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Abstract: Anxiety disorders that develop in adolescence represent a significant burden and are
particularly challenging to treat, due in no small part to the high occurrence of relapse in this
age group following exposure therapy. This pattern of persistent fear is preserved across species;
relative to those younger and older, adolescents consistently show poorer extinction, a key process
underpinning exposure therapy. This suggests that the neural processes underlying fear extinction
are temporarily but profoundly compromised during adolescence. The formation, retrieval, and
modification of fear- and extinction-associated memories are regulated by a forebrain network
consisting of the prefrontal cortex (PFC), the amygdala, and the hippocampus. These regions undergo
robust maturational changes in early life, with unique alterations in structure and function occurring
throughout adolescence. In this review, we focus primarily on two of these regions—the PFC and
the amygdala—and discuss how changes in plasticity, synaptic transmission, inhibition/excitation,
and connectivity (including modulation by hippocampal afferents to the PFC) may contribute to
transient deficits in extinction retention. We end with a brief consideration of how exposure to stress
during this adolescent window of vulnerability can permanently disrupt neurodevelopment, leading
to lasting impairments in pathways of emotional regulation.
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1. Introduction

Adolescence is a developmental period of “storm and stress,” characterised by a host of
physical, cognitive, and emotional changes that permit a shift towards achieving independence while
simultaneously opening a window of vulnerability to the damaging effects of external stressors [1–3].
Anxiety disorders that emerge during adolescence are a major concern, as they pose more societal
burden and treatment cost than those emerging in adulthood [4]. One factor contributing to this burden
is that, relative to adults, adolescents are far more prone to relapse following exposure therapy [5,6],
the gold standard for treatment for anxiety disorders [7]. Identifying the neurological underpinnings
that make adolescents particularly vulnerable to fear relapse will help to inform effective treatment
approaches specifically tailored to the developing brain [8]. To this end, characterising the ways in
which behaviour, learning, and memory are influenced by dynamic neurodevelopmental processes
occurring during adolescence has become a topic attracting burgeoning international interest in recent
years (e.g., a special issue devoted to Adolescence in Neuroscience and Biobehavioral Reviews in 2016 and
a collection on Adolescence in Nature in 2018).
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Extinction training is commonly used in an experimental setting to model the process of exposure
therapy. Briefly, following Pavlovian conditioning, in which a neutral conditioned stimulus (CS; e.g.,
a white noise) is paired with an aversive unconditioned stimulus (US; e.g., a mild foot shock), an
animal will exhibit fear responses to the CS alone. During extinction training, the CS–US contingency
is degraded by repeatedly presenting the CS in the absence of the US. Eventually, CS-elicited fear
is suppressed as the animal learns that it no longer predicts a threat. Some studies have shown
that adolescents (both rodent and human) are delayed in reducing fear during extinction training,
referred to as an impairment in within-session extinction [9,10]. Other studies have reported that
even when within-session extinction is preserved, adolescents are far more prone to fear relapse
than older or younger age groups when tested again at a later time point; that is, adolescents show
deficits in extinction retention [11–13], reflective of the increased risk of relapse following exposure
therapy. Discovering how the neural correlates underlying fear acquisition and extinction change over
the course of development is a promising approach to understanding the cognitive and behavioural
rigidity associated with aversive learning processes during adolescence.

The neurocircuitry underlying the acquisition and extinction of fear memories in adults has
been extensively studied (and reviewed in detail in [14–20]). Two regions of particular interest are
the prefrontal cortex (PFC), particularly the medial PFC (mPFC), and the amygdala. These highly
interconnected forebrain structures regulate the formation and modification of associative memories,
and their contributions to fear learning and extinction have been well established. Both structures
undergo significant structural and functional changes over the course of development [21–23] that have
the potential to fundamentally alter learning, memory, and behaviour. In this review, we summarise
recent research describing developmental changes in PFC and amygdala regional plasticity, synaptic
transmission, inhibition/excitation, and connectivity. We incorporate these findings into a structural
framework modelling the ways in which these concomitant changes may underlie adolescent-specific
deficits in extinction learning and retention, and discuss how behaviour can be impacted when the
standard developmental trajectory is disrupted by exposure to external stressors.

2. Plasticity—Dendritic Spines

Developmental changes in neuroplasticity have been well-established; broad convention states
that plasticity is highest in early life, when young animals need to quickly process large volumes of
information about their environment, and decreases over development until reaching stable levels
in adulthood [24]. However, different regions of the brain mature at different rates, meaning that
later-developing regions like the PFC [25,26] are still highly plastic when other regions have largely
stabilised. Understanding how neuroplasticity changes over development in the PFC and amygdala
could help to identify regional imbalances in learning-dependent processes and reveal mechanisms
underlying cognitive and behavioural rigidity in adolescence.

One increasingly common approach used to characterise changes in neuroplasticity involves
examining the density and stability of dendritic spines. Dendritic spines are the primary sites of
glutamatergic synapses on excitatory principal neurons [27], like the pyramidal neurons of the mPFC
and basolateral amygdala (BLA). These spines are highly dynamic, and their morphology, density, and
stability (i.e., rate of turnover) change rapidly in response to plasticity-inducing forms of stimulation,
including learning events. Although data concerning the relationship between learning and spine
dynamics is thus far largely correlational (for review see [28]), increases in spine proliferation and
reorganisation generally predict enhanced neuroplasticity, while spine elimination signals diminished
capacity for change.

