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Abstract: The ability to coordinate one’s behavior with the others’ behavior is essential to achieve
a joint action in daily life. In this paper, the brain activity during synchronized tapping task was
measured using functional near infrared spectroscopy (fNIRS) to investigate the relationship between
time coordination and brain function. Furthermore, using brain functional network analysis based
on graph theory, we examined important brain regions and network structures that serve as the hub
when performing the synchronized tapping task. Using the data clustering method, two types of
brain function networks were extracted and associated with time coordination, suggesting that they
were involved in expectation and imitation behaviors.

Keywords: functional near infrared spectroscopy; synchronized tapping task; graph theories; mirror
neuron; temporal expectation

1. Introduction

Joint action are social interactions in which more than two people coordinate their behavior
to change the environment. In daily life, the ability to coordinate one’s behavior with the others’
behavior is essential to achieve a joint action, which is one of the most important components of
social interaction [1–3]. Neural mechanisms for temporal coordination with external stimuli have
been studied using finger-tapping tasks [4]. It reveals that we tend to respond predictively, and not
imitatively, to stimuli whose intervals are short and periodic.

It has also been reported that temporal synchronization with periodic stimuli is associated
with brain activation in the primary sensorimotor area, ipsilateral cerebellum, premotor cortex,
supplementary motor area, and superior temporal gyrus [5,6]. Many studies have focused on the brain
activity in responding to periodic or random stimuli; however, the external stimuli in the case of a joint
action in daily life is neither periodic nor completely random [7,8]. The joint action can be achieved by
temporal coordination between interacting partners, and also by predicting or imitating each other’s
behavior. The rhythm of the partner’s behavior can be predicted on the basis of the partner’s intention,
strategy, character, and so on. The predictive behavior forms a key component of social interaction.

As one of the simulation models considered herein, for the analysis of the joint action, we focused
on the neural basis of temporal coordination with the external stimulus whose interval was
non-periodic but predictive. According to our hypothesis, there are two strategies for this coordination:
(1) an active strategy by responding prior to the stimulus occurrence; and (2) a passive strategy
by following up the stimulus occurrence. Therefore, we aimed to detect the brain activity patterns
associated with these two strategies.
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The brain activity during a response to the auditory cues was measured using functional near
infrared spectroscopy (fNIRS), which quantifies the changes in hemoglobin (Hb) concentration [9].
Although functional magnetic resonance imaging (fMRI), which works on the principle of magnetism,
is traditionally used for measuring brain activity, the method has several disadvantages, such as the
equipment is noisy and it adds many constraints to the experimental environment. On the other hand,
fNIRS can measure brain activity in a condition closer to real life, and it is suitable for experiments
involving the use of sound as the equipment noise is less intense than that of fMRI. Moreover, fNIRS is
superior in temporal resolution, and we think that it is more suitable for measuring the brain activity
for dynamically changing behavior. Furthermore, clinical studies and research on infants employ
fNIRS because it is less restrictive for subjects and is highly safe, and, thus, fNIRS has also attracted
the attention of the social brain researchers [10].

Furthermore, functional connectivity, which is defined as a statistical dependence between distant
neurophysiological activities, has been studied recently. In particular, connectomics, in which statistical
correlations between brain regions are analyzed as a brain network, has become an active field of
research [11–13]. Rubinov et al. [14] proposed a method to analyze the features of a functional-network
structure based on the graph theory, and revealed the network structures unique to specific diseases
by analyzing specific cognitive states using the metrics of graph theory.

In this study, the brain activity patterns were investigated in terms of the brain functional-network
structure using graph theoretical analysis.

2. Materials and Methods

2.1. Participants

Twenty healthy subjects (aged 22 ± 0.6 years, 10 females, all right handed) participated in this
experiment after giving written informed consent. This study was carried out in accordance with the
research ethics committee of Doshisha University, Kyoto, Japan (approval code: 15098). The room
temperature and humidity were controlled during the experiment (21.8 ± 1.0 ◦C, and 78.8 ± 3.6%).
Participants performed a synchronized tapping task, and we measured their brain activities during
the task using fNIRS.

