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Abstract: Modelling 3D objects in CAD software requires special skills which require a novice
user to undergo a series of training exercises to obtain. To minimize the training time for a novice
user, the user-dependent factors must be studied. we have presented a comparative analysis of
novice/expert information flow patterns. We have used Normalized Transfer Entropy (NTE) and
Electroencephalogram (EEG) to investigate the differences. The experiment was divided into three
cognitive states i.e., rest, drawing, and manipulation. We applied classification algorithms on
NTE matrices and graph theory measures to see the effectiveness of NTE. The results revealed
that the experts show approximately the same cognitive activation in drawing and manipulation
states, whereas for novices the brain activation is more in manipulation state than drawing state.
The hemisphere- and lobe-wise analysis showed that expert users have developed an ability to
control the information flow in various brain regions. On the other hand, novice users have shown
a continuous increase in information flow activity in almost all regions when doing drawing and
manipulation tasks. A classification accuracy of more than 90% was achieved with a simple K-nearest
neighbors (k-NN) to classify novice and expert users. The results showed that the proposed technique
can be used to develop adaptive 3D modelling systems.

Keywords: novice; expert; transfer entropy; information flow pattern; functional brain network;
3D modelling

1. Introduction

Presently, 3D technology fascinates everyone with skillful use of 3D computer graphics and
special effects in movies, video games, and visual arts. People are highly motivated to construct
their own 3D objects using their imagination; however, the software packages are still quite complex
and require special training. It is difficult for a non-expert, but also for skilled people, because these
CAD tools require time and skills to learn the necessary commands and techniques to draw. How
can we minimize the time and skills required to make CAD packages accessible for a common user?
This question motivates us to investigate the differences in information processing in users using
simplified EEG headsets.

Differences in information processing have been observed between males and females, novices
and experts, and left-handed and right-handed people while describing a simple 3D object [1].
The study of these user-dependent factors makes the interaction robust, and enhances system flexibility,
efficiency, naturalness. The purpose of this research is to investigate the differences in information
flow patterns by analyzing the electroencephalogram (EEG) signals of various participants and to
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find out the relationships between cognitive strategies in information processing and expertise while
performing a set of experiments. The connectivity measures are commonly used in the literature to
study user-dependent factors in the brain [2].

An EEG signal contains information from a complex and dense network of billions of
interconnected neurons. Graph-based methods have been applied by researchers to successfully
study these complex brain networks in recent years [3] and more specifically using both directional
and undirected functional brain networks (FBN) [4,5]. In research, directional FBN is preferred because
it provides more prominent topological features by estimating the direction of information transfer
between nodes (EEG electrodes) and thereby enabling more detailed analysis [6]. To construct an FBN
using an EEG, a connectivity measure is used that can estimate the value of information transferred
between nodes (electrodes). There are many linear and non-linear connectivity measures that have
been used in the literature to construct the FBN, such as mutual information, entropy, correlations,
and Granger causality [7]. Linear connectivity measures usually fail to identify the non-linear behavior
of the brain. Therefore, to analyze a highly non-linear EEG signal, non-linear measures are adopted by
researchers for the construction of FBNs [8].

Transfer Entropy (TE) is also a popular measure to quantify information between two non-linear
vectors. It can also determine the direction of information transfer between two variables [9] and
therefore is ideal for investigating information flow. TE uses the past activity of both variables to
estimate the amount of activity of a system irrespective of interaction model. This property of TE
allows researchers to apply it to various applications such as identifying information transfer between
auditory cortical data [10], localization of epileptic patients focus [11], the effect of heart rate on
breath rate [12], and information flow patterns in various driving states [13]. Other brain connectivity
measures such as partial directed coherence (PDC) and directed transfer function (DTF) was used in
the literature to evaluate the performance during meditation [14,15].

In research literature, TE has not been used to study user-dependent differences. In the present
work, we apply TE to the analysis of information flow patterns between novice and expert users.
We have used normalized TE values to construct both binary and weighted directional FBNs.
After constructing an FBN, we have applied graph theory measures and statistical analysis to quantify
the information flow patterns. The main objective of this analysis is to identify the topological
differences between novice and expert users’ FBNs in different design activities. The second objective
is to identify the information flow patterns in the design actions of a user.