2.1. Prefrontal Dendritic Spines

Postnatal development represents a particularly dynamic period of synapse and spine formation
and elimination in the cortex across species [29,30]. Post-mortem analyses in humans show that
following birth, spines and synapses on excitatory pyramidal neurons in the PFC massively proliferate
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until levels peak in mid-late childhood. Adolescence represents a period of dendritic pruning as
neuronal processes are refined—during this period approximately half of all prefrontal spines and
synapses are eliminated until adulthood, when levels stabilise and remain relatively constant [31,32].
This pattern of proliferation and pruning in the PFC is conserved across mammalian species, and
has been demonstrated in the mPFC and dorsolateral PFC (dlPFC) of non-human primates [33–35],
the mPFC (combined infralimbic [IL] and prelimbic [PL] subregions) of rats [23], and the PL and
orbitofrontal cortex (OFC) of mice [36–38]. Importantly, when the PL and IL (rodent homologues
of Brodmann Areas 32 and 25, respectively) are examined separately, it appears that the quadratic
curve of spine density in the developing mouse mPFC is driven nearly entirely by the PL, with the IL
showing little, if any, changes from early adolescence to adulthood [36]. Across regions, this means
that in early adolescence, dendritic spine density in the PL is significantly higher than in the IL,
whereas, in juveniles and adults, densities are comparable between regions. Given that the PL has been
associated with fear expression, while the IL has been implicated in extinction [18], this temporary
imbalance in plasticity and excitability between these two regions may help to explain the adolescent
deficit in extinction retention, a hypothesis discussed in more detail in Section 2.3.

The transition from adolescence to adulthood involves circuit-specific changes in spine dynamics
in the PFC which are concurrent with changes in afferent projections (discussed in detail in Section 5),
suggesting there may be a relationship between spine fluctuations and the maturation of specific inputs
to this region. This idea is supported by findings that transient increases in spine turnover in the PL
of early adolescent mice occur in pyramidal neurons located in the same cortical layers that receive
input from the ventral hippocampus and BLA (Layers II/III and V). Additionally, this adolescent
increase in PL spine density and formation coincides with a peak in PL afferents arising from the
ventral hippocampus and BLA [36]. It is likely that the observed reductions in spine plasticity and
density in the PL between adolescence and adulthood are influenced by a combination of local changes
in excitatory and inhibitory drive and circuit-specific reorganisation of connectivity. We discuss such
changes and their implications for fear inhibition in adolescence in more detail in Sections 4 and 5.

2.2. BLA Dendritic Spines

Development of dendritic spines in the amygdala has been studied less extensively than in the
PFC, but compelling data from rats suggest that the BLA shows a maturational pattern distinct from
the proliferation-pruning trajectory of prefrontal areas. While PFC spines are dramatically eliminated
during adolescence, spine density in the BLA shows a relatively linear increase from the juvenile
period (childhood) to adulthood [23]. This study also reported slightly different patterns in BLA spine
development between males and females; from adolescence to adulthood, there was a modest increase
in density in males and an equally modest decrease in females. Concurrent with these changes in BLA
spine density are fluctuations in amygdalar volume and the total number of cells within the amygdala.
The volume of the lateral, basal, and central nuclei of the amygdala increases from Postnatal Day (P)7
to 35 in rats [39,40] (see Appendix A for a guide to postnatal development in rodents in postnatal
days). Thereafter, amygdala volume decreases across adolescence to similar levels as in adulthood
by P45 [39]. The decrease in amygdala volume across adolescence is likely due to small decreases in
neuron number ([40] but see [39]) and reduced arborisation. It is interesting to note that volumetric
analyses of amygdala development in humans appear to parallel the pattern of increasing amygdala
volume from preadolescence to early adolescence reported in rats but not the later decreases across
adolescence. Instead, the subtle differences between females and males in the trajectory of spine
density changes across adolescence in rodents are reflected in the pattern of amygdala volume in
human adolescents, although such studies in humans have often lacked the power to detect small sex
differences. These studies show a linear increase in amygdala gray matter volume in boys between the
ages of 4–18 that begins to slow around age 12, and a subtle quadratic curve for girls, with volume
peaking at age 14 before slightly decreasing [41,42]. Results such as these highlight the need for
increased research in the area of sex differences in neurodevelopment; this is an understudied topic



Brain Sci. 2019, 9, 65 4 of 20

that requires substantially more attention given the documented differences in prevalence of anxiety
between males and females, with women and teenage girls having higher rates of anxiety than men
and teenage boys, respectively [43–46]. In addition to more detailed investigations of sex differences
in spine density and pruning in prefrontal-amygdala circuits across development (e.g., building on
work in adults [47]), future analyses exploring whether there are differential trajectories in distinct
populations of BLA neurons (e.g., “fear on” versus “fear off” neurons [48,49]) may provide additional
insight into how BLA plasticity impacts fear and extinction across development.

2.3. Implications for Fear Learning and Inhibition

In terms of fear regulation, dendritic spines in the PFC and the BLA show evidence of remodelling
following both fear conditioning and extinction in the adult brain [50,51]; however, the direction of
the effect (formation vs. elimination of spines) is dependent on the region. In the frontal association
cortex, fear conditioning induces spine elimination whereas extinction increases the rate of spine
formation [50]. In contrast, fear conditioning is associated with increased spine density in the BLA;
this effect is reversed if animals are given extinction training [51]. There may even be individual
differences in BLA spine elimination after extinction that reflect the degree of within-session extinction
by that animal, given reports that spine density in the BLA is positively correlated with fear expression
during extinction, with increased spine density predicting higher levels of fear [52]. Interestingly,
the correlation between fear expression and spine density in several brain regions appears to be
mediated by stress exposure. Within the amygdala, stress exposure seems to recapitulate the effects of
fear conditioning on dendritic spines, in that stressed animals (like fear-conditioned animals) show
increased spine density in the BLA [53]. Stress also appears to have a direct impact on the interaction
between fear expression and spine density in the mPFC. One study found that fear conditioning plus
extinction was associated with decreased spine density in the IL relative to home cage controls [54].
However, when the animals were exposed to acute stress prior to extinction, a protocol that impaired
both within-session extinction and extinction retrieval, fear expression during extinction retrieval
was negatively correlated with IL spine density [54]. This suggests that increased IL spine density
may be a mechanism of stress resilience. Notably, this correlation was not present in non-stressed
animals. Although the effects of fear learning and extinction in the PL have not to our knowledge
been explored, a similar interaction between dendritic spines and stress resilience is seen in this
region; following chronic social defeat, stress-susceptible animals exhibited decreased PL spine
density whereas stress-resilient animals showed no changes relative to non-stressed controls [55].
Taken together, it could be argued that spine hypertrophy in the BLA, and hypotrophy in the mPFC,
is associated with states of negative emotional valence (i.e., fear and/or stress). As spine density is
undergoing a period of growth and proliferation in the adolescent BLA and elimination in the PL (no
major changes are detected in the IL), it is possible that the adolescent brain is similar to the brains
of high-fear/stress-susceptible adults, rendering them more vulnerable to exaggerated spine loss in
the mPFC and excessive hypertrophy in the BLA following adverse experiences. This may bias this
age group towards a negatively-valenced state, making them more susceptible to pervasive, inflexible
fear memories and more resistant to fear extinction. A novel question for future research is whether
extinction in adolescent rats produces the same changes in spine density in the mPFC and BLA that are
induced by extinction in adults, and whether such structural changes can be induced in adolescents by
interventions that augment extinction retention. A summary of region-specific changes in dendritic
spines in response to the conditions described above is provided in Figure 1.
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extinction, stress, and adolescence.

