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Abstract: Magnetic resonance imaging (MRI) is a common imaging technique used extensively to 
study human brain activities. Recently, it has been used for scanning the fetal brain. Amongst 1000 
pregnant women, 3 of them have fetuses with brain abnormality. Hence, the primary detection and 
classification are important. Machine learning techniques have a large potential in aiding the early 
detection of these abnormalities, which correspondingly could enhance the diagnosis process and 
follow up plans. Most research focused on the classification of abnormal brains in a primary age has 
been for newborns and premature infants, with fewer studies focusing on images for fetuses. These 
studies associated fetal scans to scans after birth for the detection and classification of brain defects 
early in the neonatal age. This type of brain abnormality is named small for gestational age (SGA). 
This article proposes a novel framework for the classification of fetal brains at an early age (before 
the fetus is born). As far as we could know, this is the first study to classify brain abnormalities of 
fetuses of widespread gestational ages (GAs). The study incorporates several machine learning 
classifiers, such as diagonal quadratic discriminates analysis (DQDA), K-nearest neighbour (K-NN), 
random forest, naïve Bayes, and radial basis function (RBF) neural network classifiers. Moreover, 
several bagging and Adaboosting ensembles models have been constructed using random forest, 
naïve Bayes, and RBF network classifiers. The performances of these ensembles have been compared 
with their individual models. Our results show that our novel approach can successfully identify 
and classify numerous types of defects within MRI images of the fetal brain of various GAs. Using 
the KNN classifier, we were able to achieve the highest classification accuracy and area under 
receiving operating characteristics of 95.6% and 99% respectively. In addition, ensemble classifiers 
improved the results of their respective individual models. 

Keywords: biomedical image processing; ensemble classification; fetal brain abnormalities; 
principal component analysis (PCA), feature extraction 

 

1. Introduction 

In previous years, magnetic resonance imaging (MRI) has been efficiently used to study the 
functionality of the human brain. MRI images are capable of establishing and accomplishing 
unmatched medical examination to determine whether the brain has any abnormalities. Lately, in 
addition to scanning adult brains, this imaging technique has also been used as a new non-invasive 
instrument designed for improving and checking fetal brain development in the uterus. Since around 
3 in every 1000 pregnant women carry fetuses with various types of brain abnormalities, fetal brain 
monitoring is important. Moreover, a series of neuropathological variations can occur, several of 
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which are connected to serious clinical morbidities [1]. A MRI scan for a fetus provides great details 
of the soft tissue and the structure of the brain. Therefore, it could be applied for primary 
identification of brain abnormalities and tumors with no need for medical interferences [2,3]. 
Identifying these defects in a primary phase using machine learning techniques has several 
advantages. First, it helps doctors to confer an accurate diagnosis, allowing doctors to provide parents 
with an understanding of the disease in order to prepare them for dealing with the abnormality. 
Second, it helps in managing the pregnancy and problems that might occur during this period. Third, 
it improves the quality of diagnosis and aids the decision for the best suitable treatment plan [4]. 

Machine learning techniques make use of the ability of computers to train and learn without 
being explicitly programmed. Machine learning can be used for medical images to assist doctors with 
making accurate medical diagnoses. Additionally, it can reduce diagnostic errors by clinicians. 
Moreover, machine learning reduces the time scale and effort made during an examination [5]. 
Recently, machine learning techniques have been used on fetal brain MRI images for the early 
detection of abnormalities, as well as for the identification and classification of these abnormalities 
[6]. Most of the previous work that used fetal brain images focused on segmenting fetal brain images 
to detect abnormalities or separating the fetal brain from the rest of the body. Fewer studies 
considered the use of machine learning methods to identify defects existing in the fetal brains [7,8]. 
To the best of our knowledge, previous studies that applied classification methods to fetal brain MRI 
images are limited to References [9–11]. Although the first two studies performed classification on 
fetal MRI brain images, the authors only classified a brain defect in newborns called small for 
gestational age (SGA). They first assumed that textural patterns of fetal brain MRI images are 
associated with newborn neurobehavior. Then, they constructed a support vector machine (SVM) 
classifier for predicting the SGA abnormality after the birth of the fetus (becoming a neonate). These 
methods have several limitations. First, these approaches only used fetal images of 37 GAs, in contrast 
to applying a wide range of fetal GAs. Second, their methods only classify one type of abnormality; 
namely, SGA for newborns. Third, mapping the fetal MRI to its corresponding MRI after birth is an 
essential hypothesis needed to classify the SGA abnormality. Additionally, the authors used two 
small datasets which only have 91 and 83 images, respectively. Lastly, the brain of the fetus was 
clipped in a manual manner, which is a time-wasting process. The authors of Reference [11] classified 
several fetus abnormalities, but the highest classification accuracy achieved was limited to 80%. 

The literature shows that the majority of work done on detecting and classifying brain 
abnormalities in early age was limited to infants, neonates, and preterm infants, rather than fetuses. 
Ball et al. [12] used the independent component analysis (ICA) technique with a SVM classifier to 
identify brain defects in preterm infants. Symser et al. [13] used support vector regression (SVR) to 
predict the GA of infants. He et al. [14] proposed a stacked spare auto-encoder (SSAE) framework 
based on an artificial neural network (ANN) classifier to predict preterm defects. They also used an 
SVM classifier to detect autism. Similar work was done by Jin et al. [15] to identify infants with 
autism. 

The key objective of this article is classifying between normal (healthy) and abnormal 
(unhealthy) brains. As it is clear from the previous two paragraphs, the work done in fetal brain 
classification is very limited. Most of the previous related research dealing with brain defect 
classification in a primary age have been for infants and preterm neonates. As stated before, the early 
detection of brain abnormalities is important as it helps in managing the pregnancy and problems 
that might occur during this period. It could also enhance the diagnosis process and follow up plans. 
Therefore, this article proposes a novel approach to identify defects in fetal brain scans. This approach 
is divided into five phases: Segmentation, enhancement, feature extraction, feature reduction, and 
classification. First is the segmentation, where the brain of the fetus is defined as the region of interest 
(ROI). It is cropped semi-automatically from other fetal parts. This is performed in three steps. In the 
first step, the cerebrospinal fluid (CSF), maternal tissues, and strips of the skull are removed from the 
fetal brain MRI using morphological operations. In the next step, area-based segmentation (ABS) is 
performed, where the largest area in the image is detected and segmented using region properties 
and watershed transform methods. In the last step of the segmentation phase, a minor ROI containing 
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the fetal brain abnormality (FBA) is delimited and clipped out of the fetal scan semi-automatically. 
The following phase is called the enhancement phase. In this phase the minor ROI image is improved 
using a mixture of filters to increase its contrast. Subsequently comes the feature extraction phase, 
where six subsets of features are extracted using different textural analysis feature extraction 
methods. Two of these feature subsets have a high dimensional space; therefore, they are reduced 
using the principal component analysis (PCA) technique in the feature reduction step. The last phase 
is the classification phase, where the six subsets of features are used to train and test different 
classification models, such as random forest decision tree, naïve Bayes, radial basis function (RBF) 
network, diagonal quadratic discriminates (DQDA), and K-nearest neighbour (K-NN). Several 
bagging and Adaboosting ensembles are also constructed using naïve Bayes, the RBF network, and 
random forest classifiers to improve the prediction of their respective individual classifiers. 

