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Abstract: Statistics plays three important roles in brain studies. They are (1) the study of differences
between brains in distinctive populations; (2) the study of the variability in the structure and
functioning of the brain; and (3) the study of data reduction on large-scale brain data. I discuss these
concepts using examples from past and ongoing research in brain connectivity, brain information
flow, information extraction from large-scale neuroimaging data, and neural predictive modeling.
Having dispensed with the past, I attempt to present a few areas where statistical science facilitates
brain decoding and to write prospectively, in the light of present knowledge and in the quest for
artificial intelligence, about questions that statistical and neurobiological communities could work
closely together to address in the future.
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1. Prologue

What are the rules that govern the functions and the organization of the human brain? How does
the nervous system give rise to sensation, cognition, and action? What are the causes of mental illnesses?

Ever since neurology became a distinct discipline 150 years ago, neurobiologists have been
seeking to answer these questions about the brain. Statisticians have played important roles in this
effort, charting the brain’s functional network and topographic organization, and inventing analytical
tools that pave the way for predicting brain diseases, cognition, and behaviour. Thanks to the rapid
development of neuroimaging technology and the advancement of high-performance computing
(HPC), an unprecedented amount of fine brain data has been collected. Using this “big brain data”,
statisticians and neurobiologists are re-visiting old problems and exploring new ideas on a broader
canvas. In parallel, while continuing to employ statistical methods to support modeling and data
analysis in neurobiological studies, statisticians are beginning to incorporate more facts of the nervous
system into developing biologically plausible frameworks.

In this brief review, I discuss recent developments in a small number of areas where statistical
science has helped to advance human neuroscience. I write it partly to satisfy my curiosity and partly
for the enjoyment of my friends, colleagues, and readers who are interested in studying the brain using
statistical techniques. First, I discuss the impact of statistics on human neuroscience using Ronald
Fisher’s three roles of statistics as a guide: the study of populations, the analysis of variance, and data
reduction. Expanding on these basic concepts, I discuss four topics in brain studies in which statistical
devices have been widely used: brain connectivity (the links between brain areas), information flow
within and between brain regions, information extraction from large-scale neuroimaging data, and
neural predictive modeling. I end by summarizing a few exciting new areas where statistics is at the
heart of quantitative enquiry and in one’s quest to decode the brain and writing prospectively about
questions and challenges with which statistics and neuroscience may deal in the future. If reading
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these views provides you with new insights about statistical science and brain function, then I have
been amply rewarded. If some of these views stimulate new ideas and further discussions in other
areas of statistical and neurobiological studies, then I have received the utmost reward.

2. A Statistical Enquiry Concerning the Human Brain

2.1. The Three Roles of Statistics in Brain Science

Ronald Fisher, the father of modern statistics, defined three concepts, which have had a profound
influence in statistical and biological research: the study of populations, the analysis of variance,
and the principles of data reduction [1]. During the past century, many statistical theories and
methods have revolved around these themes. Today, they are helping us to analyze large-scale neural,
environmental, genetic, and behavioural data, to understand the neurological bases of variability in
structure and functioning of the cerebral cortex, as well as the genetic and environmental underpinnings
of human behaviour.

2.1.1. Three Types of Population: Hierarchies in the Human Brain

There are, broadly, three types of population in human neuroscience: the population that consists
of data obtained from multiple individuals, the population that consists of data obtained from multiple
time points, and the population that consists of data obtained from multiple brain areas.

2.1.2. An Example

The neural coupling (or connectivity) between brain regions outlines the anatomical and functional
organization of the brain [2]. One way to quantify the strength of the coupling between brain regions is
to use the Pearson correlation of the signals obtained from the two regions. This can be done by taking
the correlation between two time courses measured by a neuroimaging modality, such as positron
emission tomography (PET), the blood oxygen level dependent functional magnetic resonance imaging
(BOLD fMRI), electroencephalogram (EEG), magnetoencephalography (MEG), or diffusion-weighted
magnetic resonance imaging (diffusion MRI). The resulting correlation is called an edge.