2. Materials and Methods

We have constructed an FBN using Normalize TE as a connectivity measure. The NTE matrix is
used for constructing binary and weighted FBN.

2.1. Normalized Transfer Entropy

NTE is calculated by dividing the difference of TE matrix from a shuffled version of that TE matrix
by conditional entropy. The subtraction of shuffled TE overcomes the noise/bias of TE generated due
to the finite and non-stationary data [16,17]. To calculate NTE, we calculated TE given in Equation (1):

TEy→x = ∑
xn+1 ,xn ,yn

p(xn+1, xn, yn)log

(
p(xn+1, xn, yn).p(xn)
p(xn, yn).p(xn+1, xn)

)
(1)

where, xn is the value of signal x at time n, yn is the value of signal y at time n, and p(.) is the probability
distribution. NTE from y→ x is calculated with respect to the total information in x and represent the
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relative amount of information transferred by signal y. The equation for calculating NTE matrix from
a vector y→ x is given in Equation (2) as:

NTEy→x =
TEy→x− < TEyshu f f le→x >

H(xn+1|xn)
(2)

where TEy→x is the transfer entropy from y to x and can be calculated using Equation (1),
< TEyshu f f le→x > is shuffled TE from y to x using shuffled version of y and H(xn+1|xn) is the
conditional entropy of x at time n + 1 given its value at time n and calculated as given in Equation (3).
In Equation (2), yshu f f le contains the symbols that are rearranged and shuffled in random order.

H(xn+1|xn) = − ∑
xn+1 ,xn

p(xn+1, xn)log

(
p(xn+1, xn)

p(xn)

)
(3)

The NTE from y→ x is not equal to NTE from x → y and NTE is in the range of 0 and 1. If the
value of NTE is 0 that means no transfer of information and if the value is 1 than the information
transfer is maximum [13].

2.2. Functional Brain Networks Graph Theoretical Analysis

FBNs are used to capture the information flow dynamics between EEG electrodes in relation to the
human brain [18]. EEG is a common tool to measure brain activity as it is inexpensive, non-invasive,
and has high temporal resolution. EEG has been used in many applications ranging from medical
diagnostics, cognition, to brain–computer interfaces [19–21]. In this paper, FBNs were constructed from
a non-linear connectivity measure known as NTE. After constructing FBNs, graphs were constructed
by considering each electrode as a node and the NTE value as a link.

A graph is a combination of nodes and links. Nodes are vertices, and links are the edges that are
used to connect the vertices. In our case, the nodes are electrodes and the links are established by the
connectivity measure NTE [22]. The following graph theory measures are used to analyze an FBN.

2.2.1. Connectivity Density

Connectivity density (CD) is the ratio of the actual number of edges to the total number of possible
edges [23]. The value of the CD is in the range of 0 and 1. If a graph has complete connectivity then it
has a CD of 1.

2.2.2. Motif

A motif is used to describe the local structure of a graph. It is the patterns of interconnections that
can occur in a complex network [24]. It is further characterized by the number of times a subgraph
appears in a complex network [25]. In the case of 3 nodes, a total of 13 classes of subgraph can be
generated. In this research, we have considered 3 nodes for motif count.

2.2.3. Node Strength

Node strength is used to measure the centrality of weighted directed networks. It represents the
sum of all incoming and outgoing edge weights [26]. Node strength helps to find the involvement of a
particular region in an FBN.

2.2.4. Small-Worldness

The small-world network exists in between regular lattice and completely random network and
shows the properties of high clustering and short path length, which means that information traverse
mostly between nodes with a small number of edges not between neighbors [27]. It is also considered
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as a network with both high local and global efficiency [28] which is a representation of effective
information propagation over a network.

Clustering Coefficient

The clustering coefficient is the ratio between all the directed triangles formed by node i and
the number of all possible edges node i can form, so the clustering coefficient measures how well
the cluster of node communicating and a high value of clustering coefficient relates to the high local
efficiency of information transfer [4].

Characteristic Path Length

The characteristic path length is the average shortest path length between all pairs of nodes.
It indicates the high global efficiency of information transfer. The shortest path between node i and j is
the minimum number of nodes to traverse from node i to reach to node j [4].