One of the major advantages of our proposed pipeline is its ability to differentiate between 
normal and various fetal brain abnormalities, including agenesis of the septi pellucidi, Dandy–
Walker variant/malformation, colpocephaly, agenesis of the corpus callosum, mega-cisterna magna, 
cerebellar hypoplasia, and polymicrogyria. All of these abnormalities are shown in Figure 1. 

 
Figure 1. Different fetal brain abnormalities: (a) Agenesis of the septi pellucidi, (b) Dandy-Walker 
malformation, (c) colpocephaly, (d) agenesis of the corpus callosum, (e) mega-cisterna manga, (f) 
cerebellar hypoplasia, and (g) polymicrogyria. 

The corpus callosum is the curved structure that connects the left and right hemispheres of the 
brain. Agenesis of the corpus callosum (shown in Figure 1d) is a brain disorder in which the corpus 
callosum is partially or completely absent [16]. The septi pellucidi is a tinny tissue formed in the 
midline of the fetal brain. Agenesis of the septi pellucidi (shown in Figure 1a) is a fetal brain defect 
that affects the development of the septi pellucidi. It commonly occurs in association with other brain 
disorders [17,18]. Dandy–Walker syndrome (shown in Figure 1b) is a congenital malformation that 
affects the cerebellum, the third, and the fourth ventricles of the brain. It is characterized by partial 
or complete agenesis of the cerebellar vermis, cystic dilatation of the fourth ventricle, and the 
enlargement of the posterior fossa [19,20]. Colpocephaly (shown in Figure 1c) is a fetal brain 
abnormality in which the posterior of the lateral ventricles of the fetal brain are ballooned. It is 
characterized by an impaired intellect and microcephaly (an abnormally small head) [21]. Mega-
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cisterna magna (Figure 1e) is another brain defect which is characterized by the enlargement of the 
cisterna, cerebellar hemispheres, and morphologically intact vermis. The expansion of the cisterna 
magna measures more than 10 mm from the posterior aspect of the vermis to the internal aspect of 
the skull arch [22]. Cerebellar hypoplasia (shown in Figure 1f) is one more neurological disorder in 
which the cerebellum is partially developed and its size is small. Polymicrogyria (shown in Figure 
1g) is a complex congenital malformation where the surface of the fetal brain normally has many 
ridges or folds, called gyri [23]. Friede et al. [24] defined polymicrogyria as “an abnormally thick 
cortex formed by the piling upon each other of many small gyri with a fused surface”. 

Another advantage of the proposed approach is that the segmentation phase is a semiautomatic 
technique, saving the time and effort of manual segmentation. The proposed method was constructed 
and tested on a dataset consisting of 227 images, which is much larger when compared to the 91 and 
45 images that have been used in previous studies [9,10]. Most importantly, the proposed approach 
can be applied for a wider range of fetal GAs and is not limited to a specific age. 

The remainder of this paper is organized as follows: Section 2 introduces the methods and 
materials. This is followed by Section 3, which describes the results and comparative analysis of the 
proposed method. Section 4 confers the performance of our method and, finally, Section 5 concludes 
this article. 

2. Materials and Methods 

2.1. Data Acquisition 

The dataset used in this paper is a public dataset available online [25]. It was collected by a 
medical team at Harvard medical school. At the institution where the clinical indication, such as 
evaluations of adnexal mass, studies were performed, pregnant patients signed an informed consent 
regarding MRI exposure. In addition, institutional review board approval was obtained and 
informed agreement was obtained from the patients. Therefore, our study did not seek the ethics 
committee/IRB to approve our study. 

The dataset comprises 227 MRI scans for fetuses, with the GA extending between 16–39 weeks. 
More description is available in Reference [25]. Piles of T2 weighted fetal scans in coronal, pivotal, 
and sagittal planes were acquired with a solitary shot, half-Fourier, RARE grouping strategy. As a 
consequence of the fetal movement during the checkup, every obtaining fills in as the scout for the 
consequent procurement. A typical arrangement utilizes a reverberation dividing of 4.2 msec, an echo 
time TE of 60 msec, a reverberation train of length equivalent to 72, 1 obtaining of 4 mm segment 
thickness, a 24 × 24 cm field of view, and 192 × 256 procurement grids. A 130-degree refocusing 
heartbeat was utilized to limit the amount of the radio-recurrence (RF) control statement. The 
procurement time per shot was only 430 msec for each cut. 

2.2. The Proposed Method 

The proposed framework is presented in five phases. The first was to segment the fetal brain 
region and then to enhance this region. Afterwards, came extracting significant features from this 
region. Next was reducing the dimension of the feature space. The final phase was classifying this 
region to identify whatever was normal or abnormal. A diagram describing the steps of our algorithm 
is presented in Figure 2. In the first phase, the brains of the fetuses, representing the ROI, were 
segmented out from both the maternal tissues and the rest of the fetal body using morphological 
operations, adaptive thresholding, watershed segmentation, and region properties techniques. Then, 
the part of the brain where the defect occurred was delineated and cropped. This part presents the 
minor ROI. Afterwards, an enhancement process was made on this part to increase its contrast using 
local and global filters. Later, several feature extraction methods, including Gabor filters, discrete 
wavelet transforms (DWT), and gray-level co-occurrence matrix (GLCM) were used to extract six 
subsets of features. These feature subsets are described in more detail in the feature extraction 
subsection. Two of the six subsets of features had a high feature space. Therefore, the principal 
component analysis (PCA) technique was used to reduce their feature space dimension. Finally, the 
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six subsets of features were used to train and test several classification models. The following 
subsections provide a detailed description of the algorithm. 

 
Figure 2. A diagram describing different phases of our novel approach. 

2.2.1. Segmentation Phase 
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The segmentation phase consists of six steps. These steps are as follows: Adaptive thresholding, 
morphological operations, tracing boundary, watershed segmentation, area-based segmentation, and 
minor ROI extraction steps. These phases are discussed in detail in this section. 

Adaptive Thresholding Step: Initially, the CSF and the amniotic fluid that surround the skull 
of the fetal brain are removed using an optimum onset T. An adapting local thresholding technique 
[26] is employed to distinguish the pixels of an image into two classes, i.e., forefront and background. 
An image I is created from the input scan I once this step is done, using Equation (1). 

Ibinary (i, j) = 


 ≥

otherwise    0,
     1, T j)I(i, if
, (1) 

Morphological Operation Step: In this step, several morphological operations are used to 
convolve the binary image with the structuring element (disk, line, sphere, etc.) [27]. In the proposed 
framework three morphological operations are applied; namely, opening, clearing border, and 
closing operations, respectively. 