Let us use, as an example, one hundred individuals whose brains are scanned in an MRI scanner
for one hour on New Year’s Day. The first type of population is an aggregate of edges from multiple
subjects. In the first column of Figure 1a, the 100 correlations form a population of edges corresponding
to 100 subjects. The second type of population is an aggregate of edges in a single brain measured over
time. For example, consider one individual whose brain is scanned for one hour every day over a year.
The resulting 365 correlations form a population of edges that fluctuate longitudinally (see the first
row of Figure 1a). The third type of population is an aggregate of edges corresponding to multiple
brain regions. The resulting region-wise correlations form a population of edges that differ from one
brain area to another (see the lower right corner of Figure 1a).
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Figure 1. Three types of population and variation in human neuroscience. (a) Variation within a
group. For a group of male toddlers, the three types of variation are defined according to time, (brain)
space, and individuals. From left to right: temporal variation. From top to bottom: within-group
variation. Bottom right: spatial variation. Note that for temporal and within-group variations, one
edge is considered, while for spatial variation, multiple edges are considered since the latter considers
variability across brain regions. For demonstration purposes, we show the spatial variation for one
subject. (b) Variation between groups. We consider the variation of an edge between two brain regions
in four groups (male toddlers, female toddlers, male adults, and female adults). The between-group
variation quantifies the variance of group mean edge strength (coloured edges in the figure).

2.1.3. Three Classes of Variance: The Spell of Neural Diversity

Each type of population yields a unique class of variance. First, for a specific edge at a cross-section,
the edge strength varies across individuals in a group, introducing the within-group variation (Figure 1a).
When several heterogeneous groups are concerned, the variation from one group to another is called
between-group variation (see the center image of Figure 1b). Second, an edge may change over time,
exhibiting the temporal variation (Figure 1a). Finally, for an individual at a given period of time, the
edge strength varies across anatomical regions, displaying the spatial variation (Figure 1a).

A central role statistical science plays in brain studies is the analysis of variance. First, comparing
between-group variation with the within-group variation (of the edges), one can test the heterogeneity of
edge strength across various groups. Perhaps one of the simplest examples is the one-way ANOVA F-test
statistic, which is defined as the ratio of between-group variance over within-group variance: hence the
larger the F-test statistic, the edges are more dissimilar between-group relative to within-group. Such a
comparison also lays the foundation for the intraclass correlation (ICC): the larger an ICC, the edges
are more similar within-group as compared to between-group. Additionally, the within- and between-
group variations form the bases for brain data decomposition, where data derived from various
experimental conditions and heterogeneous populations can be separated into population-specific
components that envisage biological attributes shared by the whole population, and subject- or
group-specific components that distinguish a subject or a sub-group (see Section 2.1.4) [3,4]. Second,
the spatial variation, observed either at rest or under a task such as seeing a picture, highlights the
areas of the brain that are more active during rest (e.g., see [5]) or are associated with the task (e.g.,
see [6]). Third, if the edge strength between brain areas co-varies with a behavioural or cognitive trait
(e.g., fluid intelligence or cognitive ability), they are potentially modulating this trait (e.g., see [7,8]).
Meanwhile, abnormal variability observed in focal brain regions suggests potential brain illness: a
chief element in brain disorder diagnosis (e.g., see [9,10]). Finally, tracing temporal variation in health
and disease helps to monitor brain development and brain disorder progress (e.g., see [11,12]).
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2.1.4. Reduction of Large-Scale Brain Data: The Local Guide to a Global Picture

Anyone studying brain data today cannot fail to be impressed by its size (dozens of petabytes or
hundreds of terabytes after conversion and pre-processing). Larger-scale data contain more (although
potentially noisier) information, provide a bigger platform to make scientific enquiries, and, properly
treated, may produce more consistent conclusions. But there are questions to be addressed, questions
that are at the interface of technology and neurobiology. Technically, a direct enquiry into the entire data
set (considering mapping the dynamics of every neuron as an extreme example) may at present pose
analytical and computational difficulties to methodologies and even the high-performance computers.
Can we summarize the data into one with which both statistical models and computers can efficiently
handle? Neurobiologically, the brain has the unique ability to extract certain constant and unchanging
knowledge (such as color, orientation, and motion) from the everchanging information reaching
it from the outside world. The brain is able to discard varying information and derive universal
assents (such as in color vision, and generally in sensation) that allow humans (and animals) to
maintain their independence from the vicissitudes of constant environmental change. As realizations
of brain activities, neural data must in some way store common, perhaps genetically determined and
hard-wired properties of the brain across individuals, in healthy subjects, or among patients with brain
diseases. Can we uncover these common and potentially predetermined anatomical and functional
properties of the brain? Living in an environment of continual change, the brain must learn to adapt
and modify itself and its beliefs, enabled by its plasticity and result in variabilities. Consequently,
the brain presents a certain amount of plasticity and variability in its structure and functioning. Can
we derive such modifiable properties which may assist us in understanding the construction and
functional organization of the brain and in deriving idiosyncratic signatures of an individual brain
useful for personalized medicine and mobile health-based diagnosis?