2.2. Behavioral Data Acquisition

The Synchronized Tapping Task

The synchronized tapping task involved synchronization of tapping with a sound stimulus.
Figure 1 shows the experimental design. The experiment consisted of pre-control, task, and post-control
phases. The pre-scan time of the fNIRS measurement for the baseline correction was set to 20 s before
pre-control. During the control block, the sound was presented at 0.5 s intervals for 30 s. For the task
block, sound was presented for 21 s with increasing time intervals of 0.6 ± 0.03 s. Sound stimulus was
presented seven times. The subjects were instructed to watch the fixation point on the screen and to
press the button in synchrony with the sound presented during both the control and the task block.
Sound was presented through an earphone (ATH–ANC 23 Audio Technica Corporation, Tokyo, Japan)
and a sine wave of 500 Hz lasting 0.1 s was used. The experiment was implemented with Presentation
software (Neurobehavioral system Inc., Albany, NS, Canada). We recorded the subject’s response
using a keyboard, and the difference between their response time and stimulus presentation time was
used as an indicator of their performances.
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Figure 1. A block design consisting of two controls and one task block. A synchronous tapping task
was used, and the subjects were required to respond to the sound stimulus presented at regular time
intervals. In the control phase, the sound interval was 0.5 s (S(n + 1) − S(n)= 0.5 s), while, in the task
phase, the sound intervals were regularly increased ( S(n + 2) = S(n + 1) − S(n) + 0.6 ± 0.03 s).

2.3. fNIRS Data Acquisition

The subjects sat in front of a personal computer and performed the synchronized tapping task.
The oxy- and the deoxy-Hb concentrations were measured using ETG-7100 fNIRS system (Hitachi,
Ltd., Tokyo, Japan), with a sampling frequency of 10 Hz. An fNIRS system consists of irradiation
probes and detection probes that are placed on the human head. Near-infrared signals are injected
from the irradiation probes into the brain surface, where they diffuse into the cerebral tissue up to a
depth of 20–30 mm. Two wavelengths of near-infrared light (695 and 830 nm) were used, and the light
reflected by the oxy- or the deoxy-Hb could be distinguished by detection probes. The relative changes
in the oxy- and deoxy-Hb concentrations were calculated on the basis of the modified Beer–Lambert
law [15]. Figure 2 shows the locations of the fNIRS measurement probes. Two sets of 3 × 10 probes
(15 emitters and 15 detecters, forming 47 measurement channels) were attached to the forehead and
occipital regions, respectively, according to the reference point of the International 10–20 system.
Besides, a 3 × 5 probe set (8 emitters and 7 detecters, forming 22 channels) was attached to the top
head region. In total, 116 channels covering the whole brain were set. Each inter-probe distance
was fixed at 30 mm. We used a 3D magnetic digitizer stylus (PATRIOT, Polhemus, Colchester, VT,
USA) to obtain the relative locations of 10–20 standard positions and fNIRS probes in a real-world
coordinate system.
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Figure 2. Probe set configuration. Red circles indicate emitters and blue circles indicate detectors. A 3
× 10 probe set (47 channels) was attached to each of the forehead and occipital regions, and a 3 × 5
probe set (22 channels) was attached to the top head region. In total, 116 channels were measured for
the whole brain.

2.4. fNIRS Data Processing

2.4.1. Preprocessing

The obtained fNIRS data were band-pass filtered (pass-band: 0.010 Hz to 0.33 Hz) [16,17]. Oxy-Hb
data changed per unit time. A step where the change exceeded 0.1 mM·mm was regarded as a
motion artifact [18], and the channel data that included such values were excluded from the analysis.
Moreover, spatial registration of fNIRS channel location to Montreal Neurological Institute (MNI)
space was performed using probabilistic registration and virtual registration toolboxes (available at
http://www.jichi.ac.jp/brainlab/tools.html) on the platform for optical topography analysis tools
(POTATo) developed by Hitachi, Ltd.