The maternal areas associated with the outer part of the fetal skull are eliminated from the Ibinary 
image using a morphological opening operation using Equation (2). The image produced is called 
the opened image Iopen. 

Iopen = (Ibinary  ⊖ SE) ⊕ SE, (2) 

where ⊖ and ⊕ are the erosion and dilation operators, respectively, and SE stands for a structuring 
element representing a disk shape of radius 1. 

The clear border operation is used to separate the outer part that is lighter than the surroundings, 
connecting the image border with the Iopen image. This operation is performed in order to obtain the 
Iclear image, which is the image excluding the maternal tissue. 

The closing operation is used to fill in the gaps within the skull and to smoothen the outer edges, 
which were damaged after the open operation, using Equation (3). The image produced after the 
closing operation is called Iclose. Note that to protect the image from deformation, the SE in the closing 
operation must be the same value as the SE in the opening operation. 

Iclose = (Iclear ⊕SE) ⊖ SE, (3) 

Tracing Boundary Step: In this phase, the limits of the image Iclose are arranged into parent and 
children limits. The parent limits are the external limits of the skull. The children limits are the 
openings inside the skull, which are encompassed by the parent limits. Afterwards, these limits are 
ranked sorted descendingly to form a binary image Iregion describing parents and children. 

Watershed Segmentation Step: A watershed is a ridge that separates areas drained by different 
water or river systems. The watershed segmentation technique is based on the same concept. 
Segmentation by the watershed method is a local approach. It utilizes a watershed transformation 
technique to decide the “watershed edge lines” or “catchment bowls” from a binary image by 
thinking about it as a surface, where the dark pixels are viewed as the low height and the white pixels 
are the high rise [28]. 

This method is applied to the Iregion image to eliminate the links between parental parts and the 
fetal skull. This is done in several steps. Initially, the distance transform d between the two white 
connection areas (fetal brain and outer part) is calculated. Then, the watershed transform is applied 
to the image. Afterwards, the extended-minima transform [27] is applied to compute the regional 
minima (minimum region) of the H-minima transform. The regional minima are the regions of 
connected pixels in an image with a constant intensity value. These regions are surrounded by border 
pixels having a high d value. Next, the distance transform dnew is calculated again using the impose 
minima method. Impose minima is an algorithm used to modify the gray-scale image by using 
morphological reconstruction operations. The dnew is then used to replace d. This step is applied to 
avoid the over-segmentation problem with the watershed transform before the watershed transform 
is re-applied. The image following watershed segmentation is called Iwatershed. 
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Area Based Segmentation (ABS) Step: In this step, the region property method is used to 
calculate the area of the objects formed in the Iwatershed image. These areas are arranged descendingly 
and the object with the biggest area is taken out to a create the segmented picture IABS. The IABS image 
is used as a mask to extract the whole fetal brain image, Ifinal, from the original picture, I, using the 
formula expressed in Equation (4). The pictures following these segmentation steps are shown in 
Figure 3. 

Ifinal (i, j) = 


 =

Otherwise               ,0
 1j)I(i, if        ),j,i(I
, (4) 

 
Figure 3. Fetal brain pictures the different steps of the segmentation phase. (a) The original fetal brain 
picture I. (b) Binary picture when adaptive thresholding was employed, Ibinary. (c) Binary picture when 
opening morphological operation was used, Iopen. (d) Binary picture Iclear after using clear border 
process. (e) Binary picture when the closing process was made. (f) Binary picture presenting the 
parent boundaries in red and the children in green. (g) Binary picture applying the tracing boundary 
process, Iregion. (h) Binary picture when using watershed approach, Iwatershed. (i) Binary picture when 
applying the ABS process IABS. (j) Picture of the fetal brain after the segmentation process, Ifinal. 

Note that, the segmentation step of the proposed approach is applied on the sagittal, coronal, 
and axial planes of brain images. The segmented images for the three planes are shown in Figure 4. 

 
Figure 4. The fetal brain images in the sagittal, coronal, and axial planes. (a) Before segmentation and 
(b) after the proposed segmentation step. 

After the whole fetal brain is segmented and detected as Ifinal, a minor ROI image is delineated 
for all fetal scans. This process depends on both the alterations of the grey levels of the image and the 
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structure and shape of the brain. The upper right part of the scan, representing a minor ROI 
borderline, is selected. Afterwards, this region is separated out of the remaining parts of the brain 
image to form an image named as Ifinal. Figure 5a,d present the full brain scans afore the segmentation 
process for healthy and unhealthy classes, correspondingly. Figure 5b,e present the pictures of the 
brain Ifinal after the segmentation procedure for healthy and unhealthy classes, correspondingly. The 
minor ROI for a healthy brain is displayed in Figure 5c and the minor ROI for an unhealthy brain is 
displayed in Figure 5f. 

 
Figure 5. Brain pictures after contrast improvement and taking out the minor ROI. (a) is the full 
healthy brain picture afore segmenting the image. (b) The outlined ROI of the healthy fragmented 
brain. (c) The fragmented and improved ROI for a healthy brain. (d) The full unhealthy brain picture 
before segmenting the image. (e) The outlined ROI of the unhealthy fragmented brain. (f) The 
fragmented and improved ROI for an unhealthy brain. 

2.2.2. Contrast Enhancement Phase 

In this step, the minor ROI image is enhanced using a combination of local and global stretching 
contrast enhancement methods [29]. The global stretching contrast enhancement method is used to 
improve the low contrast for the image. This global enhancement algorithm avoids noise formation 
and the other ringing artifacts in the medical image. In the global contrast enhancement method, 
when a high contrast occurs, this results in the underexposure of some partitions of the image and 
the overexposure on other partitions. The local stretching contrast image enhancement algorithm 
increases the noise for the image when high contrast occurs. 

This process is made to improve the contrast and reserve the intensity in the brain part. 
Additionally, this process increases the classification accuracy of our new presented approach. The 
fragmented minor ROI after contrast improvement for a healthy cerebrum is displayed in Figure 5c 
and the fragmented minor ROI after contrast improvement for an unhealthy cerebrum is shown in 
Figure 5f. 