Logically, and more realistically, can we extract a few smaller sets of “pontifical” data, that (a)
summarize patterns of specific brain regions, across individuals, and of a specific subject, (b) distinguish
patients from healthy subjects, and (c) potentially trace the course of mental states and the development
of neurodegenerative diseases over time?

Empirically, converging anatomical and physiological evidence suggests that the brain retains,
and processes condensed and specialized information leveraging its intricate and specific structure
and functioning. For example, the brain consists of functionally specialized areas [13]. It also has
clearly-defined anatomical organizations, delivered by its cytoarchitecture (e.g., there is a sharp
distinction between V1 and its neighbouring visual “association” cortex) [14] (p. 29), depicted in layers
(for example, the lateral geniculate nucleus (LGN) consist of multiple layers each of which receives
information from one eye or the other only) [14] (p. 26), and painted in sections (for example, the
primary visual cortex is appropriately arranged in alternating bands (“L, R, L, R”) which respectively
receive information from the left (L) and right (R) eyes) [15]. Finally, there exist strong correlations in
large-scale brain data (for example, patterns from many of the brain areas in Figure 2c are significantly
correlated [9]). Practically, brain data is contaminated with noise (for example, in fMRI data, multiples
sources of noise can corrupt the true signals, such as scanner-related noise including thermal noise and
scanner instability noise, noise due to head motion and physiology, HRF model errors, and noise due
to different sites) [16]. It is thus necessary to reduce the amount of noise and to extract meaningful
(e.g., with high signal-to-noise ratio) information from the data. Reflecting on neurobiological
evidence and the practical need, it seems reasonable and useful to construct a dense subset of the
brain data that summarizes properties of the whole. To rigorously execute this, we need statistical
data-reduction techniques.
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Figure 2. Using predictive models to uncover distinctive brain states and areas to diagnose psychosis.
(a) The functional network organization of the human cerebral cortex is revealed through intrinsic
functional connectivity. Colours reflect regions estimated to be within the same network determined
based on the 17-network solution from Yeo et al. [17]. The map is displayed for multiple views of the
left hemisphere in Caret PALS space [18]. (b) A schematic representation of time courses obtained from
two brain regions. (c) Correlation matrices (a measurement of functional connectivity) are computed
from time courses across regions. Values reflect z-transformed Pearson correlations between every
region and every other region. DorsAttn indicates dorsal attention, Sal salience, SomMot somatomotor,
and VentAttn ventral attention. (d) Brain states exhibit hierarchical features across distributed networks.
Correlation matrices for four states (arranged using k-means clustering) are shown for each region.
(e) Specific brain states are predictive of distinct clinical symptoms in novel individuals. (e1) State B4

uniquely predicted the presence of active psychosis in patients with psychotic illness. Results from a
leave-one-subject-out cross-validation elastic-net logistic regression analysis comparing predicted and
observed psychotic symptoms (n = 91). The displayed area under the receiver-operating characteristic
curve (AUC) reflects the scalar probability measure for each individual, predicting the likelihood
of active psychotic symptoms. The blue semi-transparent lines reflect 1000 ROC curves from 1000
permutation experiments. The black dashed line indicates the mean of these 1000 curves, approximating
a null curve. The purple, red, green, and orange curves correspond to states A4, B4, C4, and D4,
respectively. (e2) Connectivity models defined on training data predict the presence of active psychotic
symptoms in an independent group of participants (n = 31). The displayed AUC graph reflects the
scalar probability measure, predicting the likelihood of active psychosis, defined using positive edges
from the initial training set without further fitting or modification, in a held-out sample of patients.
The images are adapted and modified, under the terms of the Creative Commons CC BY license, from
Springer Nature Communications “The human cortex possesses a reconfigurable dynamic network
architecture that is disrupted in psychosis” by Reinen et al. Copyright 2018 [9].

Data reduction is, in essence, information extraction. Two classes of data-reduction techniques,
predictive-modeling based feature selection and data decomposition, are useful to treat large,
multivariate brain data measured over a long time. The former works with respect to a particular
predicted variable, and the latter finds general structures within the data.