2.4.2. Functional Connectivity Analysis

Figure 3 shows the procedure for fNIRS data processing. To investigate the functional connectivity
of the network during the synchronized tapping task, Pearson correlation coefficients for the
116 channels of Oxy-Hb time course during the task block were calculated; we performed
Fisher’s z-transformation to approximately normalize the distribution of the correlation coefficients.
The Fisher-transformed correlation matrix was binarized to preserve edge density of 15%. It has
been said that a network structure with an edge density of 5% to 50% keeps the small world
topology [19,20]. In addition, Bernhardt et al. [21] analyzed a network with 15% edge density as
a representative for the functional network structure. The binarized matrix is regarded as the adjacency
matrix of the undirected graph, with fNIRS measurement channel as the node and the functional
connectivity as the binary edge. Moreover, graph theory analysis was used in this study; the degree,
which is one of the well-known network metrics, was calculated using Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/). The degree ki of a certain node i (corresponding to the ith
measurement channel of fNIRS system in this study) is expressed by Equation (1), where N is the total
number of the nodes in the network and a is the element of the adjacency matrix.

ki = ∑
j∈N

aij (1)

http://www.jichi.ac.jp/brainlab/tools.html
https://sites.google.com/site/bctnet/
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ki indicates the number of nodes that are functionally connected with other nodes in the network
and reflects the importance of the nodes in the network [14].
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Figure 3. Procedure for the brain function network analysis. (1) The noise associated with Oxy-Hb
changes (116 channels) was removed by pre-processing. (2) Pearson correlation matrix of Oxy-Hb
concentration changes was calculated. (3) The correlation matrix was binarized by threshold (edge
density of 15%). (4) Network feature amount (degree) was calculated based on graph theory. The red
dots indicate nodes and the lines indicate edges. The numerical values indicate the number of nodes
connected by other nodes.

2.4.3. Behavioral Data Analysis

Synchronization error (SE) was calculated from the data related to the response time in the task.
SE shows the difference between the time durations when the subject pressed the button (response)
and the auditory cue was given (stimulus; Equation (2)).

SE(n) = Response(n)− Stimulus(n) (2)

If the subject pressed the button before the cue, SE takes a negative value, and, if they pressed the
button after the cue, SE takes a positive value. Here, the SE for the initial signal in the task block was
excluded from the analysis because the initial stimulus in the task block was not regarded as the model
signal that simulates the others’ tapping, but as a reminding signal for starting of the task. In addition,
the average values of SE in each cluster were calculated and compared with each other.

2.5. Subject Classification

Since SE varies between participants as much as between behaviors, it is not necessarily a good
behavioral measure of the two strategies we assumed. Here, we used data-driven approach to separate
the participants into some groups by data clustering in terms of the similarity of the brain network,
and compared the network measure and the SE among groups. Ward’s method, which is a well-known
hierarchical clustering method, was used to categorize the subjects into multiple groups.

3. Results

3.1. Spatial Registration of the Measurement Channels to the Brain Regions

The measurement channel of each subject was aligned to the MNI space. Each measurement
channel was associated with the highest percentage of the brain regions among the estimated brain
regions of each subject. Table 1 shows the brain regions corresponding to each channel.
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Table 1. The associated brain region corresponding to all the channels (116 channels). Each measurement
channel was associated with the highest percentage of the brain regions for each subject.