2.2.3. Feature Extraction phase 

Texture analysis feature extraction methods are commonly used for extracting features from 
MRI images [30–33]. These feature extraction methods are based on the textural characteristics of the 
image. There are many methods for extracting textural features, including the discrete wavelet 
transform (DWT), the Gabor filter, and the gray-level co-occurrence matrix (GLCM). These methods 
usually yield reasonable classification accuracy, especially when they are combined together [33,34]. 
For this reason, they were used in this study to extract several subsets of features. These feature 
extraction methods are discussed in this section. 
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Gabor Filters 

A Gabor filter is a popular filter which is used to extract textural descriptors by investigating the 
frequency domain of the image [35]. It uses a Gaussian kernel function modulated with a complex 
sinusoidal plane wave. Gabor filters have the ability to perform multi-resolution decomposition, 
which produces a different frequency and orientation representation, similar to that of the visual 
system of human beings. Gabor filters demonstrate the fine dissimilarities between different textures 
in an image by analyzing the image to determine whether it has any specific frequency content with 
a specific orientation located in a small area around the region of analysis [36]. They are performed 
by multiplying the Gaussian function centered at different frequencies with the Fourier transform 
(FT) of the image and then applying the inverse fast Fourier transform (IFFT). It is important to choose 
the central frequency of each Gaussian function to ensure that all the frequencies of the image are 
covered [37]. Gabor filters consist of complex exponentials centered at a certain frequency and 
multiplied by a Gaussian envelop. Features are extracted with the Gabor filter using Equation (5). 
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where x and y are the positions of the pixels in an image, yx  and , σσ  are the standard deviation (std.) 
of the Gaussian function belonging to x and y directions, and yoxo  wand ,w  are the central frequencies 
of the x and y directions. 

In this paper, an array of Gabor filters of different frequencies and orientations were used to 
localize different subsets of frequency and orientation features in the input image. Orientation angles 
are between (0, 150) in steps of 30 degrees. The wavelength ranges from 

2
4  up to the hypotenuse 

length of the input image. Several Gabor magnitudes are extracted which are then passed through a 
simple Gaussian low-pass filter to smooth the Gabor magnitude information. 

Discrete Wavelet Transform (DWT) 

Discrete wavelet transform (DWT) is the most commonly used algorithm to extract features in 
the medical image processing field [33,38]. DWT is used to analyze signals and images. DWT 
provides time-frequency representation by decomposing a signal or an image using a set of 
orthogonal basis functions (Ortho-normal). DWT has a set of transforms each with a different set of 
the wavelet basis functions. For a signal to be analyzed, a 1-D DWT is used to decompose the input 
signal S. This is done through a convolution process using a low pass and a high-pass filter. 
Afterwards, a dyadic decimation is made. The dyadic decimation is a down-sampling operation to 
overcome the aliasing problem. After the 1-D DWT is applied to S, two sets of coefficients will be 
generated. These two sets are the approximation coefficients CA1 and detail coefficients CD1. 

For 2-D images, a one level 2-D DWT, where a 1D-DWT is applied for each dimension separately 
to obtain four sets of coefficients, is used. The four components produced after the 2-D DWT are the 
approximation coefficients, CA1, and three detail coefficients, CD1. These detail coefficients include 
the horizontal, vertical, and diagonal coefficients, respectively. The 2-D DWT may be also applied to 
images to perform multiple decomposing stages. This is made through convolving the approximation 
components produced in the previous decomposition level into numerous high and low-pass filters 
[39,40]. 

In the proposed method, decomposing stages of DWT were made to the images. The four 
decomposition levels of 2D-DWT improve the performance when used with a brain MRI, as 
mentioned by Reference [41]. A Meyer wavelet (dmey) with mode periodization is employed as a 
wavelet basis function. After performing four level decompositions, the horizontal, approximate, 
diagonal n, and vertical coefficients of the 4th decomposing stage were extracted to form a feature 
subset. 
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Grey-Level Co-occurrence Matrix (GLCM) 

The GLCM algorithm is a popular method for extracting texture features from images [42]. It is 
applied to mine surface features, such as correlation, homogeneity, contrast, correlation, and energy, 
in the images. The features extracted are calculated using Equations (6)–(9). 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 𝑛 𝑃(𝑖, 𝑗)  , |𝑖 − 𝑗| = 𝑛 , (6) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  {𝑖 ∗ 𝑗} ∗ 𝑃(𝑖, 𝑗) − 𝜇 ∗ 𝜇𝜎 ∗ 𝜎  , (7) 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ ∑ (𝑃(𝑖, 𝑗)) , (8) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  𝑃(𝑖, 𝑗)1 + |𝑖 − 𝑗|, (9) 

where P (i, j) is a marginal joint probability gray level co-occurrence matrix. 

Statistical Descriptive Features 

Statistical descriptive feature extraction is a method which extracts statistical features from a 
signal or picture. Those statistical variables comprise the entropy, variance, root mean square (RMS), 
mean, standard deviation (std), skewness, smoothness, kurtosis, and inverse difference moment 
(IDM) [43]. These features are mined from the minor ROI image using Equations (10)–(18). 

𝑀𝑒𝑎𝑛 (µ) = 1𝑁 𝐴 , (10) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐴 … … 𝐴 ) = 1𝑁 − 1 𝐴 − 𝜇 , (11) 

𝑆𝑡𝑑(𝜎) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐴 … … 𝐴 ), (12) 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝐴 … … 𝐴 ) =  1𝑁 𝐴 − 𝜇𝜎 , (13) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  𝑃(𝑖, 𝑗) ∗  log(𝑃(𝑖, 𝑗)), (14) 

𝐼𝐷𝑀 =  11 + (𝑖, 𝑗) 𝑃(𝑖, 𝑗), (15) 

𝐾𝑢𝑟𝑡𝑜𝑖𝑠𝑖𝑠(𝐴 … … 𝐴 ) =  {1𝑁 𝐴 − 𝜇𝜎 } − 3, (16) 

𝑅𝑀𝑆 = 𝑃(𝑖, 𝑗) ⎝⎛
∑ µ ,, 𝐺  ⎠⎞ , (17) 

𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = 1 − 11 + ∑ ∑ 𝑃(𝑖, 𝑗), (18) 

In the feature extraction phase, textural features extracted from the minor ROI are categorized 
into six subsets of features. The first subset represents features extracted using DWT (196 features). 
The second subset represents those features extracted using the Gabor filter (183,618 features). The 
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third subset of features is those extracted using the gray-level co-occurrence matrix (GLCM) and 
statistical features extracted from the minor ROI in the spatial domain (13 features). The fourth subset 
represents features combined from the DWT, GLCM, and statistical variables describing the minor 
ROI in the spatial domain (209 features). The fifth subset represents GLCM and statistical features 
extracted from DWT coefficients (13 features). The sixth subset (183,631 features) represents features 
extracted from the Gabor filter feature extraction method combined with GLCM and statistical 
descriptive features extracted from DWT coefficients (fifth subset). 

As noted, the DWT is used for feature extraction in two ways. The first one is the combination 
of the approximation, horizontal, vertical, and detail coefficients to form the feature vector with size 
A. The second method is the extraction of statistical features from the previously generated feature 
vector to form a new one with size B. 

Some of these feature subsets, such as feature subset two and six, had high dimensional space 
(183,618 and 183,631 features). For this reason, a feature reduction algorithm was needed in the next 
step to reduce the feature dimension of these subsets (two and six). In the next section, the feature 
reduction process used in this paper is discussed. 