3. Plasticity—Learning-Dependent Changes in Neural Activity and Excitatory Transmission

Whereas changes in dendritic spine density and turnover in specific regions of the maturing brain
can help to explain why adolescents may be biased towards negatively-valenced emotional learning,
examination of immediate early genes and physiological indications of synaptic plasticity/long-term
potentiation (LTP) in developing animals around the time of a learning event (e.g., fear extinction training)
can help to identify discrete impairments in different components of memory acquisition, retrieval,
and modification. Evidence that the adolescent brain shows altered synaptic plasticity after extinction
has been clearly demonstrated by studies examining learning-induced immediate early gene induction
and upregulation of protein markers implicated in neuroplasticity. Fear extinction in adults and
pre-adolescents causes upregulation of learning-dependent markers of activity and plasticity, for
example, c-Fos and phosphorylated mitogen-activated protein kinase (pMAPK) in the mPFC and
BLA, that is not seen in adolescent animals [10,12,13]. Such findings indicate that adolescents may be
less efficient at recruiting PFC-amygdala pathways during extinction, which may contribute to the
extinction retention deficits seen in this age group.

Experience-dependent plasticity in excitatory pyramidal neurons of the PFC and the BLA
is widely considered critical for effective storage and expression of fear- and extinction-related
memories [56,57] and appears to be dramatically disrupted in adolescence. In juvenile and adult
animals, fear conditioning induces an increase in spontaneous excitatory postsynaptic currents (sEPSC)
amplitude, EPSC amplitude, c-Fos expression, and AMPA/NMDA ratio in the PL, while extinction
training produces the same effects in the IL; none of these patterns is observed in adolescents [10].
EPSC amplitude also appeared to be non-specifically increased in adolescents compared to other
age groups in both regions of the mPFC, irrespective of learning condition (i.e., fear conditioning,
extinction, or control), creating a ceiling effect that may ostensibly interfere with circuit-specific
activation and LTP. Interestingly, this adolescent increase in basal synaptic transmission appears to
be specific to the PFC—the same increased activity is not observed in the BLA [58]. However, like
the adolescent PFC, the adolescent BLA also fails to show learning-dependent synaptic potentiation
following fear conditioning, an effect seen in the juvenile and adult BLA [58]. This suggests that
mechanisms other than a ceiling-effect interference with LTP are contributing to adolescent suppression
of learning-dependent plasticity.

We have found that, in addition to extended extinction training, treatment with the partial
NMDA-agonist D-Cycloserine (DCS) immediately following extinction training can enhance extinction
retention in adolescents [11,59]. DCS-mediated improvements in extinction retention were also
associated with increased pMAPK in the PFC after extinction training and testing. Further,
adolescents also show improved extinction retention and increased pMAPK expression in the
mPFC when they receive twice the amount of extinction training [12], suggesting that the lack of
prefrontal recruitment during extinction training associated with extinction retention deficits can be
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overcome. This demonstrates that if an excitatory transmission is pushed above a certain threshold,
normal learning-dependent plasticity can be restored in adolescence. It is possible that prefrontal
learning-dependent plasticity could be modulated by developing BLA inputs that emerge during
adolescence. Evidence for this idea comes from studies in adults demonstrating that direct stimulation
of the BLA (or exposure to early life stress) immediately prior to a test of extinction retrieval blocks LTP
in the mPFC and causes an increased return of fear [60]. The same study also reported that treatment
with the NMDA receptor antagonist MK-801 recapitulated the effects of BLA stimulation/stress
exposure on mPFC LTP, while DCS rescued stress-induced impairments in mPFC LTP. Together, these
results suggest a model wherein a developmentally-driven increase in BLA→mPFC transmission
during adolescence (discussed further in Section 5.1) may disrupt extinction-dependent LTP in the
mPFC by dampening NMDA receptor responsivity in the same manner of direct BLA stimulation or
previous stress exposure.

4. Development of Inhibitory Networks

Deficits in extinction retention typical of adolescents may also be influenced by shifting excitability
and inhibition in fear-modulatory networks over development. Although inhibitory neurons in the
BLA and mPFC are composed of several different subpopulations, we will focus primarily on a class
of fast-spiking interneurons expressing the calcium-binding protein parvalbumin (PV). Inhibitory PV
interneurons are critical for shaping network activity underlying cognition and memory [61]; these
GABAergic cells target both pyramidal neurons and other inhibitory interneurons, enabling both direct
inhibition as well as disinhibition of excitatory principal neurons [61]. PV interneurons also have a
prominent role in generating neuronal oscillations by synchronising the firing patterns of excitatory
neurons; in the PL, this process drives fear expression [62], and in the BLA, different PV-coordinated
oscillation frequencies drive fear expression vs. fear extinction by changing functional connectivity
between the BLA and mPFC [63]. In this section, we review developmental changes in PV interneurons
and consider how these changes may impact fear processing in adolescence.