Channel Region Channel Region

1 right postcentral gyrus 59 left middle occipital gyrus
2 right precentral gyrus 60 left middle occipital gyrus
3 right middle frontal gyrus 61 left middle occipital gyrus
4 right superior frontal gyrus 62 left calcarine sulcus
5 right medial superior frontal gyrus 63 right inferior occipital gyrus
6 left superior frontal gyrus 64 right middle occipital gyrus
7 left middle frontal gyrus 65 right middle temporal gyrus
8 left middle frontal gyrus 66 right superior temporal gyrus
9 left postcentral gyrus 67 left middle temporal gyrus
10 right supramarginal gyrus 68 left middle temporal gyrus
11 right precentral gyrus 69 left inferior occipital gyrus
12 right triangular part of inferior frontal gyrus 70 left lingual gyrus
13 right middle frontal gyrus 71 left cerebellum crus II
14 right superior frontal gyrus 72 right lingual gyrus
15 left medial superior frontal gyrus 73 right inferior occipital gyrus
16 left middle frontal gyrus 74 right inferior temporal gyrus
17 left middle frontal gyrus 75 right middle temporal gyrus
18 left precentral gyrus 76 left middle temporal gyrus
19 left postcentral gyrus 77 left middle temporal gyrus
20 right postcentral gyrus 78 left cerebellum crus I
21 right triangular part of inferior frontal gyrus 79 left cerebellum crus I
22 right middle frontal gyrus 80 left cerebellum crus II
23 right middle frontal gyrus 81 right lingual gyrus
24 right medial superior frontal gyrus 82 right cerebellum crus I
25 left superior frontal gyrus 83 right cerebellum crus I
26 left middle frontal gyrus 84 right inferior temporal gyrus
27 left triangular part of inferior frontal gyrus 85 right middle temporal gyrus
28 left postcentral gyrus 86 left inferior temporal gyrus
29 right superior temporal gyrus 87 left cerebellum crus I
30 right opercular part of inferior frontal gyrus 88 left cerebellum crus II
31 right triangular part of inferior frontal gyrus 89 left cerebellum crus III
32 right middle frontal gyrus 90 left cerebellum crus IV
33 right superior frontal gyrus 91 right cerebellum crus II
34 left medial superior frontal gyrus 92 right cerebellum crus II
35 left middle frontal gyrus 93 right cerebellum crus I
36 left triangular part of inferior frontal gyrus 94 right inferior temporal gyrus
37 left triangular part of inferior frontal gyrus 95 right superior frontal gyrus
38 left postcentral gyrus 96 right precentral gyrus
39 right middle temporal gyrus 97 right superior parietal cortex
40 right triangular part of inferior frontal gyrus 98 right superior parietal cortex
41 right middle frontal gyrus 99 right superior frontal gyrus
42 right superior frontal gyrus 100 right superior frontal gyrus
43 right medial superior frontal gyrus 101 right precentral gyrus
44 left superior frontal gyrus 102 right superior parietal cortex
45 left middle frontal gyrus 103 right cuneus
46 left triangular part of inferior frontal gyrus 104 supplementary motor area
47 left superior temporal gyrus 105 left paracentral lobule
48 left supramarginal gyrus 106 left precuneus
49 left middle temporal gyrus 107 left precuneus
50 left middle occipital gyrus 108 left superior frontal gyrus
51 left middle occipital gyrus 109 left superior frontal gyrus
52 left calcarine sulcus 110 left paracentral lobule
53 right superior occipital gyrus 111 left superior parietal cortex
54 right middle occipital gyrus 112 left superior parietal cortex
55 right middle temporal gyrus 113 left superior frontal gyrus
56 right superior temporal gyrus 114 left precentral gyrus
57 right supramarginal gyrus 115 left postcentral gyrus
58 left middle temporal gyrus 116 left superior parietal cortex
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3.2. Subject Classification

Figure 4 shows the dendrogram obtained as a result of the hierarchical clustering. The vertical
axis shows the distance between the clusters, and the horizontal axis shows the subjects. Based on
this result, the subjects were classified into groups with the largest distance between the clusters.
It revealed that there were two brain states during the synchronized tapping task. We compared the
two groups based on their brain states, and the behavioral data of each cluster.
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Figure 4. Brain states were classified by hierarchical clustering. Two clusters with the greatest distance
were revealed. The red circle indicates the central area of the network with a high degree. Cluster A
was in the frontal lobe, and Cluster B was in the temporal and lateral lobes. Letters L and R indicate
the left and right sides of the brain, respectively.

3.3. Functional Connectivity in Cluster A

The regions with top 10% degree comprised the left middle frontal gyrus (LMFG), and the left
triangular part of inferior frontal gyrus (LTrIFG). Figure 4 shows the network connections around
the LMFG and LTrIFG, found in 60% of the subjects. It was drawn using BrainNetViewer 1.53
(https://www.nitrc.org/projects/bnv/). These two regions were connected to each other. In addition,
LMFG was connected with the right middle frontal gyrus (RMFG), and the right superior frontal gyrus
(RSFG). Furthermore, unpaired two-sample t-test for the difference between two groups, setting LMFG
and LTriIFG as the region-of-interests was conducted. Degree centralities of two regions in Cluster A
were significantly higher than those in Cluster B (p < 0.05).