2.2.4. Feature Reduction Phase with Principal Component Analysis 

Principal Component Analysis (PCA) is a common dimension-reduction technique [44]. This 
technique is used to compress the size of a large set of features to a new small set of features by 
transforming the correlated features into a set of uncorrelated features. This transformation is done 
by projecting the data onto a new orthogonal basis to present a new set of features with high variance. 
This new set consists of the principal components, which are formed through linear combinations of 
the initial features. These principal components are orthogonal to each other, so there are no 
redundant features. The first principle components contain much of the variance that exists in the 
original data. In the proposed method, the PCA was applied to feature subsets two and six, extracted 
in the previous step. 

2.2.5. Classification Phase 

In this step, the feature sets produced during the extraction and reduction processes are 
employed to create and validate several classifiers models. Those models consist of diagonal 
quadratic discriminates analysis (DQDA), an RBF neural network, k-nearest neighbor (K-NN), a 
random forest decision tree, and naïve Bayes classifiers. Moreover, several bagging and Adaboosting 
ensemble models were constructed using naïve Bayes, random forest decision tree, and RBF neural 
network classifiers to determine whether they improve the performance of their individual models. 
For validating the performance of these models, the five-fold cross validation method was adapted. 

K-nearest neighbor (K-NN) 

This is a straightforward classification method. K-NN is a conventional non-parametric 
classifier. Despite its simplicity, K-NN has the power to accomplish high classification results in 
medical applications [45,46]. It allocates a class value to each data point in the training set by 
investigating the class values of its K nearest neighbors [47]. K-NN calculates the instance that needs 
classification from other instances in the training set of data features to assign a class value. The metric 
employed in this article to measure the distance was the cosine metric. The number of the nearest 
neighbors used during the prediction method for classifying each point was 10 and the inverse 
distance was chosen to be the distance weighing function [48]. 

Quadratic Discriminants Analysis (QDA) 

QDA is a member of discriminants classifiers. It is similar to linear discriminant analysis (LDA). 
LDA uses a linear hyper-plane to distinct the data into two or more classes. LDA uses homogeneous 
variance-covariance matrices [49]. However, QDA uses nonlinear hyper-planes such as the ellipse, 
parabola, and hyperbola to distinct the data, which are non-linearly separable into two or more 
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classes [50]. It uses heterogeneous variance-covariance as well as LDA. In QDA, a different covariance 
matrix, 𝛴 , is generated for each class label C of the data, assuming that the data has Gaussian 
distribution. The Classification rule for QDA is shown in Equation (19), 𝐶(𝑥) = arg max 𝛿 (𝑥), (19) 

where 𝛿 (𝑥) is the quadratic discriminant function, which is defined in Equation (20). 

𝛿 (𝑥) = − 12 log|𝛴 | − 12 (𝑥 − 𝜇 )𝛴 (𝑥 − 𝜇 ) + log 𝜋 , (20) 

The class C that maximizes the quadratic discriminant function 𝛿 (𝑥) needs to be found. It can 
be noted from the previous equations that the covariance matrix 𝛴  is not identical, so we cannot get 
rid of the quadratic terms of the quadratic function. 

In this study, diagonal quadratic discriminate analysis (DQDA) was used. DQDA is an extension 
to the QDA method. In DQDA the diagonal covariance matrices are calculated. All off-diagonal 
elements of each covariance matrix are set to be zero [51,52]. DQDA usually performs better than 
QDA in high-dimensional data. The distributions of each class, in this paper, were assumed to be 
multivariate normal. 

Random Forest Classifier 

The random forest (RF) classifier is a popular classifier that is used extensively in medical 
applications due to its capability to capture relations between data attributes. Capturing these 
relations helps clinicians understand how the classification process is done. It also makes them 
understand the association between features in data [53,54]. The RF classifier is used to predict the 
class value by building several trees from a given input data feature using the divide-and-conquer 
approach (DAC). The DAC approach depends on a recursive partitioning of the data input space into 
many subspaces based on the value of the candidate input data feature. The candidate data feature 
is chosen by applying goodness metric to the data attribute. Different goodness metrics can be used 
for ranking, including a likelihood ratio and a gain ratio. The leaves of the constructed trees are 
labeled either as a class label or a probability distribution of the class. 

Naïve Bayes 

Naïve Bayes (NB) is a probabilistic algorithm used for the classification of data. The naïve Bayes 
classifier is easy to implement and usually yields good results. This classifier is denoted as the 
maximum posterior (MAP) decision rule [55]. An NB classifier depends on Bayesian theorem to find 
a particular event and the unconditional probability of an event in each class. In the Bayes theorem, 
the conditional probability that an event Y belongs to the variable  𝑋  can be computed by using the 
following Equation (21). 𝑃(𝑌|𝑋 ) = 𝑃(𝑋 |𝑌)𝑃(𝑌)𝑃(𝑋 )  , (21) 

where Y is a variable indicating the class label, 𝑋  is a dependent feature vector with size n, and 𝑃(𝑌|𝑋 ) is the probability that the input data Y belongs to 𝑋 . 
In order to estimate  𝑃(𝑌|𝑋 )  of an instance in a dataset using Equation (22), the classifier 

assumes that features are statistically independent of any other feature available in a dataset, given 
the class variable. 𝑃(𝑌|𝑋 ) = 𝑃(𝑌|𝑋 ). (22) 

Radial Basis Function (RBF) Network 

An RBF network is a type of artificial neural network (ANN) which uses a radial basis function 
as an activation function [56]. An ANN is a network with a number of neurons connected together 
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like the brain. It consists of three layers, as follows: Input, hidden, and output layers. The numbers of 
input and output neurons are equivalent to the number of features and the number of classes in a 
dataset. The hidden layer of the network is a non-linear RBF activation function. The training of an 
ANN is made by altering the weights of the connected neurons using a learning algorithm. The 
output of the network is a linear combination of the neuron outputs of the hidden layer. The testing 
process is then preformed to examine the performance of this ANN model for predicting the class of 
unseen examples. 

Ensemble Classifiers 

Ensemble classifiers methods are useful as they can enhance the classification accuracy of a 
singular classifier by combining multiple classification models [57]. The ensembles assign a class 
value by fusing several predictions of all the models of the ensembles. Bagging is an example of these 
ensemble classifiers. It is based on bootstrap aggregation re-sampling method [56]. Bootstrap 
aggregation is a method used to generate multiple classification models from different random 
samples of the data. These constructed models are then used to get an aggregated prediction. Bagging 
ensembles are constructed using random forest, naïve Bayes, and RBF network classifiers. These 
ensembles contain 60 learners to enhance and improve the accuracy for the classification process. 

