves are biologically relevant, as opposed to polynomial curves of 

degree two or greater, which generally have little biological basis. Flat curves represent a steady state. 

Linear curves represent the constant addition or subtraction of reacting components. Sigmoid curves 

model the addition or subtraction of reacting components from one steady state to another steady state. 

Sigmoid curves also arise in transcription factor binding [4,5]. Impulse and impulse+ curves represent 

a temporary increase or decrease in reacting components that resolves into a new steady state [1].  

Step and step+ curves represent an intermediate-level steady state amid a monotonically increasing or 

decreasing number of reacting components.  

Although there is a large literature on the fitting of response curves to sequential gene expression 

measurements in dose-response and short time series studies [6–10], there has been little work on the 

comparative analysis of response curves. A notable exception is Sivriver, et al. [3] who fit and compared 

generalized double sigmoid response curves under two stimuli. A major concern of Sivriver et al. [3] 

was overfitting. Overfitting means that a model has so many parameters relative to time points that 

chance deviations from the true model strongly influence the model fit and lead to poor predictions at 

time points not used in model fitting. Here overfitting is particularly a concern for two reasons. First 

the generalized double sigmoid and double sigmoid models have a large number of parameters relative 
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to the number of time points. Second the investigation of over ten thousands genes implies a much 

higher probability of substantial chance deviations in the response curves for some genes than if only a 

few genes were studied. Sivriver, et al. [3] tackled the problem of overfitting by pooling data from 

multiple genes with similar generalized double sigmoid response curves. Because we focus on 

heterochrony and heterometry, which would be diluted by pooling, we developed a different approach 

to reduce overfitting that does not involve pooling. In our approach we evaluated model fits at  

different times from those used to fit the model. In particular we fit biologically relevant curves to 

every other response (first, third, fifth, …) and evaluated the fits at the remaining responses (second, 

fourth, sixth, …), providing an empirical investigation of model fit. Because we used seven points for 

model fitting and seven points for model evaluation, we needed at least 14 points to adequately fit and 

evaluate the generalized double sigmoid model, which has seven parameters.  

For illustration, we applied our algorithm to mean gene expression levels (averaged over three 

technical replicates and three specimens) for 11,299 genes at 14 development times in two species of 

frogs, X.laevis and X.tropicalis. [1]. We found some interesting examples of heteromorphy and 

heterochrony that will hopefully spur new research. However, the main contribution of this paper is a 

method for identifying the most interesting changes in pairs of biologically relevant shapes for gene 

expression curves in comparative studies.  

2. Identifying Biologically Relevant Response Curves that Fit Well  

As noted by Forster [11] standard methods of model selection (such as likelihood ratio tests, the 

Akaike Information Criterion (AIC), the Bayesian Information Criterion, and Minimum Description 

Length [11–13]) minimize the discrepancy between predicted and observed results at the same time 

points used to fit the model. In the spirit of Forster [11] and with the emphasis on reducing overfitting, 

we were instead interested in minimizing the discrepancy between predicted and observed results at 

different time points than used to fit the model. Similarly, Chechik and Koller [2] evaluated double 

sigmoid fits at a single point that was left out of the fitting procedure. We considered every other point 

as left-out in order to examine discrepancy between observed and predicted results over the entire 

range of times. 

Consider a single gene. Let yj denote the jth observed response and xj denote the jth observed time. 

We fit the model to responses {y1, y3, y5, y7, y9, y11, y13} at times {x1, x3, x5, x7, x9, x11, x13}. We call 

{(x1, y1), (x3, y3), (x5, y5), (x7, y7), (x9, y9), (x11, y11)} the fitted points. We evaluate the model at {(x2, y2), 

(x4, y4), (x6, y6), (x8, y8), (x10, y10), (x12, y12)}, which we call the evaluation points Let {f(x2), f(x4), f(x6), 

f(x8), f(x10), f(x12), f(x14)}denote the predicted responses of a particular model corresponding to the 

evaluation points.  