The predictive-modeling based feature selection can be further classified into two types of models.
The former type consists of step-wise models that link, at each step, one feature (e.g., an edge)
with an outcome variable (e.g., disease status); judging the strength of the association, the model
discards (or admits) the feature. The latter type consists of predictive models in which all features are
considered simultaneously; the features whose parameter estimates from the model are not significant
are discarded. Regularized models, such as the Ridge, the LASSO, and the elastic-net (see Figure 3a),
which shrink the estimated parameters of irrelevant features (and thus suggest removing these features
in the model output), are examples of the second type [19–21]. The validity of the selected features is
subsequently tested on novel subjects to check if they can, without further modeling, reproduce a good
outcome prediction (see Figure 2d,e).
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Figure 3. Schematic representations of data reduction on large-scale multivariate features via
regularization and decomposition. (a) Using regularization techniques to select features. Four common
regularization approaches, the Ridge, the LASSO, the elastic-net, and the L0 “norm” regularization, are
present to analyse large-scale multivariate features from an hypothetical experiment. For demonstration
purpose, consider candidate features measuring cardiovascular (such as electrocardiogram (ECG) data),
behavioural (such as physical activity measurements), neural (such as fMRI data), and genetic (such as
GWAS data) activities. Each colour (e.g., blue) represents multivariate features (e.g., signals obtained
from different brain regions) from one feature modality (e.g., fMRI data). Real world large-scale
(particularly high-dimensional) data would typically contain several clusters of features that are highly
correlated within their respective clusters relative to between clusters (namely the pairwise correlations
are very high within each cluster). In this demonstration, for simplicity, we assume one (e.g., for
fMRI data) to two (e.g., for cardiovascular data) clusters of highly correlated features within each
modality. Each circle corresponds to one feature, and the size of a circle represents the weight (estimated
parameter from the model) of the feature. Assuming features are standardized, those with larger
weights are more “important” features (important in terms are more “important” features (important
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in terms of predicting brain disease or behavioural outputs); those with weights close to zero are
discarded. The Ridge regularization (also called the L2 regularization), based on the L2 norm, imposes
weights on all features but reduces the size of the weights in order to produce a stable model. It is
computationally efficient, has a unique solution, but is not ideal for feature selection. The LASSO
regularization (also called the L1 regularization), based on the L1 norm, shrinks the weights of some
towards zero, thereby removing these features. It is computationally less efficient than the Ridge
(particularly when the solution is non-sparse), has potentially multiple solutions, but is useful for
feature selection. Additionally, when there are clusters of highly correlated features in data sets with
more features than sample size (namely p � n), it tends to select one feature from each cluster (see
Section 2.3 in [21]). The elastic-net regularization combines the LASSO and the Ridge regularizations.
It selects a small number of features (like the LASSO), some of which are correlated (like the Ridge). It
is useful when one wants to balance between feature reduction and model interpretability; in other
words, it attempts to reduce the number of features but does not reduce too much (as in the LASSO), so
there remain a reasonable number of features for scientific interpretation. The L0 “norm” regularization
induces sparsest solution by counting the number of non-zeros features (L0 is not a proper norm, hence
the quotation marks). The discarded features in the LASSO have weights possibly not strictly zero
(although very close to zero); in the L0 “norm” regularization, these features are (strictly) discarded.
It is, however, computationally very expensive (NP-hard). (b) Using data decomposition to unveil
population- and subject- specific information of the brain. Large-scale brain data obtained from
multiple subjects typically encode population-specific information (which depicts the similarities across
individuals) and subject-specific information (which highlights idiosyncratic patterns). Statistical data
decomposition techniques, such as singular value decomposition, population value decomposition, and
principal component analysis, are useful to uncover the unobserved population- and subject- specific
information. For example, using the generalized population value decomposition (gPVD), the totally
variation of brain patterns can be partitioned into a part that is subject-specific, a part that quantifies
the subject-specific variability, and a part that is shared by a group of subjects [4].

Data decomposition considers statistical techniques that partition a large dataset into multiple
smaller parts, each may shed distinctive biological lights. For example, the generalized population
value decomposition (gPVD) decomposes patterns of the brain into a subject-specific part and a
population-specific part (see Figure 3b) [3,4]. After carefully considering the amount of variance
explained and the proper signal-to-noise ratio, the subject-specific part is useful for individual disease
diagnosis and the population-specific part uncovers shared group information. Other useful data
decomposition techniques include principal component analysis (PCA), whose basis functions are
sorted by their ability to explain the variability of the data, independent component analysis (ICA),
whose basis functions form independent subcomponents of the data, and canonical correlation analysis
(CCA), which finds linear combinations between two sources of data (e.g., a set of data containing
neural signals and another set containing behavior measurements) which have maximum correlation
with each other (see [22] for a review).