3.4. Functional Connectivity in Cluster B

The regions with top 10% degree comprised the LMFG, the left middle occipital gyrus (LMOG),
the left postcentral gyrus (LPoG), the left supramarginal gyrus (LSMG), and the right middle temporal
gyrus (RMTG). In addition to Cluster A, Figure 4 shows the functional connections between these
regions and the other regions. Regions with the top 10% degree were interconnected, and all the

https://www.nitrc.org/projects/bnv/
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top 10%-degree regions had at least one connection with each other. LMFG had a connection with
LPoG and LMOG, which are regions within the top 10% degree. In addition, LMOG had connections
with RMTG, LSMG, precuneus, and the right superior temporal gyrus (RSTG). Moreover, unpaired
two-sample t-test for the difference between two groups, setting LMFG, LMOG, LPoG, LSMG and
RMTG as the region-of-interests was conducted. The results of the t-test indicated that the degree
centralities of the LMOG and LPoG in Cluster B were significantly higher than those in Cluster A
(p < 0.05).

3.5. Analysis of Behavioral Data

We used SE values for the analysis of behavioral data. The average values of SE in Cluster A,
and Cluster B were 90.0 ± 154.9 ms and −8.9 ± 261.5 ms, respectively. There was no significant
difference between the two clusters (p < 0.05).

4. Discussion

The top 10%-degree brain region indicate that they are extensively connected to other regions of
the brain and are therefore high centrality regions in the functional network. As a result of clustering
on the basis of degree, we grouped the subjects into two clusters, Cluster A with network centrality
in the frontal lobe and Cluster B with network centrality in the temporal and lateral lobes, during
timing synchronization. In addition, at least one of the central regions in both clusters had a mutual
connection. This suggests that the principal network in timing synchronization consists only of the
central regions of the various network clusters, which are interconnected with each other.

For the subjects in Cluster A, LMFG and LTrIFG corresponded to the central region of the
network, with top 10% degree, and both regions are involved in theory of mind (ToM) [22]. ToM is
one of the social skills necessary to understand the mind of the others, and also the intention behind
their action. IFG is also involved in mirror neuron systems [23]. The mirror neuron system is a
neural mechanism that allows unconscious understanding of the behavior and intention of the others;
this neural basis is also found in infants [24]. In addition, MFG has been reported to be involved
in sustaining attention [25]. Thus, by functionally connecting the region related to observation and
imitation of behavior, and the MFG which sustains attention, the subjects were able to synchronize their
response time. They observed and responded to the sound stimulus, and modeled the others’ behavior
while paying attention to the next cue. Furthermore, the mean values of the SE in Cluster A shows the
subjects’ tendency to respond slowly to the cues. This suggests that the subjects responded “reactively”
to the cue. Since imitating the others indicates reacting to the opponent’s behavior, the result of this SE
value supports the results of the brain function network (Cluster A).

On the other hand, LMFG, LPoG, LMOG, LSMG, and RMTG were the regions with the top 10%
degree in subjects of Cluster B, and these regions corresponded to the central region of the network.
LMFG associated with sustenance of attention had many connections with the other high degree
regions. This indicates that the highest degree of attention was paid on the functions of the other
regions. LPoG is a somatosensory cortex, and we think that it became the center of the network because
of its relation with the urge to push the button [26]. LMOG is a visual cortex. In this experiment, fixation
point was always presented as a visual stimulus. Therefore, it is conceivable that factors, which are
important in the network, do not include processing of visual information. Summerfield et al. [27]
reported that this region is activated in the expectation of the next stimulus. In addition, it is reported
that LSMG, which is connected to LMOG and forms the center of the network, becomes active when
responding to predictable stimuli [28]. STS, including RSTG and RMTG, and precuneus are regions
related to the ToM and are thought to be involved in understanding the intention of the cue [22].
Taken together, we conclude that the subjects were synchronizing their response time with the stimulus
using LMOG, which is activated in anticipation of the next cue, and is also connected to the regions
involved in understanding the meaning of the cues such as RSTG, RMTG, and precuneus. In addition,
subjects tended to respond before the cues were generated, as demonstrated by the mean values of SE
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in Cluster B. Based on these results, we conclude that the subjects in Cluster B proactively responded
to the stimulus.