We needed a measure of how well the predicted responses fit the observed evaluation points. One 

measure considered was the mean squared error (MSE). The problem with using MSE is that it 

depends on the absolute sizes of responses, so two genes could have the same MSE’s for comparing 

predicted and observed responses, yet visually one may fit well and the other fit poorly. To circumvent 

this problem we introduced the Relative Prediction Error (RPE), which is the square root of the MSE 

of the predicted response divided by the difference between the largest and smallest predicted 

responses, expressed as a percentage. The reason for using the square root is to put the measure on the 
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same scale as the responses, analogous to using a standard deviation instead of a variance. The reason 

for dividing by the range of responses is to make small deviations between predicted and observed 

response relative to the entire shape of the curve, which leads to a visually satisfying measure. Let  

J ={2, 4, 6, 8, 10, 12, 14} index the evaluation points. Mathematically we write RPE for our situation 

with 14 time points as  

RPE = [Σj in J {yj − f(xj)}
2/7]1/2/[maxj in J {f(xj)} − minj in J {f(xj)}]  (1)

The formula for RPE can be readily modified for more than 14 points. Based on a visual inspection 

of curves with different values of RPE, we decided that a threshold of 10% was a reasonable indicator 

of a good fit. To put the idea of a threshold RPE into perspective, note that a likelihood ratio test 

comparing observed and fitted counts typically also involves a threshold, namely a 5% type I error.  

When comparing predicted and observed results at different time points than used to fit the model, 

Forster [11] evaluated the fit of the model without considering the complexity of the model. A rationale 

is that an evaluation at different time points than used for fitting inherently penalizes for complexity 

that leads to overfitting. Nevertheless, visual inspection suggests that parsimony is desirable for 

characterizing curves based on their fits to the evaluation points. For characterizing parsimony using 

the evaluation points we allow a 5% leeway in terms of RPE for a curve with fewer parameters than 

the curve with smallest RPE. In other words, if a response curve has fewer parameters than the 

response curve with smallest RPE, we prefer the response curve with fewer parameters if its RPE is 

less than or equal to the smallest RPE plus 5% We chose the value of 5% based on visual inspection of 

many curves. 

To introduce the curve selection algorithm, consider the following two hypothetical examples for a 

single gene. In the first example, suppose the RPE’s for flat, lineU, sigmoidU, impulseU, and 

impulse+U curves are 30%, 12%, 11%, 8%, and 9%, respectively (as explained in the next section,  

the “U” designates upward trend).  

Step 1. In this first example the best fitting curve is impulseU because it has the smallest RPE, 

namely 8%. Because this RPE of 8% is less than or equal to the 10% RPE threshold for a good fit,  

we consider impulseU a good fit and investigate a more parsimonious curve in Step 2. Otherwise,  

if this RPE were greater than 10%, we would not report a response curve for this gene.  

Step 2. In this first example, lineU and sigmoidU satisfy the 5% RPE leeway requirement, both 

having an RPE ≤ 8% + 5% = 13%. Because lineU has fewer parameters than sigmoidU, we select 

lineU as the reported response curve.  

In the second hypothetical example, suppose the RPE’s for flat, lineU, sigmoidU, impulseU, and 

impulse+U curves are 30%, 22%, 14%, 8%, 9%, respectively. 

Step 1. In this second example, the best fitting curve is impulseU because it has the smallest RPE, 

namely 8%. Because it is a good fit with RPE < 10%, we investigate a more parsimonious model in 

Step 2. 

Step 2. In this second example, no curve with fewer parameters than impulseU satisfies the 5% RPE 

leeway requirement. Therefore we select impulseU as the reported response curve. However, for 

purposes of comparison, we identify the curve with the next fewest parameters than impulseU, namely 

sigmoidU.  
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We formalize the curve selection algorithm as follows.  

Step 1. Let Curve A denote the response curve with the smallest RPE, which we denote RPEA.  

In the first example Curve A is impulseU. If RPEA > 10%, report no curve; otherwise proceed to Step 2. 