The decomposed features can be further reduced or pruned via prediction. Oftentimes this
step is necessary; this is in part because the decomposition is justified only if the reduced data
sheds neurobiological light (otherwise one can propose a decomposition method that arbitrarily
breaks the data apart). In other words, one needs to demonstrate that the reduced data (e.g., the
subject-specific features in gPVD) is associated with a biological outcome or a stimulus. Partial
least square (PLS) analysis, which simultaneously conducts dimension reduction and considers the
relationship between the independent variables (e.g., neural features) and the dependent variable
(e.g., behavior outcome) [23] and functional PCA (fPCA) regression, which assesses the relationship
between extracted features (namely, functional principal component (fPC) scores) and the dependent
variable (e.g., hypertension) [24] are useful data decomposition methods based predictive models.
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2.2. Diagnosing Brain Diseases and Monitoring Disease Development Using Statistical Predictive Models

The hierarchical architecture of populations, the analysis of variance, and the data-reduction
techniques provide conceptual and analytical tools to reach one of the crucial goals in human
neuroscience research. That is, to diagnose, monitor, and, ultimately, treat brain illnesses.

The simplest diagnostic model involves linking a single neural biomarker (e.g., activation from a
single brain area) with a clinical outcome (e.g., healthy or diseased brain) (see Figure 4a). With the
advent of functional neuroimaging data, the model extends to examine the relationship between
patterns from multiple brain regions and produce a clinical outcome (see Figure 4b). As an example,
linking functional connectivity features and disease status reveals disrupted neural coupling among
patients with psychotic disorders. Clustering analysis on resting-state brain data demonstrates that there
exist several transient connectivity-states conserved across individuals (see Figure 2d). Associating
each mental state with the individual’s disease profile using a predictive model shows that one of the
network states (State B in Figure 2d) is significantly disrupted in psychotic patients. This is further
verified by predicting the presence of psychosis in previously unstudied individuals using the identified
State B (see Figure 2e1,e2 for training and testing) [9].

1 

 

 

Figure 4. Using predictive models to diagnose disease, estimate disease severity, and assess disease
progress. (a) A neural biomarker from a specific brain region is directly mapped to a diagnostic clinical
outcome. (b) The functional neural biomarker framework. By evaluating the spatial pattern across
subjects, the framework identifies multiple biomarkers related to diagnostic clinical outcomes. (c) The
functional behavioural biomarker framework. When brain data is not available, behavioural data
(such as physical activity, speech pattern, and hand movement) recorded semi-continuously from
wearable computers serve as biomarkers. (d) Extracting a predictive map using functional behavioural
biomarkers. Each box refers to a voxel; voxels with the same colour but different hues indicate the
same anatomical or functional region. The coloured w1, w2, · · ·wn represent predictive weights for
biomarkers. (e) Algorithm-based automated disease assessment. During model-building, features
related to the heart (such as electrocardiogram (ECG) data), behaviours (such as physical activity
measurements), the brain (such as fMRI data), and the genome (such as GWAS data) that are relevant
to the outcome are selected. Subsequently, a predictive map consisting of weights across selected
functional biomarkers is developed using the training sample. During the prospective testing step, the
efficacy of selected features is verified by integrating the weight map with data from previously unseen
individuals without further model fitting and yield a prediction for each subject. At a cross-section, the
model yields one predicted outcome (binary disease status or continuous disease severity) per subject.
Longitudinally, the model yields one predicted outcome per subject at every time point.
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Currently, scanning healthy individuals’ brain frequently in an MR machine for disease prevention
is inconvenient and costly. One way to circumvent this issue is to use behavioural features measured
using wearable computers (e.g., smart watches) and smartphones to assess brain illnesses (e.g., see [25]
and Figure 4c). The brain is an expert in performing functional integration, where information from
various functionally specialized areas (for example, area V3 is specialized in motion, V4 color, and V5
motion) are combined to form a unified sensation (such as vision). In the arena of statistics, data fusion
has the potential to integrate information from multiple data sources, including cardiovascular (such
as electrocardiogram (ECG) data), behavioural (such as physical activity measurements), neural (such
as fMRI data), and genetic (such as GWAS data) signatures, to generate more consistent and accurate
disease diagnosis (see an hypothetical experiment in Figure 4e). The journey has already begun, with
exciting beginnings made by integrating fMRI and EEG data, generating higher spatial resolution
images while, simultaneously, tracing the brain’s neural processes and information pathways at finer
temporal scales (e.g., see [26]).

The predictive modeling-based brain disease diagnosis is not without debates, especially in the
terrain of causal inference. For example, sensory inputs and cognition may be jointly associated with
or mediated by “consciousness”. If irregular signals from a brain area is found to be associated with
the onset of a mental disorder, one may drive into the treacherous road by concluding that signals from
that area are neural markers causing the mental disorder and using them to explain mental problems.
It remains possible, even adjusted for sampling bias, that the irregular signals are effects (but not
causes) or that the association is due to a spurious correlation (in other words, some variables in a large
number of features are correlated by chance). Relatedly, when the brain data are high-dimensional,
they are likely to suffer from incidental endogeneity (where some features are coincidentally correlated
with the error term (or the residual term)), thereby violating a vital model assumption.