The results of Clusters A and B suggest that timing coordination involved both imitative and
predictive behaviors. In previous studies, the mirror neuronal systems have been shown to be involved
in recognition of the others, and it has been clarified that humans understand the behavior of the others
by simulating them in their interbrain or actual behavior [24]. Here, as shown by the Cluster A network,
the mirror neurons are involved in this task along with the imitative behavior to coordinate with the
others to synchronize timing. In addition to imitation, as shown by the network result of Cluster B,
a network involved in anticipation was formed, suggesting the need to predict the timing of others.

These results reveal the central region and the structural features of the brain functional network
associated with time coordination. The participants were asked to synchronize with the presence of
the sound stimuli, and the stimuli were regarded as the opponent’s behavior in this study. However,
the inter-stimulus interval did not differ in response to the subjects’ tapping. Therefore, further studies
are required to confirm whether the same result can be obtained when the timing is synchronized as
the two persons mutually adapt.

One of the limitations of the current study is the motion artifact (MA) correction method.
It is a crucial issue in fNIRS-based analysis, and many methods have been proposed recently,
including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and
correlation-based signal improvement [29,30]. However, accuracy of MA correction significantly differs
among different methods and the methodological differences lead to different statistical results [31].

5. Conclusions

Joint action can be regarded as social interactions in which more than two people coordinate their
behavior to change the environment. The ability to coordinate our behavior with external stimulus is
essential to achieve a joint action. In this study, using synchronous tapping task, brain activity was
measured by fNIRS when people coordinated their timing. In addition, brain functional networks in
the task were examined using the graph theory analysis. We suggest that there are two kinds of brain
function networks related to the task being performed. We also showed that these networks comprise
a major network. Furthermore, from the point of view of the two networks and behaviors, it was
revealed that both expectative behavior and imitative behavior are involved in time synchronization.
Our findings demonstrate that it is possible to take actions that are adapted to other people’s actions
by predicting and imitating behaviors that have been regarded as important in social interactions.
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Abbreviations

The following abbreviations are used in this manuscript:

fNIRS functional near-infrared spectroscopy
fMRI functional magnetic resonance imaging
MNI Montreal Neurological Institute
POTATo platform for optical topography analysis tools
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Hb hemoglobin
SE synchronization error
LMFG left middle frontal gyrus
TrIFG triangular part of inferior frontal gyrus
RMFG right middle frontal gyrus
RSFG right superior frontal gyrus
LMOG left middle occipital gyrus
LPoG left postcentral gyrus
LSMG left supramarginal gyrus
RMTG right middle temporal gyrus
RSFG right superior temporal gyrus
ToM theory of mind

References

1. Wiltermuth, S.S.; Heath, C. Synchrony and cooperation. Psychol. Sci. 2009, 20, 1–5. [CrossRef] [PubMed]
2. Rabinowitch, T.C.; Knafo-Noam, A. Synchronous rhythmic interaction enhances children’s perceived

similarity and closeness towards each other. PLoS ONE 2015, 10, e0120878. [CrossRef] [PubMed]
3. Sebanz, N.; Bekkering, H.; Knoblich, G. Joint action: bodies and minds moving together. Trends Cogn. Sci.

2006, 10, 70–76. [CrossRef] [PubMed]
4. Repp, B.H. Sensorimotor synchronization: A review of the tapping literature. Psychon. Bull. Rev. 2005,

12, 969–992. [CrossRef] [PubMed]
5. Thaut, M.H. Neural basis of rhythmic timing networks in the human brain. Ann. N. Y. Acad. Sci. 2003,

999, 364–373. [CrossRef] [PubMed]
6. Chen, J.L.; Zatorre, R.J.; Penhune, V.B. Interactions between auditory and dorsal premotor cortex during

synchronization to musical rhythms. Neuroimage 2006, 32, 1771–1781. [CrossRef] [PubMed]
7. Lewis, P.A.; Wing, A.; Pope, P.; Praamstra, P.; Miall, R. Brain activity correlates differentially with increasing

temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced
finger tapping. Neuropsychologia 2004, 42, 1301–1312. [CrossRef]

8. Mayville, J.M.; Jantzen, K.J.; Fuchs, A.; Steinberg, F.L.; Kelso, J.S. Cortical and subcortical networks
underlying syncopated and synchronized coordination revealed using fMRI. Hum. Brain Map. 2002,
17, 214–229. [CrossRef]