4.1. Prefrontal Inhibition

Levels of PV significantly increase in the mPFC during adolescence [64,65], reflecting a heightened
capacity for local inhibition. As the numbers of PV neurons in the PL and IL are similar in juveniles,
adolescents, and adults [66,67], this change appears to be driven by increased growth and proliferation
of PV cell neurites, meaning that existing interneurons are dramatically arborising and increasing their
capacity to integrate signals and regulate activity in pyramidal neurons during adolescence. At the
same time, excitatory drive onto this inhibitory population (in the form of both synaptic contacts and
glutamatergic transmission) effectively doubles [64,68]. While excitation of inhibitory interneurons
in the rat mPFC increases throughout development, it was recently demonstrated that excitatory
synapses on inhibitory interneurons in the monkey dlPFC are actually pruned over adolescence [69],
just as they are on excitatory pyramidal neurons (as discussed in Section 2.1). Though this pattern
could be a primate specialisation, it is also possible that development of inhibitory networks may
follow different trajectories in later developing prefrontal areas, in which case, one might expect to
see pruning of excitatory input to inhibitory neurons in the primate and rodent OFC, though to our
knowledge this has not been explored.

The increase in inhibitory tone over the course of adolescence in the mPFC coincides with
enhanced GABAergic control of local field potentials. Evidence suggests that relative to adulthood and
late adolescence, early adolescence is associated with reduced GABAergic inhibition of glutamatergic
pyramidal neurons in the mPFC [70]. This is observed as a failure in the suppression of prefrontal local
field potentials in response to high-frequency ventral hippocampal stimulation (20 and 40 Hz) in early
adolescence. Ventral hippocampal-mediated long-term depression only emerges in late adolescence,
suggesting delayed maturation of GABAergic interneuron function. Other studies have identified signs
of increased prefrontal activity in infant and juvenile animals relative to adults (although adolescents
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were not included) [71], suggesting a linear increase in GABAergic control of prefrontal excitability that
stabilises in late adolescence. Importantly, disrupting NMDA receptor-mediated transmission during
adolescence (via systemic administration of the antagonist MK-801) from P35–49, but not adulthood,
rendered this early adolescent profile of PFC disinhibition long-lasting, such that it was observed well
into adulthood [70]. This enduring effect in adult rats after peri-adolescent NMDA receptor disruption
was reversed by increasing local GABAergic transmission in the PFC with a single local infusion of the
GABAA positive allosteric modulator Indiplon. Evidence suggests that earlier disruption of NMDA
signalling (via ketamine or MK-801 during the second-third postnatal week) has similar long-term
effects in adulthood, reducing expression of PV, disrupting synaptic properties in interneurons, and
causing disinhibition of pyramidal cells [72,73]. Taken together, these findings demonstrate (1) that
GABAergic control of prefrontal excitability increases across development before reaching mature
functional capacity in late adolescence, and (2) that sustained NMDA receptor transmission is critical
for moderating the normal functional development of GABAergic inhibitory networks in the mPFC.

Behaviourally, this developmental trajectory of prefrontal inhibitory networks could significantly
affect how memories are acquired, stored, and retrieved at different ages. For instance, transgenic mice
bred with a mutation that causes loss of PV neurons in the PFC (but not amygdala or hippocampus)
show specific deficits in the extinction of cued fear, but not in its acquisition or expression [74].
Given that extinction retention is intact prior to adolescence when PV neurons are still highly immature,
it appears that the mechanisms underlying fear extinction may transition from a PV-independent
form in juveniles to a PV-dependent form in adolescence and adulthood, leaving adolescents in a
compromised transitional period characterised by impaired extinction processing.

4.2. BLA Inhibition

Although the developmental trajectory of interneuron function in the amygdala has been
studied less extensively than in the PFC, the available evidence suggests that PV expression in the
rodent basolateral amygdala complex undergoes dynamic changes in periadolescence, and that these
changes could have dramatic effects on fear regulation. Berdel and Moryś [75] found that within
the magnocellular part of the basal nucleus of the amygdala, the number of PV neurons rapidly
increased after P17 and peaked at P21. Density decreased between P21 and P30, and then remained
stable through adulthood (P90). In contrast, PV staining in the lateral nucleus of the amygdala was
not detected at all at P17 or P21 in this study; it became apparent only at P30 and remained at the
same level until P90. Within the basal nucleus, the distribution of PV neurons was largely restricted
to the magnocellular region at P17 and P21 and only spread to the parvicellular component at P30
(information about the number of PV neurons in the parvicellular component across development was
not provided). It should be noted that using a different antibody than Berdel and Moryś [75], our group
detected PV-immunoreactive neurons in the lateral nucleus of juveniles (P24), adolescents (P35–36),
and adults (P70), and did not observe changes in the number of labelled cells across development in
this region [66]. Within the entirety of the BLA complex (lateral+basal nuclei), we did observe a trend
(p = 0.052) towards a loss of PV neurons between juveniles and adolescents that appeared to be driven
largely by changes in the basal nucleus. Although we did not distinguish between the magnocellular
and parvicellular components of the basal nucleus in our study, our results may partially replicate the
reduction in PV staining from juvenility to adolescence in the magnocellular basal nucleus found by
Berdel and Moryś. It is important to note that the loss of PV staining could reflect a loss of neurons
and/or a reduction in PV protein expression. In terms of implications for fear regulation, the anterior
magnocellular part of the basal nucleus is connected more prominently to the PL, whereas the IL
interacts more with the posterior parvicellular component [49]; differential development of inhibitory
networks in these separate regions could therefore create a temporary imbalance between the strength
of fear and extinction pathways across development, as the PL-amygdala fear pathway may mature
earlier than the IL-amygdala extinction pathway.
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Functionally, recent evidence demonstrates that PV interneurons in the BLA have a critical role in
modulating relapse of extinguished fear. PV neurons in the BLA are strategically located to modulate
PFC activity via BLA to PFC projections. Davis et al. [63] silenced PV interneurons in the BLA using
a selective chemogenetic approach coupled with activity-based neuronal-ensemble labelling and
electrophysiology. This approach allowed the authors to tag neurons that were active during fear
conditioning and examine the effect of PV-silencing specifically on the activity of these identified
“fear” neurons. When PV neurons were silenced, BLA fear neurons were disinhibited; as a result,
there was also increased activation of neurons in the PL. This BLA-PL fear circuit appears to be
important for regulating freezing after extinction, as PL activity associated with BLA dis-inhibition
correlated with freezing after extinction (i.e., at an extinction retention test for contextual fear learning).
An opposite effect was found in IL, where activity was inhibited following silencing of BLA PV neurons.
These findings suggest that impairments in extinction retention could be driven by poor (or immature)
functioning of BLA PV neurons, which, in turn, results in disinhibited activation of BLA fear neurons,
robust activation of the BLA-PL “fear network”, and suppression of the BLA-IL “extinction network”.
Although this hypothesis (i.e., hypofunctioning of BLA PV neurons during development) has not
explicitly been tested, there are indications that inhibitory transmission in the BLA undergoes dramatic
changes in adolescence. The mechanisms underlying GABAergic transmission onto BLA pyramidal
neurons (i.e., GABA receptor subunit expression, rise/decay time of GABA currents, etc.) are mature in
the rat by P28 [76], just at the transition between the juvenile period and adolescence. However, changes
in spontaneous inhibitory transmission continue throughout adolescence, suggesting a protracted
developmental trajectory for amygdala interneurons. Within the basal nucleus, both spontaneous
inhibitory postsynaptic current (sIPSC) frequency and the sIPSC:sEPSC frequency ratio increase from
P10 to P30, and then gradually decline into adulthood [77]. In contrast, sEPSC frequency increases
sharply between P10 and P15, then remains relatively stable into adulthood. A different pattern is
observed in the lateral amygdala; in this nucleus, both sIPSC frequency and the sIPSC:sEPSC frequency
ratio increase linearly from infancy through adulthood [78]. As the basal nucleus is the target of
prefrontal innervation, it seems likely that some of this periadolescent fine-tuning may be influenced
by changing connectivity across development. To explore this possibility further and examine its
functional implications, we must consider the postnatal maturation of the robust reciprocal projections
between the prefrontal cortex and amygdala.