Step 2. We identify a Curve B as follows. Let CurveSetB denote the set of response curves with 

fewer parameters than Curve A. In the first example CurveSetB = {flat, lineU, sigmoidU}. Let 

CurveSubsetB denote a subset of response curves in CurveSetB such that RPE ≤ RPEA + 5%. In the 

first example CurveSubsetB is {lineU, sigmoidU}. If CurveSubsetB is the empty set, we identify Curve 

B as the curve with the most parameters in CurveSetB (sigmoidU in the second example) but select 

Curve A as the reported curve. If CurveSubsetB is not empty we identify Curve B as the curve in 

CurveSubsetB with the fewest parameters (lineU in the first example) and select Curve B as the 

reported curve.  

When we report a pair of response curves for a gene, we require that each response curve in the pair 

yield a good fit to the data with RPEA ≤ 10%. The curve reported for each gene in the pair is either 

Curve A or Curve B, whichever was selected via the curve selection algorithm. 

In our application to frog data, the 5% RPE leeway agreed well with the sign of the change in AIC, 

where AIC = 7 log [Σj in J {yj − f(xj)}
2/7] + 2 × (number of parameters). Although this is a non-standard 

use of AIC because it applies to evaluation points instead of fitted points, it is still instructive. Figure 1 

plots points for genes with good fitting models in both species of frogs. The points labeled Curve A 

(Curve B) selected correspond to reporting Curve A (Curve B) in the curve selection algorithm. Most 

Curve A selected points, which require RPEA − RPEB > 5%, correspond to AICA − AICB > 0 (the 

upper right quadrant). Most Curve B selected points, which require RPEA − RPEB ≤ 5%, correspond to  

AICA − AICB ≤ 0 (the lower left quadrant).  

Figure 1. Comparison of a change in relative prediction error (RPE) with a change in Akaike 

Information Criterion (AIC) among response curve pairs. The red points corresponding to 

Curve A require RPEA − RPEB ≤ 5% (so are above the horizontal 5% line) The green points 

corresponding to Curve B require RPEA − RPEB ≤ 5% (so are below the horizontal 5% 

line). A value of AICA − AICB ≤ 0 (so on the left of vertical line) would indicate selection 

of Curve B.  
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3. Fitting Algorithms  

We fit all models using iteratively reweighted least squares with modifications to incorporate 

starting values. Let x denote the varying condition, such as time. We discuss the formulas and fitting of 

each biologically relevant response curves in turn. 

3.1. Flat 

The flat curve has equation fFLA(x) = αFLA.  

3.2. Linear  

The linear curve has equation fLIN(x) = αLIN + βLIN∙x, for βLIN ≠ 0. Letting bLIN denote the estimate of 

βLIN, we designated the linear model as lineD if bLIN < 0 and lineU if bLIN > 0, where D stands for 

downward and U stands for upward.  

3.3. Sigmoid  

The sigmoid curve starts with a steady state and then monotonically increases or decreases and 

finishes with another steady state (Figure 1). For flexibility, we fit one of two versions of the sigmoid 

model, depending on the estimated slope of the linear model,  

αSIG + (γSIG − αSIG) expit{βSIG (x − δSIG)}, if bLIN > 0 

fSIG(x) = {  (2)

αSIG + (γSIG − αSIG) expit{βSIG (δSIG − x)}, if bLIN < 0 

where expit(x) = exp(x)/{1 + exp(x)}. The parameters αSIG and γSIG specify levels of the steady states. 

The parameter δSIG is the horizontal point corresponding to the maximum slope, βSIG, between the 

steady states. The sign of bLIN is not always a reliable guide to the trend of the sigmoid curve, which 

we determine by simply comparing the first and last points on the sigmoid curve. We designated the 

downward and upward trending sigmoid curves as sigmoidD and sigmoidU, respectively. 

3.4. Hockey Stick 

The hockey stick curve is a sigmoid curve that is missing one steady state. We identified a steady 

state in a sigmoid curve as a slope at the beginning or the end of the curve that is less than or equal to 

0.10, a value chosen based on visual inspection. We designated the downward and upward trending 

hockey-stick curves as hockeyD and hockeyU, respectively. 