Small-World Index

Small-world index gives us the comparison of a complex network to a random network. A random
network has a low clustering coefficient and typically a short path length compared to a complex
network [29]. The small-world networks have high global and local efficiency and categorized as those
networks whose small-world index σ > 1 [30].

All above-mentioned graph theory measures have been used for in this analysis.

3. Methodology

3.1. Experimental Setup and Data Acquisition

The experiment was to design a 3D table with three parts: a base, a pillar, and a top in AutoCAD.
The next task was to use properties and options to change the object’s colors and add materials. A total
of eight participants volunteered for the experiment. All of them were computer-science students at
Macquarie University. The ages of the participants ranged from 21 to 30 years. Three of the participants
had prior knowledge of AutoCAD and 5 were novices. The experiment was approved (Approval
no. 5201700784) by the Faculty of Science and Engineering Human Research Ethics Sub-Committee,
Macquarie University. This research meets the requirements of the National Statement on Ethical
Conduct in Human Research (2007). The National Statement is available at the following web site:
http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/e72.pdf.

Each subject was given a tutorial of 10 min before the experiment. A video log has been
maintained for each subject and EEG signals were also recorded. For acquisition of EEG signals,
we used an off-the-shelf research edition of the Emotiv EEG headset, which has 14 channels: frontal
and front-central: AF3, AF4, F3, F4, F7, F8, FC5, FC6; temporal: T7, T8; and the occipital and
occipital-parietal: O1, O2, P7, P8. The device has an internal sampling rate of 2048 Hz which is
down-sampled to 128 Hz after the cleaning of artifacts. The electrode placement is based on the
international 10-20 system. The problem with the Emotiv Headset is that it has limited electrodes with
no electrodes in the central lobe (Pz, Cz, Fz) and therefore, it is thought that the system has limited
applicability in research. The manufacturer states that the signals from the neighboring electrodes are
good enough to perform experiments and researchers have proved the capability of headset in many
applications [31]. The subjects were given an open-ended task to depict the real-world setting, which
results in complex cognitive processing and analysis strategies. A picture of the experimental setup is
shown in Figure 1.

http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/e72.pdf
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Figure 1. A subject is using AutoCAD and wearing EEG headset in real experimental setting.

3.2. Experimental Procedures

The process can be divided into 5 experimental procedures:

1. Information about the experiment was given to each subject along with the consent form.
After reading and signing the consent form, the experimenter gives a walk-through of the
experiment and some instructions to minimize the body and head movements.

2. The EEG headset was placed on the head of the subject. The subjects were asked to rest for two
minutes with their eyes open, with hands on their laps, and after that, the subjects were asked to
start drawing using keyboard and mouse.

3. After the completion of the modelling task, subjects were asked to fill in a questionnaire about
the experiment.

4. EEG data were filtered and segmented into two segments. The first segment was the one where
the participants were drawing the table. In the second segment, the participants were asked
to change the appearance of the table such as materials, colors etc. using AutoCAD options.
For convenience, we named the first segment “Drawing” and the second segment “Manipulation”.

3.3. EEG Signal Pre-Processing

The EEG data of all the participants were used for the analysis. The pre-processing was done
in MATLAB 2017b using the EEGLAB toolbox [32]. The baseline was removed from the EEG signal
and low-pass filtering at a cut-off frequency of 45 Hz was performed using a linear-phase FIR filter.
EEG signals were then high-pass filtered at a cut-off frequency of 0.1 Hz and notch filtered at 50 and
60 Hz using a linear-phase FIR filter. The order of the filter in all cases was 300. After filtering the data,
the typical eye blinking and muscles artifacts were removed manually by visual inspection. To estimate
the position of the artifacts, we have used the runica ICA decomposition. This method decomposes
EEG signals into their independent components. Further noisy bad blocks were also removed manually.
Once the data was clean enough, we extracted two-second epoch averaged data from resting, drawing
and manipulation tasks by performing back-to-back epoching with a 0.5 s difference between epochs.
The response time for a modelling action varies from 0.5 to 4 s and we made sure that a minimum of
one modelling action must be performed in an epoch through the video log. Table 1 shows the time
taken by each user in seconds in drawing and manipulation states. The users 1, 7 and 8 were expert in
AutoCAD, whereas, users 2–6 were novices. User 3 and 7 both deleted some objects when drawing
and these phases were also considered in this experiment. There was no correlation found between
expertise level and task completion time.