5. Connectivity

The PFC and the amygdala are strongly connected via robust reciprocal projections. These projections
undergo substantial anatomical and functional changes over development that have the potential
to dramatically impact the storage and retrieval of fear-related memories. Pyramidal BLA-mPFC
projection neurons target both excitatory principal neurons and inhibitory interneurons in the
opposite structure, creating complex postsynaptic events that change over the course of development.
A summary of pathways established in adult rodents is shown in Figure 2. In this section, we review
the anatomical and functional maturation of projections between the mPFC and the BLA, and discuss
regulation of this pathway by the ventral hippocampus.
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Figure 2. Pathways for Fear and Extinction. Projection neurons in the basolateral amygdala (BLA)
and ventral hippocampal (vHPC) target both excitatory neurons and inhibitory interneurons in the
medial prefrontal cortex (mPFC). The mPFC targets excitatory and inhibitory cells in the BLA, although
innervation of BLA parvalbumin (PV) interneurons comes more strongly from the infralimbic (IL) than
the prelimbic (PL). Red pathways represent proposed mechanisms for fear expression, whereas green
pathways would promote extinction.

5.1. BLA→mPFC

5.1.1. Anatomical

Infusions of retrograde tracers into the mPFC in developing mice reveal an increase in the density
of neurons projecting from the BLA to the PL from juvenility through early adolescence (i.e., from
P23 to P30) and a subsequent decrease (at P45) in late adolescence [36]. In the same study, no changes
in connectivity were identified between the BLA and IL (p = 0.056), albeit this study had a smaller
sample size, suggesting further investigation with larger sample sizes (i.e., >4 per group) might reveal
developmental changes in BLA to IL projections. Complementary experiments using anterograde
tracers in the BLA show that fibres from the amygdala develop a progressively clear bilaminar pattern
with age; fibre density increases in layers II and V of the IL and PL from birth through late adolescence,
levelling off in adulthood [79]. This suggests that even as the number of BLA neurons projecting to
the mPFC is pruned, the remaining connections continue to mature and strengthen. Cunningham et
al. [79] also demonstrated that the percentage of contacts between BLA fibres and the spines, dendrites,
and axons of PFC neurons increased linearly with age, while the percentage of fibres making no
contacts showed an equal and opposite decrease, providing further evidence that maturing BLA→PFC
projections increase in functional capacity with age. It is interesting to consider that while Cunningham
et al. [79] reported a linear increase in BLA→mPFC axospinous synapses (excitatory contacts between
BLA axon terminals and PFC dendritic spines) over development, synapses, and spines in the PFC
overall undergo massive pruning in adolescence, as discussed in Section 2.1. This may suggest that
synaptic pruning occurs only in select pathways, presenting opportunities for newly forming patterns
of innervation to emerge. As excitatory afferents from distal forebrain sites like the amygdala and
hippocampus are slow to arrive in the PFC, one might predict that much of the excitatory innervation of
the PFC prior to adolescence is derived from thalamocortical and local corticocortical connectivity, and
that these may be the synaptic connections that are more vulnerable to pruning during adolescence.

5.1.2. Functional

Activation of BLA→prefrontal projections induces long-term potentiation (LTP) in the mPFC.
This effect is functional by P30 but still maturing, evidenced by larger increases in mPFC local field
potentials following BLA stimulation in adults compared to adolescents [80]. This effect was not
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dependent on GABA, indicating that BLA facilitation of prefrontal LTP is driven by innervation
of pyramidal neurons in the mPFC and does not require recruitment of interneurons. It should
be noted that these findings do not imply that BLA innervation of prefrontal GABAergic neurons
is not biologically or behaviourally relevant; it is entirely possible that discrete activation of BLA
subpopulations during complex learning events could selectively stimulate prefrontal GABAergic
transmission. For instance, unlike BLA-evoked prefrontal LTP, ventral hippocampal (vHPC)
stimulation induces long-term depression (LTD) in the mPFC; this effect emerges later in development
(after P55), and is dependent on GABAergic transmission [80]. If inputs from the vHPC and the
BLA send axon collaterals to the same PV interneuron, stimulation of that interneuron could drive
feedback inhibition onto both inputs, ultimately synchronising the firing pattern of PFC-projecting
BLA and vHPFC neurons. Indeed, it has been shown that 1) hippocampal and amygdala afferents
converge on neurons in the IL and ventral PL, 2) excitatory responses of these neurons are significantly
amplified by simultaneous vHPC+BLA stimulation, and 3) staggered stimulation of BLA and vHPC
(separated by 20–40 ms) has an inhibitory effect on the postsynaptic neuron [81]. This suggests that
synchronisation of BLA and vHPC firing in the mPFC by PV-mediated feedback inhibition could
significantly drive activity and plasticity necessary for the complex integration of cues and context.
The fact that desynchronised activity can have inhibitory effects on postsynaptic neurons may also
explain the lack of learning-dependent plasticity observed in adolescents (see Section 3). As the PFC is
receiving growing input from different brain regions while PV interneurons are still underdeveloped,
disorganised excitatory input (while increasing basal synaptic transmission) could actually decrease
the probability of action potentials in PFC neurons and blunt learning-dependent changes.