Adaboosting is another type of ensemble classification. It is like bagging in which several 
classification models are constructed with different training sets. However, boosting classifiers are 
connected together in a cascaded manner. The classified examples of the first classifier in the boosting 
ensemble are re-sampled using a weighting re-sampling technique where greater weights are given 
to mis-classified instances of the first classifier, and vice versa. The second classifier in the ensemble 
receives these re-sampled instances and produces output predictions. Again, the same re-sampling 
procedure is done to these output predictions. This procedure is repeated until all classifiers in the 
ensemble are processed. 

In order to evaluate the performance of the proposed method, several metrics, such as the 
classification accuracy (ACC), area under the receiver operating curve (AUC), precision, and 
sensitivity, are used. The results were validated using a 5-fold cross-validation method that was 
repeated 10 times. The average of the classification accuracy, precision, sensitivity, and area under 
the curve are calculated as follows. 

Classification Accuracy is calculated by dividing the number of instances that are correctly 
classified over the total number of instances in a dataset. This is done using Equation (23). 

Accuracy = , (23) 

where TP is the true positive, which indicates the number of positive targets correctly predicted. TN 
is the true negative, which indicates the number of negative targets correctly predicted. Whereas, FP 
is the false positive, which specifies the number of negative targets incorrectly predicted as positive 
targets. FN is the false negative, which specifies the number of positive targets incorrectly predicted 
as negative targets. 

Precision (P) is the number of correctly predicted positive instances over the total number of 
predicted positive instances. The precision is calculated using the following Equation (24): 

Precision = , (24) 

Sensitivity (S): Which is also called recall or true positive rate (TPR). It is the number of positive 
class instances that are correctly classified over the total number of positive class instances available 
in the data. It is calculated using Equation (25). 

Sensitivity= . (25) 

Area Under the Receiver Operating Characteristic Curve (AUC): A receiver operating 
characteristic (ROC) curve is a graph representing the TPR as a function of the false positive rate 
(FPR). AUC is the measure of the difference between the distributions of the two classes for 
classification [58]. In other words, it measures the area located below the ROC curve. 
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3. Results 

In this article, 227 (113 healthy and 114 unhealthy) fetal MRI scans the trials were conducted 
with various GA and positions. The performance of the classification stage depended on the 
segmentation stage. For this reason, the performance of the segmentation stage for the proposed 
method was measured using the Dice metric (D) and the segmentation accuracy (SA) were calculated 
between the ground truth. The results of the segmentation method are shown in Table 1. It was 
observed that, out of 50 MRI images, the mean values for Dice (D) and accuracy (AS) were 0.975 and 
0.989, respectively. Additionally, the Jaccard Index (JAC), precision (PPV), sensitivity (S), and 
specificity (Sp) values were 0.951, 0.994, 0.972, and 0.979, correspondingly. These values are close to 
1, which shows that our proposed method can successfully segment fetal brain images. 

Table 1. Results of the Dice (D), Jaccard Index (JAC), precision (PPV), sensitivity (S), specificity (Sp) 
and accuracy segmentation (AS), along with the standard deviation (std), for the segmentation 
method for 50 MRI images. 

Image Label D (std) JAC (std) Sp (std) S (std) AS (std) PPV (std) 
Mean 
(Std.) 

0.975(0.02) 0.951(0.03) 0.994(0.01) 0.972(0.03) 0.989(0.01) 0.979(0.02) 

The performance of the new presented approach was calculated using the classification accuracy 
(ACC) for the five individual classification models for the six subsets of features, as shown in Table 
2. These individual classifiers include DQDA, naïve Bayes, KNN, random forest, and RBF network 
classifiers. As mentioned before, feature subsets two and six had high dimensional space, therefore 
the PCA feature reduction method was used to reduce their dimension. It is clear from the table that 
feature subset six has a higher ACC (91%, 95.6%, 93%, 91.2%, and 90.3% using QDQA, KNN, RBF 
network, naïve Bayes, and random forest) compared to the other subsets of features. Feature subset 
six represents features extracted from the Gabor filter feature extraction method, combined with the 
GLCM and statistical descriptive features extracted from DWT coefficients (fifth subset). The results 
showed that combining several textural features is better than using one type of feature extraction 
method. The highest classification accuracy, 95.6%, was achieved using the KNN classifier. 

Table 2. Classification accuracy of individual classifiers constructed using different combinations of 
feature extraction methods. 

Classifier 
Model 

Feature 
Subset 1 

(DWT 
Features 

Feature 
Subset 2 
(Gabor 

Features + 
PCA) 

Feature 
Subset 3 
(GLCM + 
Statistical 
Features) 

Feature Subset 
4 (DWT + 
GLCM + 

Statistical 
Features) 

Feature Subset 5 
(GLCM and 
Statistical 
Features 

Extracted from 
DWT) 

Feature Subset 6 
(Gabor Features 
+ Feature Subset 

5+ PCA) 

QDQA 71% 89% 50% 50% 74% 91% 
K-NN 62% 94.3% 63% 63% 65% 95.6% 
RBF 

Network 
70% 92% 67% 71% 71% 93% 

Naïve 
Bayes 

71% 90% 63% 72% 73% 91.2% 

Random 
Forest DT 

70% 86.3% 71.8% 74% 72.2% 90.31% 

The sensitivity (S), precision (P), area under ROC (AUC) were also calculated for the feature 
subset six (the results are shown in Table 3). This features set has achieved the highest accuracy 
compared to other feature subsets (see Table 1). The results of Table 3 show that the classifiers have 
an acceptable performance in classifying the abnormalities. The AUC of KNN was 99%, which was 
greater than the other classifiers (98.5%, 93%, 97.6%, and 96.3% of the DQDA, RBF network, naïve 
Bayes, and random forest classifiers, respectively). Additionally, the DQDA classifiers had a P of 99%, 
which was higher than the other classifiers (97%, 94%, 91.2%, and 91% of the K-NN, RBF network, 
naïve Bayes, and random forest classifiers, respectively). Finally, the S of the DQDA, K-NN, RBF 
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network, naïve Bayes, and random forest classifiers were 83%, 94%, 93%, 92%, and 90.3%, 
respectively. 

Table 3. Metrics for feature subset 6, which has the highest classification accuracy. 