To deal with spurious correlation and to avoid overfitting, one could consider out-of-sample
prediction, cross-validation (e.g., leave-k-subject-out cross-validation), repeated sampling test (e.g.,
bootstrap and permutation tests), test-retest (after out-of-sample prediction, one may conduct an
additional test using data from a different study), meta-analysis (by pooling findings from multiple
studies), and causal alternation (such as deep brain stimulation). The treatment for incidental
endogeneity, unfortunately, is as-of-yet not well-charted. Statisticians and econometricians, however,
are actively working on it and have provided inspiring and intriguing perspectives into the problem [27].

To return to the main point, despite challenges, predictive modeling has the promise to (i) identify
neural and behavioural features that are associated with diagnostic clinical outcomes; (ii) assess brain
diseases and their severity; (iii) monitor brain diseases over time (see Figure 4).

2.3. Information Flow in the Brain: A Statistical Pursuit

Living in an everchanging world, the brain is able to modify itself to entertain the environment
that is in a state of continual change. But, to what extent the wiring of the nerves is plastic and
modifiable, and are modifiable neural apparatus (such as the plastic neural wiring) responsible for the
way in which humans interact with the world?

To answer the first question, a beginning can be made by enquiring into the “effective” connectivity
of the brain. The study of “effective” connectivity (or directed neural information flows) (see Figure 5)
is a natural extension of the study of brain connectivity (such as in Figure 2c). It uses statistical
frameworks, such as Granger causality analysis [28], dynamic causal modeling [29], information
theory [30], probability propagation methods (e.g., a Bayesian network [31] and pairwise conditional
probability [32]), and the dynamic directional model [33], on functional imaging data to quantify
the strength and direction of neural communication between paired areas and to infer potential
causal relationships between these regions (see [34] for a review on methods and [35] for a review on
effective connectivity). For example, studies using data from magnetoencephalography (MEG) [36]
have shown that brain information flow during rest is not random but follows a posterior-to-anterior
flow in high frequency bands and an anterior-to-posterior flow in low frequency bands. Data from
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electroencephalography (EEG) [37,38] and functional magnetic resonance imaging (fMRI) [39,40] have
demonstrated that the information flow in the brain is associated with the embedded network topology.

1 

 

 Figure 5. Information flows in the human brain. (a) Estimating information flows from a brain area
1 to another area 2—and from area 2 back to 1. This can be done using a statistical framework such
as Granger causality analysis, dynamic causal modeling, and information theory (see Section 2.3).
The direction and size of the arrows indicate the directed route and the amount of neural information
traveling from one brain region to another. (b) Afferent, efferent, and net information flow maps of the
whole brain. The afferent flow measures the amount of information entering a particular brain area
from other brain areas. The efferent flow measures the amount of information existing from a particular
brain area to other brain areas. The net information flow quantifies the difference between the two.
(c) Average information flow between 18 anatomic regions. The 18 regions are organized based on
a 268-node functional atlas. Average information flow is defined as the total amount of information
flow from each anatomic region divided by the number of nodes in the region. The colour of the edge
indicates the origin of the flow. For example, the pink curved line crossing the circle starting from the
lower left (pink bar) to the top right (light orange bar) indicates information flow from left motor region
to right insula region. (d) Average information flow between eight functional networks. The edges are
now visualized on eight functional brain networks. The images are adapted and modified, under the
terms of the Creative Commons CC BY license, from Scientific Reports “Resting-state brain information
flow predicts cognitive flexibility in humans” by Chén et al. Copyright 2019 [8].

To answer the second question, namely are modifiable neural apparatus (for example, the directed
information flow) responsible for the way in which humans interact with the world, one may start with
quantifying and mapping the amount of “information” that is transmitted from a brain area 1 to another
area 2—and from area 2 back to 1, and subsequently, charting how this directed flow associates with
human behaviour. Statistics plays an important role in this effort. First, one way to estimate the amount
of information between two brain areas is to use an information metric, which represents directed
edge strength, estimated from a statistical model (such as the F values in Granger–Geweke causal
analysis, or Shannon entropy in information theory). For example, the F values derived from Granger
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causality analysis on resting-state fMRI data unveil that neural information flow profiles in the general
population primarily involve local exchanges within specialized functional systems, long-distance
exchanges from the dorsal brain to the ventral brain, and top-down exchanges from the higher-order
systems to the primary systems (see Figure 5). Afterwards, a predictive model can be implemented
to assess whether directed neural communication underpins human behavior. For example, linking
the directed information flow with cognitive flexibility scores suggests that the former is significantly
associated with and predictive of the latter in humans [8].