5.2. mPFC→BLA

5.2.1. Anatomical

Neurons in the mPFC that project to the BLA are predominately located in the same layers that
receive innervation from the amygdala; BLA-projecting neurons are present in superficial layers II/III
and deep layer V across the mPFC [63,82–86]. These neurons receive excitatory inputs from the ventral
hippocampus and are subject to inhibitory regulation through local PV interneurons [87]. The number
of neurons projecting from the PL and IL appears to be relatively balanced in adults, as infusions
of the retrograde tracer CTB in the BLA typically labels similar numbers of neurons in the PL and
IL [63]. However, these subregions differ in terms of the types of cells in the BLA that they contact.
While projections from the PL and the IL both preferentially innervate the basal nucleus of the BLA,
the IL sends stronger inputs to the parvicellular aspects, while the PL more selectively innervates the
magnocellular population [49]. In addition, the IL sends more projections to PV BLA interneurons than
the PL [63]; given that PV interneurons in the parvicellular division are late to develop (see Section 4.2),
this suggests that IL-domination of PV inhibition in the amygdala may not be functionally mature
until relatively late in adolescence, and that earlier in development, the balance of control may be
tipped more towards the PL.

Unlike bottom-up BLA→mPFC connectivity, top-down projections from the mPFC to the BLA
undergo pruning of both fibres and the total number of projection neurons from adolescence through
adulthood. Retrograde tracing showed that the number of IL neurons that project to the BLA decreases
linearly from juvenility (P25) through adulthood while PL→BLA neurons show a delayed pruning
pattern, remaining stable from P25 to late adolescence (P45) before sharply decreasing in number
to reach adult levels at P90 [88]. The same study also used anterograde tracing to further examine
pathway development, and found that fibres in the BLA originating from the mPFC (PL+IL) maintain a
similar density from P25–P45 and are then pruned from late adolescence through adulthood. Another
study that examined a broader window of development (six time points from P10–P80) revealed
massive mPFC→BLA fibre proliferation between P10 and P30, and confirmed a modest decrease later
in adolescence between P45 and adulthood [77]. These results suggest an overall increase in mPFC
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innervation of the BLA with age, with a discrete period of pruning and reorganisation occurring in
late adolescence.

5.2.2. Functional

Stimulation of mPFC afferents in the amygdala coupled with single cell recordings of principal
neurons of the BLA (specifically, the basal nucleus) reveal a strengthening of glutamatergic
mPFC-amygdala synapses in early development that plateaus by P30 and remains stable through
adulthood [77]. However, the same study found that disynaptic inhibitory transmission (i.e., mPFC
pyramidal neuron → BLA interneuron → BLA pyramidal neuron) massively increased in amplitude
between P21 and P30, and subsided again at P45 and P60. This led to a temporary surge in the
IPSC:EPSC amplitude ratio in early adolescence that was more than double the values observed in
adulthood, indicating that the mPFC has the capacity to drive substantial GABAergic transmission
in the amygdala for a transient period at the onset of adolescence. While the mechanisms for this
robust inhibitory potential are as yet unclear, it is possible that the peak in mPFC innervation of the
BLA at P30 reflects increased prefrontal targeting of amygdala inhibitory interneurons, and that these
synapses are preferentially eliminated between adolescence and adulthood; this could account for the
observed reduction in fibre density during this period. Importantly, the findings of Arruda-Carvalho
et al. [77] using in vitro stimulation stand in stark contrast to the effects observed using an in vivo
stimulation approach. Selleck et al. [89] analysed local field potentials and single-unit recordings in
the BLA following electrical stimulation of the mPFC in anaesthetised rats [89]; the findings of this
study suggest that prefrontal modulation of amygdala activity is significantly blunted in adolescents
compared to adults, contrary to the increased inhibitory control reported by Arruda-Carvalho et
al. [77]. In this approach, mPFC stimulation at 10–20 Hz induced local field potential facilitation in
the basal nucleus of the BLA of adults, but was ineffective in adolescents (P39). Further analyses
showed that in both adolescents and adults, the majority of BLA neurons (~65%) showed an inhibitory
response to mPFC stimulation; however, BLA inhibition evoked by stimulation of both the PL and the
IL was weaker in adolescents than adults. This pattern of increasing prefrontal inhibitory control of
the amygdala from adolescence to adulthood has also been demonstrated in humans [90], and nicely
fits the model of compromised emotional regulation in adolescents. Unfortunately, as younger age
groups were not included in the in vivo analyses, it is unclear whether the observed impairment in
prefrontal regulation of amygdala activity is specific to adolescence or simply a reflection of immature
connectivity that would also be observed in juveniles.