Classifier Model ACC (std) P (std) S (std) AUC (std) 
QDQA 91%(0.0092) 99%(0.0052) 83%(0.00516) 98.5%(0.0023) 
K-NN 95.6%(0.0056) 97%(0.0067) 94%(0.024585) 99%(0.0067) 

RBF Network 93%(0.006) 93.6%(0.005587) 93%(0.0066) 93.3%(0.0082) 
Naïve Bayes 91.2%(0.0104) 92.2%(0.008072) 91.6%(0.0098) 97.2%(0.0077) 

Random Forest DT 90.31%(0.001) 91%(0.008634) 90.3%(0.0086) 96.3%(0.0099) 

Ensemble classifiers combine the power of individual classification models available in the 
ensemble. This prevents the possibility of poor results that could be produced from a certain 
unsuitably individual model. Therefore, bagging and Adaboosting ensembles were constructed 
using naïve Bayes, random forest, and RBF networks. Their performances were compared with each 
other and the individual version of these classifiers. These results are presented in Table 4. Table 4 
shows that the performance of bagging and Adaboosting ensembles constructed using naïve Bayes, 
RBF neural network, and random forest classifiers outperformed the performance of their individual 
models. This is because the ACC of the bagged and Adaboosted naïve Bayes were 92.1% and 92.5%, 
which are greater than the 91.63% of the individual naïve Bayes. In addition, the ACC of the bagged 
and Adaboosted random forest were 92.5% and 91.2%, which are greater than the 90.3% of the 
individual random forest classifier. In addition, the ACC of the Adaboosted RBF network is 93.4% 
which is greater than that of the individual RBF network classifier. However, the ACC of the bagged, 
RBF network was 93%, which was the same as the individual RBF Network classifier. The highest P, 
of 93.6%, was achieved by the RBF network, the bagged RBF network, and bagged naïve Bayes 
classifiers. The highest S of 93.4% was achieved by the Adaboosted RBF network. 

Table 4. Comparison of the classification results along with the standard deviation (std) of the 
individual classifiers and their ensembles. 

Classifier Model ACC (std) P (std) S (std) 
RBF Network 93%(0.006) 93.6%(0.005587) 93%(0.00594) 

Bagged RBF Network 93%(0.0066) 93.6%(0.00607) 93%(0.006596) 
Adaboosted RBF Network 93.4%(0.0045) 93.6%(0.006346) 93.4%(0.00674) 

Naïve Bayes 91.63%(0.0104) 92.2%(0.008072) 91.6%(0.009776) 
Bagged Naïve Bayes 92.1%(0.008) 92.7%(0.004673)) 92.1%(0.006015) 

Adaboosted Naïve Bayes 92.5%(0.0084) 93%(0.006033) 92.5%(0.00819) 
Random Forest DT 90.31%(0.001) 91%(0.008634) 90.3%(0.008634) 

Bagged Random Forest DT 92.5%(0.0058) 92.6%(0.006129) 92.5%(0.005181) 
Adaboosted Random Forest 91.2%(0.0077) 91.3%(0.008) 91.2%(0.0075) 

To test and validate the statistical significance of the results, a one-way analysis of variance test 
was performed on the results obtained from the repeated fivefold cross-validation process. The null 
hypothesis Ho for this experiment was that the mean accuracies of all the classifiers were the same. 
This test was first performed on the accuracy results of individual classifiers to test the statistical 
significance between them. The results are shown in Table 5. Then the test was done on the results of 
the ensemble classifiers to test the statistical significance between them. The results of the test are 
shown in Table 6. Finally, the test was applied on the results of both individual classifiers and their 
ensemble. The results of the test are shown in Table 7. It can be observed from Tables 5–7 that the p-
values achieved were lower than α, where α = 0.05. Therefore, it can be concluded that there was a 
statistically significant difference between the accuracies of the classifiers. 

Table 5. One-way analysis of variance test details for the individual classifiers. 
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Source of Variation SS df MS F P Value 

Columns 0.01799 10 0.0018 34.29 <0.001 

Error 0.00311 99 0.00005     

Total 0.02318 109       

Table 6. One-way analysis of variance test details for the ensemble classifiers. 

Source of Variation SS df MS F P Value 

Columns 0.00516 8 0.00065 12.26 <0.001 

Error 0.00426 81 0.00005     

Total 0.00943 89       

Table 7. One-way analysis of variance test details for the individual classifiers and their ensembles. 

Source of Variation SS df MS F P Value 

Columns 0.001561 4 0.0039 56.5 <0.001 

Error 0.00311 45 0.00007     

Total 0.01872 49       

SS sum of squares, df degree of freedom, MS mean squared error, F F-statistic. 

As it is commonly known, in order to construct an efficient classification model that achieves 
high classification accuracy, the number of images for each class label used to construct the model 
should be large enough. However, the dataset used in the proposed approach contained several types 
of abnormalities with a limited number of images for each abnormality. Therefore, we gathered all 
images of several abnormalities, of not only one type, along with normal images, and classified them 
to either normal or abnormal brains. Note that the datasets that are freely available online contain 
images of normal and not abnormal, which is why were constrained to classify between normal and 
abnormal only. 

The main aim of this article is to classify fetal brain abnormalities. Several constraints arose for 
reaching this aim. First, we were restricted with the limited number of related research articles 
discussing this topic (3 articles, as stated in the introduction). The majority of the previous research 
has been limited to studies classifying brain deficiencies in early age for the preterm and neonatal 
stages, but not at the fetus stage. The second constraint was that datasets that contain images of fetal 
brains, as well as those from neonates and preterm infants are not available online. Finally, datasets 
that are available online for the fetal stage contain only images of normal brains, so we were not able 
to use them as our main target was to classify fetal brain images. Therefore, we compared our results 
with the performance of such approaches for fetal, neonates, and preterm infants to validate and 
indicate that the performance of our method is competitive. The results are displayed in Table 8. 

Table 8. Comparisons between the performances of our novel presented approach and recent related 
approaches for preterm, neonates, and fetal. 

Paper Abnormality Type GA Classifier Accuracy (ACC) 
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12 
Functional 

connectivity in 
preterm infants 

preterm of age 
30 to 39 weeks 

Non-linear SVM 80% 

13 Brain Maturity 
preterm of age 
23–29 weeks 

Linear SVM 84% 

14 
Autism spectrum 

disorder 
23–31 weeks 

preterm 
Linear SVM 71% 

15 Autism spectrum 
disorder 

6-month-old 
infants 

Multi-kernel SVM 76% 

9 
Small of gestational 

age 37 weeks 

Support Vector Machines 
(SVM) 

& Genetic Algorithms 
(GALs) 

95.12% for frontal lobe, 95.56% 
for basal ganglia, 93.18% for 

mesencephalon and 83.33% for 
cerebellum 

11 
Several Fetal 

Abnormalities 16–39 weeks 

LDA 79% 
Linear SVM 79% 

KNN 73% 
Ensemble Subspace 

Discriminates 
80% 

Our 
method 

Several Fetal 
Abnormalities 

16–39 weeks  

DQDA 
K-NN 

RBF Network 
Naïve Bayes 

Random Forest DT 
Bagged RBF Network 

Adaboosted RBF Network 
Random Subspace RBF 

Bagged Naïve Bayes 
Adaboosted Naïve Bayes 

RS Naïve Bayes 
Bagged Random Forest 

Adaboosted Random Forest 
Random Subspace RF 

92% 
95.6% 
93% 

91.63% 
90.3% 
93% 

93.4% 
93% 

92.1% 
92.5% 
91.2% 
92.5% 
91.2% 
93.4% 

The proposed method has an ACC that ranges between 90.3% and 95.6%, which is higher than 
the ACC of the previous methods proposed for preterm and newborn infants [12–15] and which 
achieved 80%, 84%, 71%, and 76%, respectively. The AUC of the proposed method is also higher than 
the 80% achieved by the method used for classifying fetal abnormalities [10]. The new approach 
presented in this article identified different brain deficiencies, unlike [12–15] methods that were 
limited to the classification of only one type of defect for preterm infants or newborns. Lastly, our 
new approach employed a larger number of MRI images compared to other approaches. Identifying 
fetal brain defects is a complicated task compared to scanning of newborns and preterm infants. Since 
scanning of fetal brains displays the head of the fetus along with the maternal parts of the mother 
and other surrounding fluids [7], our approach, therefore, has several strengths over other methods 
reported in the previous related work. First, it is considered to be simple and reliable. Second, the 
results showed that it works well on T2 weighted scans. Third, it is capable of classifying different 
GA and several brain deficiencies. Finally, our approach classifies the defect before the fetus is born. 