The studies of brain information flow, nevertheless, have never ceased to confront challenges.
Although statistical (association) analyses have demonstrated significant links between directed and
undirected brain information flows and behavioral outputs, whether the relationships are causal is more
difficult to prove. First, despite the fact that brain imaging data possess strong neural bases (as they are
highly correlated with local field potential, which is a direct measure of synaptic activity), the dynamic
brain data may be confounded by metabolism and vasculature. Thus, even though one generally
agrees that brain activities, in one way or another, give rise to human behaviors, it is still premature, if
not erroneous, to endorse a causal claim that it is the estimated information flow that induces human
behaviors, as the relationship may be confounded (by metabolism and vasculature). Second, the brain
activities are measured at different time scales (for example, MEG resolves events with a precision of
10 milliseconds or faster, whereas fMRI typically resolves events with a precision of several hundred
milliseconds to several seconds). Information flows estimated using different neuroimaging modalities
may therefore be different (and thus need to be further validated). The sampling rate for fMRI data is
slower than the timescale of the underlying neuronal responses; lag-based approaches using fMRI
data, thus, require scrutiny, and need to be further verified using other data acquisition techniques,
such as EEG and MEG [34,41].

These challenges, however, should not stop one from making causal probes into the dynamic
brain. Maxwell wrote “Thoroughly conscious ignorance ... is a prelude to every real advance in
knowledge.” Each statistical refinement of models and new neurobiological experiment, in my view,
would offer novel insights and bring us one step closer to uncover the causal veils of dynamic
neural communication.

3. Epilogue: The Paths to Decode the Brain?

Through the usage of neuroimaging techniques, we are beginning to uncover the neurobiological
bases for sensory, perceptual, emotional, mental, and cognitive representation of the brain. Rather than
detecting changes in the responses from a single cell, neuroimaging experiments measure changes in
activities recorded from a large (or entire) area of the brain, when a specific task is conducted.

Statistics comes firmly into the domain of brain decoding (see Figure 6). Statistical predictive
models can uncover the visual stimuli viewed (e.g., an image of a pair of scissors or directed lines)
based on patterns of the brain [6,42]. Brain decoding models are not restricted to simple object
recognition. Using novel decoding models (e.g., a Bayesian decoder [43]), researchers are beginning to
decipher brain constructs related to intention [44,45], dreams [46], and dynamic visual stimuli such as
movies [47]. Statistics also plays a role in understanding representation beyond decoding models; it
has helped to draw how sensory stimuli, motor responses, and cognitive processes are represented in
brain patterns [48].
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Figure 6. A timeline representing a few important discoveries in brain decoding during the past
half-century [2,5,6,42,44,46,47,49–52].

Moving forward, connecting statistical models, computer science technologies, and brain studies
can further advance the decoding of the brain and make brain-like computers. First, there are similarities
between the two, for example the anatomical demonstration of parallel connections in the visual cortex
vs parallel computing and the deep neural network (DNN) and the asynchronous brain operations
vs the asynchronous computer operations. Second, statistical computing and machine learning have
learned remarkable lessons from experimental neurobiology. For example, inspired by the simple
and complex cells in the visual cortex, Fukushima designed the Neocognitron, a hierarchical network
consisting of many layers of cells, with variable connections between the cells in adjoining layers,
for visual pattern recognition. Like the simple and complex cells in the visual cortex, cells in the
Neocognitron are also divided into two classes: the S-cells and C-cells: the S-cells are feature-extracting
cells and C-cells are inserted in the network to allow for positional errors in the features of the
stimulus; each C-cell receives signals from a group of S-cells which extract the same feature, but from
slightly different positions [53]. Since its invention, the Neocognitron has been used for handwritten
(e.g., numerals) and pattern recognitions and laid the foundation for future convolutional neural
networks (CNNs). Third, partly inspired by the organization of the nervous system, AI computers are
beginning to outperform human brains in some areas. For example, industrial robots from KUKA
and FANUC are today more efficient than humans in certain goal-oriented tasks such as arranging
goods, palletizing, and boxing jars; IBM Watson defeated human participants during the quiz show
Jeopardy!; more recently, AlphaGo beat professional Go players [52]. AI computers have also the
potential to create unprecedented moves (strategies) that human brains have never before considered.
For example, the Move 37 during Game Two of AlphaGo vs Lee Sedol was seemingly a mistake
at first sight to professional human players but a well-calculated strategy retrospectively. In this
sense, artificial intelligence may offer insights into the constraints of human intelligence (and perhaps
decision-making), and the strategies created by machine are beginning to enter the domain of standard
human strategies (such as the Move 37). Additionally, statistical simulation approaches may direct
us into seas less sailed before, to enquire into questions related to one’s self, such as the questions of
morality and greed, where specific experimental designs and data collection may be difficult. Inspired
by human intelligence, AI has begun to benefit humanity in component tasks such as speech recognition,
image classification, and autonomous vehicles; intimidatingly although speculatively, it may one day
develop into a superintelligence that may not comply with human values and rules. Naturally, this
raises the questions of optimizing, managing and controlling AI, some of which are being actively
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discussed, debated, and pursued, and to which statisticians, computer scientists, neurobiologists, and
philosophers could make some contribution [54,55]: is it acceptable to design a self-driven car that
treats potential accidents as probabilistic events (for example, choosing hitting two pedestrians to
save four passengers in a car from falling off a cliff is probabilistically “less costly” than killing four
passengers over two pedestrians; but is it moral?); how could statistical penalties and stopping rules be
imposed to safeguard a goal-based AI program (which, given a goal, would make plans and exhaust
resources whether adversary to humans or not until the goal is realized) once it has been launched; how
could we prevent someone from taking advantage of immoral and unethical strategies AI simulated;
and, more broadly, how could we avoid losing control of AI systems?