3.4. Functional Brain Network

The pre-processed EEG signals were used in the construction of NTE connectivity matrices,
where each cell denotes the NTE value from one electrode to another. The normalization was done
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by subtracting a noise matrix (averaged shuffled TE matrix) from the TE matrix. The NTE matrices
were used to create both binary and weighted directed FBN. To analyze the results, we had used the
graph analysis measure such as the CD, clustering coefficient, characteristic path length, motif count,
node strength and small-worldness. The Figure 2 shows a summarized view of the experiment.

Table 1. Time taken by each participant to complete the task.

Expertise Users Drawing (s) Manipulation (s)

Expert User 1 38 72
Novice User 2 81 125
Novice User 3 137 93
Novice User 4 54 72
Novice User 5 43 118
Novice User 6 61 98
Expert User 7 120 101
Expert User 8 58 113

Figure 2. Normalized Transfer Entropy Framework (a) EEG data acquisition and pre-processing,
(b) Transfer Entropy calculation and graph database construction, and (c) Result and analysis of binary
and weighted FBNs.

3.5. Binary Directed Functional Brain Network

A threshold was applied on NTE matrix to convert them into binary directed FBN for calculating
complex network parameters. For this experiment, the threshold was set to 0.001 which is an arbitrary
value to remove the very insignificant connections.
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3.6. Weighted Directed Functional Brain Network

The NTE matrices, without applying any threshold, shown in Figure 3 and 4, were also used to
design weighted directed functional brain networks (WDFBN). WDFBN was used to calculate the
node strength using Equation (4).

Strengthi = ∑
jεV

wij + ∑
JεV

wji (4)

where,wij is an element weight of NTE matrix.

Figure 3. Normalized transfer entropy matrix during rest, drawing and manipulation states of
novice user.

Figure 4. Normalized transfer entropy matrix during rest, drawing and manipulation states of
expert user.

3.6.1. Hemisphere-Wise Information Flow

The hemisphere analysis has been performed to identify the information flow patterns within
and between the left and right hemispheres. For this analysis, we have divided 14 EEG electrodes into
two sets of 7 electrodes that correspond to each hemisphere. The electrodes belong to left hemisphere
(LH) and right hemisphere (RH) are shown in Figure 5.
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Figure 5. Electrodes layout of LH and RH.

A total of four sub-NTE matrices were generated to represent the information flow between
electrodes in LH to LH, LH to RH, RH to RH and RH to LH. The size of sub-NTE matrices was 7 × 7
and the total information flow from one electrode to all other electrodes was calculated by row-wise
summation of each sub-NTE matrices. To analyze these sub-NTE matrices, one-way ANOVA was
applied and the results of 2 typical novice and 2 typical expert users have been shown in this paper
due to space limitations.

3.6.2. Region-Based Information Flow

To study the information flow (IF) in different regions of the brain, we also performed the
region-wise analysis. We divided the brain into three regions and called them nodes. Each of the three
nodes had four electrodes. From the NTE matrix, three sub-matrices were constructed and information
flow from and to the node was calculated. The nodes are F, C, and P. The node F contains electrodes
F7, F3, F4 and F8 and represent the frontal cortex of the brain. The node C contains electrodes FC5, T7,
T8 and FC6 and represent the central and temporal cortex. The node P contains electrodes P7, O1, O2,
and P8 and gives the information of parietal and occipital lobes. Figure 6 shows the three nodes with
corresponding electrodes.

Figure 6. Electrodes layout of F, C and P nodes.

The information flow from one region to another region was calculated by the summation of
information flow from electrodes of one region to other. For example, the IF from F to C was calculated
by summation of all IF from F7, F3, F4, F8 to FC5, T7, T8, FC6.
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3.7. Classification of Novice/Expert

We have used the above-mentioned graph-based measures as a feature for the classification of
novice and expert users. To depict real-time situations, a 20-s window from every second onward was
used and considered as one sample. By this method, we extracted a total of 470 samples in which
285 samples belong to novice users and 185 samples belong to experts. The CD, motif count, clustering
coefficient and mean information flow are used as a feature for classification. The complete feature set
is the combination of all the measures mentioned above. The actual feature set is given in Figure 7.