4. Discussion 

The proposed framework is for the classification FBA. This framework uses several types of 
machine learning techniques. Most of the work done for brain MRI detection and classification in a 
primary age is for newborns and preterm infants. To the best of our own knowledge, the work done 
for FBC is limited to References [9–11]. In the articles [9,10], the authors identified a brain deficiency 
called SGA in neonates, as opposed to fetuses. Their approach was applied on a very small number 
of images. These images were only limited to 37 weeks of fetal GA. Reference [11] classified several 
fetal abnormalities, but the highest classification accuracy achieved was limited to 80%, which is 
insufficient for medical applications. Therefore, in this article, a new approach was proposed to 
classify brain defects from fetal images at various GAs. 

The proposed framework consists of five steps, as follows: Segmentation, enhancing the minor 
ROI image contrast, feature extraction, feature reduction, and classification. In the segmentation 
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phase, the minor ROI was cropped semi-automatically from the remaining parts of the fetal images. 
Afterwards, the minor ROI images were improved by a mixture of contrast stretching methods. Next, 
in the feature extraction phase, six subsets of features were extracted. The first subset represents the 
horizontal, vertical, approximate, and diagonal coefficients of the 4th decomposing stage of the DWT. 
The second subset feature was extracted using Gabor filters. The third subset of features was 
extracted using the gray-level co-occurrence matrix (GLCM) and statistical features. The forth subset 
is a combination of features extracted from DWT, GLCM, and statistical features. The fifth subset is 
the GLCM and statistical features extracted from the fourth level 2D-DWT decomposition of the 
minor ROI. The sixth subset represents features extracted using a Gabor filter combined with the 
GLCM and statistical descriptive features extracted from the DWT coefficients (fifth subset); that is 
to say that the sixth subset is a combination of the Gabor filter feature vector with the fifth subset. 
Note that feature subsets two and six are of high dimension; therefore, principal component analysis 
(PCA) was applied to them to reduce their dimension. Finally, the six subsets of features were used 
to train and validate different classification models, such as naïve Bayes, random forest decision tree, 
RBF network, DQDA, and (K-NN) classifiers. In addition, bagging and Adaboosting ensembles were 
constructed using naïve Bayes, random forest decision tree, and RBF network classifiers to see if they 
could enhance predictions of their individual models. The proposed pipeline reached a classification 
accuracy of 95.6%, which outperformed other methods shown in the literature. Therefore, it can be 
considered as a powerful tool that can help physicians in the early detection and diagnosis of fetal 
brain abnormalities. 

Proper comparison with other previous work is mandatory and this comparison is more 
appropriate when it is based on the same dataset. However, as we explained before, our key goal was 
to classify fetal brain abnormalities. We faced a problem when searching for related research papers 
discussing this topic. We found that there is a limited number of papers which have explored fetal 
brain classification (only three relevant papers, as mentioned before). The authors of these papers 
used a machine learning classifier for either predicting one type of abnormality after the birth of the 
infant (becoming a neonate), which is not similar to our case (we want to differentiate between several 
types of abnormalities and normal brains and we strive to classify fetal abnormality before the fetus 
is born), or to classify several abnormalities and achieve a classification accuracy limited to 80% 
(which is not very high, especially in medical applications). The datasets are not freely available 
online. Moreover, all the fetal brain datasets that are available online only include images of normal 
brains. The dataset used in our work is the only dataset that is free online and contains abnormal 
images. In addition, the literature showed that the majority of work done on detecting and classifying 
brain abnormalities in early age was limited to infants, neonates, and preterm infants, rather than 
fetuses. We thought that the previous work done for infants, neonates, and preterm infants would be 
the closest work we could use for comparison. Therefore, we compared these approaches (examples 
[12–15]), but their data was not freely available online. We also compared with other papers that used 
fetal images (examples [9,11]). 

As it is clear from the comparison with recent related work, most of them used the SVM classifier 
to construct their models. To make our study novel, we did not employ SVM classifier. SVM is a 
popular classifier; however, it would not be highly efficient if the number of features is large [59]. In 
our case, several features sets were extracted. Most of these features had a high number of features. 
Moreover, SVM would produce insufficient results when the datasets are partitioned into subsets 
and used in parallel training, where each subset is used to train a classification model and then the 
knowledge is combined together [60]. In our case, the dataset was split using a bootstrap aggregating 
resampling technique. These subsets were then used to train the bagging ensemble models. In 
addition, it is difficult to choose the parameters as well as the best kernel of SVM [61]. For these 
reasons, SVM was not adopted in our article. 

MATLAB R2017b and Waikato Environment for Knowledge Analysis (Weka) software [62] were 
used for the implementation of the proposed framework. 

5. Conclusions 
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This paper presents a framework for identifying defects in fetal brains. The aim of this work is 
to classify these defects in a primary stage, before the fetus fetal is born, via a simple and fast 
approach. The results of the new approach presented in this article indicate a good performance using 
MRI images. The proposed framework has effectively identified defects of fetal brains within MRIs 
of diverse planes and ages (from 16 weeks to 39 weeks). In addition, it had the ability to detect and 
identify numerous defects in the fetal brain, as opposed to only one type of abnormality. In addition, 
the ensemble classifiers constructed in the proposed algorithm proved to beat the classification 
results of their individual models in most cases. To the best of our knowledge, most of the previous 
work focused on classification of preterm and neonatal MRI brain images. The few studies that 
investigated fetal MRI scans for identification process associated fetal scans with their newborn scans 
to estimate the deficiency, called SGA, in newborns as opposed to fetuses. For this reason, our 
approach performance was measured against other recent related approaches for preterm babies and 
newborns. Our classification performances indicated that our new approach outperformed all them. 
This work will pave the way for future studies, encouraging academics to begin working on 
classifying the fetal brain to detect defects. In addition, it will help doctors make an accurate 
diagnosis, decide the appropriate treatment plan, and properly advise parents on how to deal with 
the abnormality before the fetus is born. Future work will focus on enhancing prediction accuracy 
and applying deep learning methods for fetal brain classification. 
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