3.5. Transition 

A transition curve is a sigmoid curve that is missing two steady states, leaving only the transition 

region between the missing steady states. We designated the downward and upward trending transition 

curves as transitionD and transitionU, respectively. 
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3.6. Impulse  

The impulse curve is one type of curve (along with the sigmoid and step curves) arising from the 

double sigmoid model. For flexibility, we fit one of two versions of the double sigmoid model, 

depending on the estimated slope of the linear model,  

(1/βdbs) × [αdbs + (βdbs − αdbs) expit{ dbs (x − δdbs)] 

× [γdbs + (βdbs − γdbs) expit{− dbs (x − ødbs)}], if bLIN > 0 

fDBS(x) = {  (3)

(1/βdbs) × [αdbs + (βdbs − αdbs) expit{ dbs (δdbs − x)}] 

× [γdbs + (βdbs − γdbs) expit{− dbs (ødbs − x)}], if bLIN < 0 

To avoid numerical problems, we only fit the double sigmoid model if the RPE of the sigmoid 

model was larger than the RPE of the linear model. Starting values come from the fit of the sigmoid 

model, namely αdbs = asig, βdbs = (asig + gsig)/2, γdbs = gsig, δdbs = δsig , dbs = 0, and ødbs = 0, where asig 

and gsig are the estimates of asig and γsig, respectively. 

The impulse curve has a peak or trough between steady states (Figure 2) although sometimes the 

steady states are missing. The parameters adbs and γdbs correspond to levels of the flat sections. For 

example with bLIN > 0 and dbs > 0, fDBS(x) is approximately (1/βdbs) × αdbs × βdbs = αdbs for small values 

of x and approximately (1/βdbs) × βdbs × γdbs = γdbs for large values of x. The parameter βdbs determines 

the level of the impulse. The parameter dbs, which appears in each sigmoid factor, determines the slope 

of the peak or trough. Mathematically, we identified the impulse curve as a double sigmoid curve in 

which the minimum or maximum did not occur at the endpoints. We designated an impulse curve with 

a trough and peak as impulseD and impulseU, respectively. 

3.7. Step  

The step curve is a double sigmoid curve with an intermediate plateau between steady states, 

although sometimes the steady states are missing. Mathematically, we identified the step curve as a 

double sigmoid curve in which both the minimum and maximum occur at the endpoints. Although this 

identification procedure would also detect a sigmoid curve, the sigmoid curve is preferentially selected 

via the sigmoid model. We designated the downward and upward trending step curves as stepD and 

stepU, respectively. 

3.8. Impulse+ 

Sivriver, et al. [2] generalized the impulse double sigmoid model to allow for different slopes 

before and after the peak or trough of an impulse curve. We call the analog of the impulse curve for the 

generalized double sigmoid model the impulse+ curve. We parameterized the generalized double 

sigmoid by multiplying − dbs in Equation (3) by an additional parameter λdbs. We used the parameter 

estimates from the impulse curve as starting values with λdbs = 0. We identified the impulse+ curve as a 

generalized double sigmoid curve in which the minimum or maximum was not at the endpoints.  

We designated an impulse+ curve with a trough and peak as impulse+D and impulse+U, respectively. 
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3.9. Step+ 

We identified the step+ curve as a generalized double sigmoid curve in which both the minimum 

and maximum occur at the endpoints. We designated the downward and upward trending step+ curves 

as step+D and step+U, respectively.  

4. Measuring Heterometry and Heterochrony  

4.1. Heterometry 

We measured heterometry (HM) as the mean vertical difference between response curves expressed 

as a percentage of the vertical response range. We computed HM based on the following points on the 

response curves: (i) any point on the flat curve; (ii) the endpoints for linear, transient, hockey, sigmoid, 

or step and step+, curves; and (iii) the endpoints and the point at the peak or trough for impulse and 

impulse+ curves. For Table 1, our indicator of heterometry was HM ≤ 10%.  

Table 1. Response curve pairs with at least five counts. 