Figure 7. The complete feature set.

Feature selection algorithm was applied to extract best features for classification. We have used a
sequential forward search (SFS) for searching the best feature. The technique used for feature selection
is wrapper technique. In the wrapper technique, the classification algorithm is a part of the feature
selection process. In this paper, classification accuracy has been used as the optimization criteria for
feature selection.

Various classification algorithms are used to classify features into different classes.
These classification algorithms are categorized into supervised and unsupervised techniques.
Support Vector Machines (SVM) [33], K-nearest neighbors (k-NN) [34], Bayesian classifier [35] are
some of the most commonly used classifier for EEG applications. In this paper, we have used five
different classifiers to test the feature set. The classifier used in this paper are SVM, k-NN, Linear
Discriminant Analysis [36], Naive Bayes [35] , and decision trees [37]. For evaluation we have used
classification accuracy, sensitivity, specificity, precision, F-measure and mean squared error.

4. Results and Discussion

The NTE matrices of size 14 × 14 were calculated as shown in Figures 3 and 4. Figure 3 shows
the NTE matrix of a novice user with three different design states and Figure 4 shows the NTE matrix
of an expert user. The cluttered and brighter pixel shows the increase in information flow. From the
NTE matrices, it can be inferred that the information flow pattern of the user changed and increased
from the baseline rest condition. Due to space limitation and maintain the readability of the paper, the
results of two novice and two expert users have been shown in this paper instead of the entire cohort.
Most of the figures and tables in this section show the results of some particular participants.

4.1. Binary Directed FBN Analysis

The results of binary directed FBNs are shown in Figure 8 for a novice user and Figure 9 for
an expert user. For the novice, the connections between electrodes increase when participants move
from rest to drawing and from drawing to manipulation. Whereas, connections increase from rest to
drawing and no significant change was observed from drawing to manipulation for expert users.
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Figure 8. Binary directed functional brain network during rest, drawing and manipulation states of
novice user.

Figure 9. Binary directed functional brain network during rest, drawing and manipulation states of
expert user.

It can be seen that the density of network increased from the baseline for both novice and expert
users but the change in density for the novice user is more, compared to an expert user in drawing and
manipulations states. Most of the activity was focused on the frontal cortex which also indicates the
use of short-term memory [38].

The CD for all the user is shown in Figure 10. To compare the CD across all users in different
states, we normalized the value by dividing the actual connectivity value in one state by the sum of
connectivity in all states.

Figure 10. Comparison of connectivity density of all users brain activity during rest, drawing and
manipulation states.

The users 1, 7 and 8 were experts as they have previous experience in AutoCAD, user 4 and
5 were novices but they had a go with the experiment before as well. As indicated in Figure 10,
the CD is higher for all the users in drawing and manipulation state than rest condition, which can be
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seen as control condition. From this figure, we can deduce that the information flow increase in the
drawing and manipulation states compared to a rest state by establishing more connections. The main
difference between novice and expert users was observed in drawing and manipulation states, that the
CD relatively increased in manipulation states from drawing states for novice users (i.e., user 2–6).
The expert users’ CD difference was much less compared to novices and a little decrease in density
was seen for users 1, 7, and 8, which means that the information flow was approximately the same
in drawing and manipulation states. The increase in connectivity for novice users also indicated that
the electrodes were trying to establish a mutual connection to facilitate effective information transfer
within the FBN as novice users are using the manipulation functions for the first time.

Figure 11 shows the total number of motif for three nodes during rest, drawing and manipulation
state for user 3 (novice) and user 8 (expert).

The motif count is higher in drawing and manipulation states compared to the rest state.
Novice users have an increase in the number of motifs in manipulation states from drawing state
and this pattern exists for almost all the novice users except for user 4, in which the motif count
difference is not significant. Like CD, the motif count for expert users decreases in manipulation
state compared to drawing state. As the number of motifs is used to describe the local features of the
network, the increase in motifs is related to a substantial increase of information exchange among the
neighboring nodes of directed FBN. The information transfer between neighbor electrodes was more
for novice users than expert users, which means that novice user’s information flow pattern changes
more rapidly compared to expert users.