Aside from different methodological approaches, what might explain the contradictory findings
of Selleck et al. [89] and Arruda-Carvalho et al. [77] concerning mPFC-evoked inhibitory drive in the
adolescent BLA? For one, stimulation of the entire mPFC (Selleck et al.) could have more complex
downstream effects than discretely driving mPFC terminals within the BLA (Arruda-Carvalho et al.).
The former approach would stimulate excitatory and inhibitory cell bodies, dendrites, and afferents
within the mPFC and would drive mPFC-BLA network activity in both direct and indirect (i.e.,
mediated by thalamic or hippocampal relay) pathways. This in vivo approach has obvious advantages
in that it reveals how the mPFC coordinates amygdala activity in an intact, biologically-relevant system
with information being integrated from multiple networks. However, by excluding all additional
activity and honing in on a precise synaptic event, the in vitro approach may reveal more about the
precise anatomical and functional development of mPFC-BLA pathways. In any case, when taken
together, the results of these two studies show that the mPFC does not effectively inhibit amygdala
activity in adolescents under normal conditions, but indicate that it nonetheless has the capacity to
induce massive inhibition at this developmental stage; this suggests that mPFC→BLA inhibitory
transmission is experiencing interference upstream of the BLA during adolescence. Disruption of
mPFC-BLA functional connectivity is likely a major contributor to adolescent impairments in extinction
retention and future work aimed at facilitating connectivity between these structures may lead to
innovative treatment approaches for adolescent-onset anxiety.
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5.3. Ventral Hippocampus→mPFC

The BLA-mPFC network obviously does not exist in isolation; as referenced in previous sections,
the ventral hippocampus (vHPC) is a critical third node in this fear-regulatory forebrain network. Like
the mPFC and the BLA, the vHPC undergoes substantial changes in connectivity across development
that critically impact fear- and extinction-related processes.

As previously discussed (Sections 4.1 and 5.1.2), vHPC and BLA inputs into the PFC functionally
mature over different developmental time windows (P30 for the BLA and ~P55 for the vHPC) and
recruit distinct forms of plasticity in the PFC (LTP for the BLA vs. LTD for the vHPC). The vHPC is a
powerful regulator of BLA-mPFC functional connectivity; in adults, stimulation of vHPC inputs with
high frequency exerts inhibitory control over BLA drive to the mPFC [91]. Given the late emergence
of vHPC-mPFC functional connectivity, this suggests that in early adolescence, the BLA projections
to the mPFC are not yet dampened by vHPC regulation; this may contribute to the mPFC being
over-responsive to BLA inputs at this age.

In the adult mouse, the vHPC innervates pyramidal neurons situated in both superficial layers
II/III and deeper layer V of the IL, but only layer V of the PL [92]. As previously discussed, BLA and
vHPC inputs predominantly converge in the IL and the ventral aspects PL. Projections between the
vHPC and the PL surge between P23 and P30, peaking in early adolescence before pruning in late
adolescence and adulthood [36]. This means that maturation of vHPC→mPFC anatomical connectivity
precedes the development of functional connectivity in the form of vHPC-evoked prefrontal LTD
and inhibitory control of BLA→mPFC inputs. Like the BLA, the vHPC targets both pyramidal
neurons and PV interneurons in the mPFC [87] (see Figure 2). It could be speculated that these
early-emerging projections from the vHPC primarily target pyramidal neurons in the PFC, with
innervation of interneurons developing later. A simpler (not mutually exclusive) explanation is that
prefrontal PV interneurons receive vHPC input in early adolescence but are not yet mature enough
to mediate inhibitory transmission at levels sufficient to induce effective vHPC-evoked LTD and
synaptic dampening.

vHPC-mediated control of the IL appears to be composed of two functionally disparate pathways:
a pro-extinction Brain-Derived Neurotrophic Factor (BDNF)-dependent excitatory pathway and a
pro-fear inhibitory pathway. In general, the inhibitory pathway appears to be the default; driving
activity in vHPC→IL projections induces PV-mediated feedforward inhibition onto IL pyramidal
neurons, and both broad activation of the vHPC and selective activation of vHPC→IL projections
results in increased recovery of fear [87]. In contrast, extinction training induces BDNF production in
the vHPC, which has been shown to increase the firing rates of IL (but not PL) neurons and facilitate
acquisition and retention of extinction [93,94]. Notably, Rosas-Vidal et al. [93] found that while most of
the neurons recorded in the PL showed no change in response to vHPC BDNF, approximately 30%
were inhibited (compared to the excitatory effect on IL neurons). However, recordings appear to have
been taken from both deep and superficial layers of the PL, with a slight bias towards superficial
layers II/III; if recordings were restricted to layer V (which receives the majority of vHPC inputs), it is
possible that a more consistent inhibitory response would have been observed in the PL. Inactivating
the vHPC prior to extinction has also been shown to impair extinction acquisition and retention [95].
This suggests that while inhibition may be the dominant force mediating vHPC-IL interactions,
during extinction learning hippocampal BDNF selectively facilitates activity in an excitatory vHPC-IL
pathway that is necessary for fear suppression. vHPC-mediated control of the PL is also prominently
regulated by BDNF. Inhibiting BDNF activity in the vHPC during adolescence both impairs extinction
learning and causes diminished vHPC innervation of the PL (but not the IL) in adulthood [96]. Taken
together, these findings demonstrate that the vHPC can differentially modulate activity in the mPFC
to either promote fear expression or facilitate extinction. Delayed functional development of the
pro-extinction BDNF-dependent pathways relative to the vHPC→IL pro-fear inhibitory pathway may
be a contributing factor driving increased fear relapse in adolescence, but this remains a question for
future research.
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6. Disruption by Chronic Stress

Considering the massive changes in brain structure and function discussed above, it is no great
surprise that adolescence represents a significant window of vulnerability that renders the developing
animal particularly sensitive to environmental insults. These potential insults are wide-ranging and
include poor diet, drugs of abuse, and many other damaging influences, but for the purposes of this
discussion we will focus on the effects of chronic stress. Here we focus on how exposure to external
stressors during adolescence disrupts the normative developmental trajectory and results in persistent
changes to behaviour such as fear regulation. However, neurodevelopment and emotional behaviour
are affected by adverse experiences throughout the lifespan, including prior to conception [97],
prenatal [98] and early postnatal periods [99], and so we direct the reader to excellent reviews on
those topics.