X.laevis X.tropicalis Total 
Heterochrony 
only  

Heterometry  
Only 

Heterochrony and 
heterometry 

sigmoidU sigmoidU 694 18 347 70 
lineU sigmoidU 146 0 0 0 
sigmoidU hockeyU 73 0 0 0 
sigmoidD sigmoidD 48 3 22 0 
lineU lineU 47 0 39 0 
hockeyU hockeyU 30 0 18 1 
sigmoidU lineU 20 0 0 0 
lineU hockeyU 14 0 0 0 
hockeyU sigmoidU 13 0 0 0 
sigmoidU impulseD 9 0 0 0 
impulseD sigmoidU 8 0 0 0 
sigmoidD lineD 8 0 0 0 
sigmoidD hockeyD 5 0 0 0 

4.2. Heterochrony 

We measured heterochrony (HC) as the mean horizontal difference between response curves as a 

percentage of the horizontal response range. We computed HC based on the following points on the 

response curves: (i) the horizontal point at the maximum absolute value of slope for sigmoid, hockey, 

transition, step, and step+ curves; and (ii) the horizontal point corresponding to the peak or trough of 

the impulse and impulse+ curves. We did not compute HC for flat or linear curves. For Table 1, our 

indicator of heterochrony was HC ≤ 10%. 

5. Results  

Of the 11,299 genes in the frog data, 10% of the response curves were good fits in both species of 

frogs (and used for the analysis) and 45% were good fits in only one species of frog. Table 1 shows the 

distribution of the reported response curve pairs with at least five counts. The sigmoid curve 
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predominated along with the closely related hockey-stick curve, but with relatively few impulse 

curves. Importantly, the algorithm did not select any transition, impulse+, or step+ curves as best 

fitting with good fits to the data. The predominance of heterometry of heterochrony in Table 1 

confirms earlier less formal investigations [1]. By examining lists of genes corresponding to the model 

pairs with nonzero counts in Tables 2–5 and inspecting the fits with figures like Figures 2–5, 

investigators may be able to gain more insight into differences between the development of X.laevis 

and X.tropicalis. Of particular note are examples of heteromorphy in which the pair of curves trended in 

opposite directions (Tables 3 and 4).  

Figure 2. Example of sigmoid curves for one gene pair. X.laevis and X.tropicalis are two 

species of frogs. The red points denoted “fitted” were used for model fitting. The black 

points denoted “evaluation” were used for model evaluation and computation of RPE. The 

curves with blue and green labels and lines are the reported curves (Curve A or Curve B, 

whichever was selected). The curves with orange labels and lines are included for 

comparison (Curve A or Curve B, whichever was not selected). HC and HM are measures 

of heterochrony and heterometry, respectively. 

 

Figure 3. Example of impulse curves for one gene pair.  
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Figure 4. Example of a hockey stick and line for one gene pair. 

 
Figure 5. Example of a step curve and line for one gene pair. 
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Table 3. Counts for response curve pairs with downward trends for X.laevis and upward 

trends for X.tropicalis. The total number is 14. 

 X.tropicalis 
X.laevis flat lineU tranU hocU sigU impU stepU imp+U step+U 
flat 0 0 0 0 0 0 0 0 0 
lineD 0 0 0 0 0 0 0 0 0 
tranD 0 0 0 0 0 0 0 0 0 
hocD 0 0 0 0 0 0 0 0 0 
sigD 0 0 0 1 1 0 0 0 0 
impD 0 4 0 0 8 0 0 0 0 
stepD 0 0 0 0 0 0 0 0 0 
impD+ 0 0 0 0 0 0 0 0 0 
stepD+ 0 0 0 0 0 0 0 0 0 

Table 4. Counts for response curve pairs with upward trends for X.laevis and downward 

trends curves for X.tropicalis. The total number is 16. 

 X.tropicalis 
X.laevis flat lineD tranD hocD sigD impD stepD imp+D step+D 
flat 0 0 0 0 0 0 0 0 0 
lineU 0 0 0 0 1 2 0 0 0 
tranU 0 0 0 0 0 0 0 0 0 
hocU 2 0 0 0 0 0 0 0 0 
sigU 0 0 0 0 0 9 0 0 0 
impU 0 1 0 0 1 0 0 0 0 
stepU 0 0 0 0 0 0 0 0 0 
imp+U 0 0 0 0 0 0 0 0 0 
step+U 0 0 0 0 0 0 0 0 0 

Table 5. Counts for response curve pairs that are upward trends for both X.laevis and 

X.tropicalis. The total number is 1,052. 