(a) (b)
Figure 11. Comparison of number of motif with three nodes during rest, drawing and manipulation
states. (a) User 3 (Novice user). (b) User 8 (Expert user).

Clustering coefficient for all electrodes has been shown in Figure 12 during rest, drawing and
manipulation states.

(a) (b)

Figure 12. Clustering coefficient of all electrodes for novice and expert users during rest, drawing and
manipulation states. (a) User 3 (A representative novice user). (b) User 8 (A representative expert user).

The value increases for almost all the electrodes in drawing and manipulation states compared
to baseline rest state. This is a clear indication that each electrode was communicating directly with
it is neighboring electrodes and formed clusters. For novice users, the clustering coefficient value in
manipulation state is slightly higher than drawing state except for T8 and FC6 electrodes. The trend is
opposite for experts, the value in drawing state is higher than manipulation state except for electrodes
O1, O2, P3. These regions belonged to the occipital and parietal cortex and from the literature, we found
that these regions were associated with sensation from muscles, visual perception, and recognition [39].
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The statistical significance of the clustering coefficient across all 14 electrodes has been calculated
using a 2-sample t-test with unequal variance at α = 0.05 for novice and expert users. The results are
shown in Table 2 for 2 typical users due to space limitations.

Table 2. Statistical validation of clustering coefficients for typical novice and expert users.

Users States Mean Difference 95% CI DF t p

User 3 (Novice)
Drawing Rest 0.156* ( 0.0763 , 0.2357 ) 20 4.0838 0.0006

Manipulation Drawing 0.031 ( −0.0169 , 0.0789 ) 24 1.3362 0.097
Manipulation Rest 0.187* ( 0.1102 , 0.2638 ) 17 5.1374 0.00001

User 8 (Expert)
Drawing Rest 0.273* ( 0.2148 , 0.3312 ) 15 10 0.00001

Manipulation Drawing −0.015 ( −0.0988 , 0.0688 ) 17 −0.7895 0.3551
Manipulation Rest 0.258* ( 0.1935 , 0.3225 ) 22 8.2958 0.00001

* Mean difference is significant at p < 0.05 level.

The results suggested that mean difference is significant (p < 0.05) across rest/drawing
and rest/manipulation states for both users and the same trend was observed for all other users.
The difference is not significant across manipulation/drawing state but if we compare the values for
novice and experts the difference across manipulation/drawing state is more for novice users than
experts with a negative mean difference for user 8 and 9.

The small-world properties of directed FBN during rest, drawing and manipulation states for
novice and expert users are shown in Table 3.

Table 3. Small-worldness of binary directed FBNs during rest, drawing and manipulation states for
2 typical users.

Users Cognitive State Cd Crand Ld Lrand σ = Cd
Crand

/ Ld
Lrand

User 3 (Novice)
Rest 0.9119 0.8676 1.1939 1.1934 1.0506

Drawing 0.6675 0.5358 1.5255 1.5043 1.2286
Manipulation 0.7714 0.6582 1.3878 1.3879 1.0809

User 8 (Expert)
Rest 0.8214 0.6998 1.3469 1.3470 1.1739

Drawing 0.4777 0.4126 1.7092 1.6537 1.1202
Manipulation 0.6607 0.5267 1.5408 1.5256 1.2420

The bold number shows that σ > 1.1.

In Table 3, Cd and Crand are the clustering coefficient of an actual and random network respectively;
Ld and Lrand are the characteristic path lengths of actual network and random network, respectively.
If the value of σ > 1 for an FBN then the network shows the small-world properties which means that
the FBN has both high local and global efficiency. For novice users the difference between σ in rest,
drawing and manipulation states is more than expert, which means that experts have relatively high
global and local efficiency of information transfer than novice users. To calculate the random values
for clustering coefficient and characteristic path length, 100 matched random networks have been
generated with 14 nodes. The small-world values are computed with transitive clustering coefficient
and Monte-Carlo realizations [30].