To return to nearer problems, there still seems a disconnection between statisticians and
neurobiologists. The questions that “statistical neuroscientists” seek to address seem to be too vague
for neurobiologists whose concerns are to understand how the real brain undertakes tasks, and many
of the state-of-the-art computing frameworks (e.g., the fully-connected layers in DNN) do not reflect
how the brain really works [14] (pp. 118–121). To facilitate collaborative research in the next decade in
pursuing the common goal of charting the functions of the human brain and using them to benefit daily
life, experimental neuroscientists need statistical models to unravel the intricacies of the brain and to
learn how the nervous system undertakes complex tasks. Equally, statisticians need knowledge of the
nervous system to enhance their models, ones that can be directly implemented in experimental tests
to uncover how the brain may be functioning and to investigate how the brain implements defined
tasks, without ignoring the underlying neurobiological, anatomical, and physiological mechanisms.

The structure and functioning of the human brain is, in part, intricately coded prenatally and,
in part, diversely variable and modifiable postnatally in space, across individuals and groups, and
over time. The statistical enquiry into the brain is thus a problem dissecting the intricate, universal
cerebral pathways and functions which the brain uses to acquire constant knowledge (such as colour)
of the external world, and the dynamic, variable, and modifiable pathways which it uses to entertain
the everchanging environment. Additionally, by studying the complex pathways of the brain and its
normal and abnormal functioning, one is contributing not only to an understanding of the process of
knowledge, consciousness, cognition, and behaviour, but also to the perhaps more altruistic problems
of understanding brain illnesses, perennial problems that are chief to clinical, public-health, and
medical enquiries.

A century ago, Fisher’s introduction of population, variance, and data reduction provided
fundamental statistical tools and principles that signified a beginning to understand variability in
population biology under statistical frameworks. Today, they are opening new avenues for statisticians
and neuroscientists to probe into the neural basis of variability in relation to human cognition, behaviour,
and psychopathology. In this brief review, I have discussed how these statistical concepts have helped
brain studies, including mapping the pathways between functionally and structurally coupled brain
areas (the study of brain connectivity), unveiling the neural highways of the cerebral cortex (the study
of brain information flow), extracting useful information from large-scale neuroimaging data (big
brain data reduction), and assessing and monitoring brain illnesses (predictive neural modeling).
Additionally, I presented how statistics has assisted brain decoding of objects, intentions, dreams, and
movies, and how statistical and neurobiological studies could benefit each other.

In spite of advances, the study of the brain and the field of statistical neuroscience are still in
their infancy; many exciting ideas about them remain to be generated and to be (statistically) tested.
Naturally, one cannot at present conclude all neurobiological discoveries made thus far using statistical
arguments will be definitive. Naturally, too, there may be major limitations in my arguments above.
There is, however, a certain degree of coherence between statistical discoveries and neurobiological
hypotheses, and a great degree of confidence that there will be a stronger link between the two in the
near future. The ultimate knowledge about how the brain works and how statistics can best serve
neuroscience and vice versa may take many years to settle. However, no one should be deterred from
asking questions, conducting experiments, and performing statistical and neurobiological analyses.
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It was trials and errors that established theories of colour vision, of functional specialization of the
brain, and, most recently, the artificial eyes that enable self-driving cars to see.
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