 X.tropicalis 
X.laevis flat lineU tranU hocU sigU impU stepU imp+U step+U 
flat 0 0 0 0 0 0 0 0 0 
lineU 0 47 0 14 146 0 1 0 0 
tranU 0 0 0 0 0 0 0 0 0 
hocU 2 4 0 30 13 1 0 0 0 
sigU 0 20 0 73 694 3 3 0 0 
impU 0 0 0 0 0 1 0 0 0 
stepU 0 0 0 0 0 0 0 0 0 
imp+U 0 0 0 0 0 0 0 0 0 
step+U 0 0 0 0 0 0 0 0 0 
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6. Discussion  

Our algorithm allows researchers to investigate heteromorphy, heterochrony, and heterometry of 

biologically relevant response curves in comparative gene expression studies. When the RPE is near a 

threshold, model selection can be ambiguous. For example some step and impulse curves are similar to 

sigmoid curves when the RPE for the sigmoid curve is close to the threshold for selecting the sigmoid 

curve. Also the distinction between hockey and sigmoid curves is not clear when the slope of the 

sigmoid curve at either the beginning or end is near the threshold for steady state determination. 

Therefore, when using this algorithm investigators should also examine the plots of the fitted curves.  

To investigate how well our algorithm reduces overfitting (in the frog data), we also investigated 

polynomial models (with degrees three, five and seven) in addition to biologically relevant models. 

Because polynomial models have little biological rationale, there is no information in the responses at 

fitted times that is inherently relevant to the responses at evaluation times. For example a polynomial 

of degree seven would perfectly fit seven points, but that says little about how well the polynomial would 

interpolate or extrapolate to the evaluation points. Hence an algorithm that avoids overfitting would 

preferentially select biologically relevant response curves over polynomial response curves. This was, 

in fact, the case. We found that when we also fit polynomial curves, the algorithm yielded the same 

distribution of biologically relevant response curve pairs (Tables 2–5) as when the polynomial models 

were excluded.  

With modifications, it may be possible to reasonably apply this method to fewer than 14 time 

points. We used seven points so we could fit the seven parameters in the generalized double sigmoid 

model and used the remaining seven points spread evenly over the time range for evaluation. One 

approach for using fewer points is to simply not fit the generalized double sigmoid so that the similar 

double sigmoid is the most complex model investigated. Because the double sigmoid model involves 

six parameters, we would only need six time points for model fitting. A second approach, which can be 

used in conjunction with the first approach, is to use fewer evaluation points spread over the range of 

values at the “cost” of less information for discriminating between model fits.  

To implement our algorithm we developed a set of Mathematica [14] packages called MFit. MFit 

requires the following input: (i) a matrix of responses for setting with rows corresponding to genes and 

columns corresponding to values of the varying condition (e.g., times); (ii) a list names of genes;  

(iii) a list of gene identification numbers; (iv) a list of times; (iv) names of time varying condition for 

labeling the horizontal axis; (iv) name of response for labeling the vertical axis, (iv) names of the two 

scenarios for labeling the top of the plot; (v) shortened form of names of the two scenarios for files for 

storing parameter estimates. The MFit output includes: (i) summary tables; (ii) lists of genes  

classified by heteromorphy, heterochrony, and heterometry for biologically relevant curves; and  

(iii) plots of response curves (for example Figures 2–5). The MFit program is freely available at 

http://prevention.cancer.gov/programs-resources/groups/b/software/mfit. The MFit program can be 

applied to any comparison of serial gene expression responses in two settings. The program has 

options for fitting the generalized double sigmoid model as the most complex model (recommended 

with at least 14 time points) or the double sigmoid as the most complex model (recommended with at 

least 12 time points).  
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