4.2. Weighted FBN Analysis

Figure 13 gives the node strength values of novice and expert users during various cognitive
states. From Figure 13, we can observe that both novice and expert users have more node strength
in drawing and manipulation states than the rest state, which indicates that each node or electrode
sends and receives more information during drawing and manipulation states. The expert user’s node
strength is approximately the same in drawing and manipulation states which means that their brain
is more relaxed and information flow is the same in both states. Whereas, for novice users, the node
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strength increases in manipulation state, which indicates more information transfer in manipulation
state than any other state. All the novice users showed the same trend of node strength.

(a) (b)
Figure 13. Comparison of node strength across electrodes during rest, drawing and manipulation
states. (a) User 3 (Novice). (b) User 8 (Expert).

4.2.1. Statistical Analysis

To show the significance of information flow during the three states, we have applied the one-way
analysis of variance (ANOVA) test. The mean information flow of each state, which is calculated by
row-wise summation of each NTE matrix, was used in ANOVA and the multi-comparison procedure
was applied and results are shown in Figure 14.

(a) (b)

(c) (d)
Figure 14. Multi-comparison of ANOVA on mean information flow of each electrode to all other
electrodes during rest, drawing and manipulation states. (a) User 3 (Novice). (b) User 6 (Novice).
(c) User 7 (Expert). (d) User 8 (Expert).

The ANOVA results show that there are significant differences in the mean information flow
between rest and drawing/manipulation states. For novice users, the mean information flow difference
is also significant in drawing and manipulation states, but this is not the case for expert users because of
the overlap seen in drawing and manipulation states mean information flow. This is a clear indication
that the information flow increased in novice users, when they started manipulating the object, whereas
expert users were comfortable with both drawing and manipulation.



Brain Sci. 2019, 9, 24 14 of 20

4.2.2. Hemisphere-Wise Analysis

Figure 15a–d shows the ANOVA test results for hemisphere-wise analysis. The results show that
the information transfer from LH to LH is greater than the information transfer in other hemispheres
for expert users 7 and 8 in drawing state. In manipulation state, the t-test results showed that there
are no significant differences in mean information transfer value for RH to RH and RH to LH transfer.
For user 7, the values of RH to LH and RH to RH increased in manipulation state compared to drawing
state. User 8 shows an opposite behavior, the mean information flow value from RH to LH and LH to
LH decreases in manipulation state and other information transfer values do not change much. In case
of the novice users, an increase in information flow in all the electrodes was observed from rest to
drawing to manipulation state. The flow of information is more towards the left hemisphere from the
right and left hemisphere electrodes. Thus, it can be said that, in manipulation state, the left region of
the brain has received more information from its own electrodes then the right-side electrodes.

The statistical significance of the difference in information transfer between different states has
been given in Table 4. These results were calculated by applying the two-sample t-test with α = 0.05
(two-tailed). The results show that in most cases the difference in mean information flow is significant
especially for novice users. The mean difference is more for novice users when comparing manipulation
and drawing states. For experts, a small decrease in information flow was observed, when comparing
the RH-LH and LH-LH regions in manipulation and drawing states. This is an indication that the
flow of information decreases for experts in left hemisphere from left and right hemisphere electrodes.
Overall, Novice users show significant mean differences in all three states compared to experts. With
experts, the difference is not significant in all cases which indicates that the expert user’s brain trained
in a way that it allows certain regions to be more active than others with respect to tasks.

(a)

(b)

Figure 15. Cont.
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(c)

(d)
Figure 15. One-way ANOVA of Hemisphere-wise mean information flow during rest, drawing and
manipulation states. (a) User 7 (Expert). (b) User 8 (Expert). (c) User 3 (Novice). (d) User 6 (Novice).

Table 4. Result of pairwise mean difference using the t-test for hemispheres information flow during
rest, drawing and manipulation states.