9. Irani, F.; Platek, S.M.; Bunce, S.; Ruocco, A.C.; Chute, D. Functional near infrared spectroscopy (fNIRS):
an emerging neuroimaging technology with important applications for the study of brain disorders.
Clin. Neuropsychol. 2007, 21, 9–37. [CrossRef]

10. Minagawa-Kawai, Y.; Matsuoka, S.; Dan, I.; Naoi, N.; Nakamura, K.; Kojima, S. Prefrontal activation
associated with social attachment: Facial-emotion recognition in mothers and infants. Cereb. Cortex 2008,
19, 284–292. [CrossRef]

11. Sanz-Arigita, E.J.; Schoonheim, M.M.; Damoiseaux, J.S.; Rombouts, S.A.; Maris, E.; Barkhof, F.; Scheltens,
P.; Stam, C.J. Loss of ‘small-world’networks in Alzheimer’s disease: graph analysis of FMRI resting-state
functional connectivity. PLoS ONE 2010, 5, e13788. [CrossRef]

12. Sporns, O.; Tononi, G.; Kötter, R. The human connectome: A structural description of the human brain.
PLoS Comput. Biol. 2005, 1, e42. [CrossRef] [PubMed]

13. Van Dijk, K.R.; Sabuncu, M.R.; Buckner, R.L. The influence of head motion on intrinsic functional connectivity
MRI. Neuroimage 2012, 59, 431–438. [CrossRef] [PubMed]

14. Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: uses and interpretations.
Neuroimage 2010, 52, 1059–1069. [CrossRef] [PubMed]

15. Maki, A.; Yamashita, Y.; Ito, Y.; Watanabe, E.; Mayanagi, Y.; Koizumi, H. Spatial and temporal analysis
of human motor activity using noninvasive NIR topography. Med. Phys. 1995, 22, 1997–2005. [CrossRef]
[PubMed]

16. Niu, H.; Lu, C.M.; Zhu, C.; Khadka, S.; Tian, F.; Lin, Z.J.; Liu, H. Resting-state functional connectivity
assessed with two diffuse optical tomographic systems. J. Biomed. Opt. 2011, 16, 046006. [CrossRef]

http://dx.doi.org/10.1111/j.1467-9280.2008.02253.x
http://www.ncbi.nlm.nih.gov/pubmed/19152536
http://dx.doi.org/10.1371/journal.pone.0120878
http://www.ncbi.nlm.nih.gov/pubmed/25853859
http://dx.doi.org/10.1016/j.tics.2005.12.009
http://www.ncbi.nlm.nih.gov/pubmed/16406326
http://dx.doi.org/10.3758/BF03206433
http://www.ncbi.nlm.nih.gov/pubmed/16615317
http://dx.doi.org/10.1196/annals.1284.044
http://www.ncbi.nlm.nih.gov/pubmed/14681157
http://dx.doi.org/10.1016/j.neuroimage.2006.04.207
http://www.ncbi.nlm.nih.gov/pubmed/16777432
http://dx.doi.org/10.1016/j.neuropsychologia.2004.03.001
http://dx.doi.org/10.1002/hbm.10065
http://dx.doi.org/10.1080/13854040600910018
http://dx.doi.org/10.1093/cercor/bhn081
http://dx.doi.org/10.1371/journal.pone.0013788
http://dx.doi.org/10.1371/journal.pcbi.0010042
http://www.ncbi.nlm.nih.gov/pubmed/16201007
http://dx.doi.org/10.1016/j.neuroimage.2011.07.044
http://www.ncbi.nlm.nih.gov/pubmed/21810475
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
http://dx.doi.org/10.1118/1.597496
http://www.ncbi.nlm.nih.gov/pubmed/8746704
http://dx.doi.org/10.1117/1.3561687


Brain Sci. 2019, 9, 43 11 of 11

17. Imai, M.; Watanabe, H.; Yasui, K.; Kimura, Y.; Shitara, Y.; Tsuchida, S.; Takahashi, N.; Taga, G. Functional
connectivity of the cortex of term and preterm infants and infants with Down’s syndrome. Neuroimage 2014,
85, 272–278. [CrossRef]
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