In terms of effects on fear extinction in adolescence, chronic stressor exposure by restraint or social
instability in adolescence impairs the acquisition or retention of extinction memories when tested
in adolescence relative to non-stressed controls [100–102]. Adolescence appears to be a particularly
stress-sensitive developmental period in terms of fear regulation because animals are more susceptible
to extinction deficits when stress occurs during adolescence compared to when it occurs in the juvenile
period [103] or adulthood [102,104]. Further, such deficits induced by adolescent stress are long-lasting,
persisting into adulthood [104]. The consequences of adolescent stress on fear extinction are important
clinically when considering strategies for chronically stressed youth presenting for treatment of anxiety
disorders. This is because chronic exposure to the stress hormone corticosterone in adolescence reduces
the benefit of two approaches that augment extinction retention in adolescent rats, namely extra
extinction training [103,104] and pharmacological augmentation by DCS [103]. Such results suggest
that a history of chronic stress could further reduce the efficacy of anxiety treatments in adolescents.

The enduring effects of adolescent stress may be caused by maladaptive developmental trajectories
of subcortical and cortical emotion regulation systems. In support of this claim, there is evidence that
human adolescents with traumatic stress exposure (in late childhood or adolescence) have weaker
PFC-amygdala connectivity (reviewed by [2]). Further, in rodents, chronic exogenous corticosterone
exposure in adolescence diminishes neuronal activity in the mPFC via a down-regulation of
glutamatergic receptors (e.g., NMDA receptors [105]), which are essential for extinction consolidation,
and induces structural changes by simplifying hippocampal dendritic structure and altering neuronal
spine density in the IL, OFC, hippocampus, and amygdala [106]. Specifically, adolescent corticosterone
exposure (for 20 days in mice aged between 5 and 7 weeks old) reduces spine density on pyramidal
neurons in the IL (in deep layers), OFC, and hippocampus but has the opposite effect in the
amygdala [106]. Although some of these changes were transient and recovered once stressor exposure
ended, others such as spine reductions in the OFC and dendritic arborisation in the CA1 were long-term
effects that persisted after the stressor had ended.

Earlier onset of chronic stress may induce more persistent, and opposite, effects on BLA spine
density. For example, one study reported both immediate and long-term reductions in spine density of
BLA pyramidal neurons following restraint stress during juvenility and early adolescence (i.e., 2 h daily
restraint from P21 to P35; [107]). The reduction in spinogenesis in the BLA from chronic stress in the
juvenile-adolescent period contrasts with reports of increased spinogenesis and dendritic hypertrophy
resulting from stress later in adolescent development (described above [106]) or adulthood [108].
Further, chronic restraint stressor exposure in adolescence can induce changes in dendritic morphology
in the dorsal mPFC that are layer specific [107], suggesting that synaptic communication of specific
afferents (e.g., from the BLA) could be impaired.

The transition from juvenility to adolescence is also a time of maturation of prefrontal and
amygdala perineuronal net (PNN) maturation around PV inhibitory interneurons [66] and so it is
not surprising that chronic stress occurring during this time reduces inhibitory neuron expression in
the PL [109] and alters PNN expression in the PFC (in the OFC) [110]. The stress-induced loss of PV
interneurons may reduce local inhibition of pyramidal neurons in the PL and shift this region towards
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a more “pro-fear” state. Other work links adolescent stress-induced deficits to impaired function of the
IL. For instance, chronic unpredictable and chronic restraint stress in adolescence impair fear extinction
in adulthood through reductions in basal levels of BDNF and activation of its principal receptor (i.e.,
pTrkB) and downstream pMAPK signalling in the IL [111]. These cellular mechanisms in the PL and
IL may therefore lead to increased fear despite extended extinction training in stress-exposed male
adolescent animals [104]. Taken together, the findings discussed in this section illustrate that chronic
stress in adolescence alters pyramidal cell and interneuron structure and function, developmental
trajectories of PNN maturation, and suggest potential mechanisms by which adolescent stress might
impair extinction. Future studies could further investigate the functional consequences of stress in
adolescence, such as whether there is reduced synaptic plasticity in reciprocal connections between the
BLA and PFC during extinction, and whether the neural and behavioural effects of adolescent stress
can be prevented or rescued.

7. Conclusions

In this review, we summarise developmental changes in neuroplasticity, inhibition, and
connectivity that occur within and between the mPFC and amygdala in adolescent animals, see
Figure 3. We suggest ways in which these changes may influence the characteristic deficits in extinction
retention displayed by adolescents, and consider how these delicately-modulated neural processes may
be influenced by exposure to stress. It should be noted that the developmental differences discussed
here are by no means comprehensive; many other variables, including (but not limited to) dopaminergic
infiltration of the PFC, exposure to sex hormones, and changing levels of neurotrophins/neurotrophin
receptors likely have dramatic impacts on fear learning and memory in adolescence. Creating a
comprehensive roadmap of the complex and dynamic mechanisms underlying emotional processing
in the adolescent brain continues to be a massive undertaking; however, increasing interest in the field
means that the body of knowledge in this area is swiftly proliferating. Thanks to valuable research
contributions like those described above, we are steadily advancing towards the development of
targeted treatment approaches designed to meet the storm and stress of adolescence head-on.
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potentials; I/EPSC, inhibitory/excitatory postsynaptic current.
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Abbreviations

BDNF Brain-Derived Neurotrophic Factor
CS Conditioned stimulus
(m)PFC (medial) Prefrontal Cortex
IL Infralimbic
PL Prelimbic
OFC Orbitofrontal Cortex
dlPFC Dorsolateral Prefrontal Cortex
BLA Basolateral Nucleus of the Amygdala
vHPC Ventral Hippocampus
PV Parvalbumin
LTP Long-Term Potentiation
LTD Long-Term Depression
(s)EPSC (spontaneous) Excitatory Postsynaptic Current
(s)IPSC (spontaneous) Inhibitory Postsynaptic Current
AMPA Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid
NMDA N-Methyl-D-aspartatic acid
DCS D-Cycloserine
GABA Gamma-Aminobutyric Acid
P Postnatal Day
PNN Perineuronal Nets
UCS Unconditioned stimulus

Appendix A Guide to Rodent Development in (Approximate) Postnatal Days

<7—Perinatal
P7–21—Infancy
P22–P27—Juvenility
P28–P35—Early Adolescence
P36–P41—Mid-Adolescence
P42–P55—Late Adolescence
>P60—Adulthood
*See [30,112]. Values are based on rat development, but a similar trajectory is observed in mice.
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