States Novice User 3 Novice User 6

Drawing Rest Mean Diff. CI Mean Diff. CI

LH-RH LH-RH 0.017 * 0.005 0.029 0.016 −0.003 0.034
RH-LH RH-LH 0.017 * 0.006 0.028 0.005 −0.004 0.019
LH-LH LH-LH 0.027 * 0.011 0.043 0.012 * 0.001 0.022
RH-RH RH-RH 0.012 * 0.005 0.018 0.030 * 0.007 0.052

Manipulation Drawing

LH-RH LH-RH 0.022 −0.004 0.048 0.008 −0.014 0.029
RH-LH RH-LH 0.020 * 0.008 0.032 0.031 * 0.001 0.052
LH-LH LH-LH 0.010 −0.007 0.028 0.029 * 0.006 0.052
RH-RH RH-RH 0.031 * 0.018 0.044 −0.016 −0.042 0.009

Manipulation Rest

LH-RH LH-RH 0.039 * 0.014 0.064 0.024 * 0.002 0.041
RH-LH RH-LH 0.037 * 0.01 0.043 0.038 0.017 0.059
LH-LH LH-LH 0.037 * 0.026 0.048 0.041 * 0.018 0.064
RH-RH RH-RH 0.043 * 0.030 0.055 0.014 −0.004 0.032

Expert User 7 Expert User 8

Drawing Rest Mean Diff. CI Mean Diff. CI

LH-RH LH-RH 0.008 −0.008 0.024 0.020 * 0.009 0.030
RH-LH RH-LH 0.080 −0.017 0.177 0.034 * 0.008 0.060
LH-LH LH-LH 0.088 * 0.046 0.130 0.035 * 0.018 0.052
RH-RH RH-RH 0.020 * 0.008 0.031 0.013 −0.005 0.031

Manipulation Drawing

LH-RH LH-RH 0.005 −0.010 0.019 0.006 −0.016 0.028
RH-LH RH-LH −0.042 −0.141 0.057 −0.003 −0.035 0.028
LH-LH LH-LH −0.025 −0.108 0.057 −0.007 −0.027 0.013
RH-RH RH-RH 0.009 −0.005 0.023 0.029 −0.005 0.063

Manipulation Rest

LH-RH LH-RH 0.013 −0.002 0.027 0.026 * 0.004 0.047
RH-LH RH-LH 0.038 −0.000 0.076 0.031 * 0.008 0.054
LH-LH LH-LH 0.063 −0.017 0.142 0.028 * 0.013 0.043
RH-RH RH-RH 0.029 * 0.016 0.041 0.042 * 0.009 0.075

* Mean difference is significant at p < 0.05 level.
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4.2.3. Region-Based Analysis

The region-based analysis of information flow is recorded in Table 5. The result shows that the
information flow from F-C is high in experts compare to novice users and the IF from F-C is more
than IF from C-F. The IF from F-C increased in manipulation state compared to other states for every
user, which indicates that more information is transferred from the frontal region. The IF from P-C is
more for novice users compared to expert users. The IF from F-P increases from rest to manipulation
state for novice users but decreases for experts. From the analysis in manipulation state, maximum
information was transferred through frontal electrodes. The reason for the maximum activation of the
frontal scalp regions can be because this region is associated with reasoning, planning and problem
solving [40].

Table 5. Information flow among F, C and P nodes during rest, drawing and manipulation states.

Subjects States F-C C-F F-P P-F P-C C-P Max Min

User 3 (Novice)
Rest 0.0061 0.0121 0.0111 0.0037 0.0048 0.0058 C-F P-F

Drawing 0.0611 0.0502 0.0709 0.0224 0.0330 0.0637 F-P P-F
Manipulation 0.1097 0.0919 0.1350 0.1091 0.0987 0.1139 F-P C-F

User 6 (Novice)
Rest 0.0212 0.0162 0.0135 0.0313 0.0372 0.0242 P-C F-P

Drawing 0.0741 0.0555 0.0434 0.0386 0.0964 0.0730 P-C P-F
Manipulation 0.1080 0.0797 0.0557 0.0579 0.0431 0.0636 F-C P-C

User 8 (Expert)
Rest 0.0465 0.0325 0.0175 0.0254 0.0359 0.0446 F-C F-P

Drawing 0.0736 0.0702 0.1154 0.1516 0.0622 0.0606 P-F C-P
Manipulation 0.1792 0.1215 0.1027 0.1478 0.0526 0.1020 F-C P-C

User 7 (Expert)
Rest 0.0242 0.0134 0.0356 0.0406 0.0606 0.0689 C-P C-F

Drawing 0.2260 0.0752 0.1570 0.0739 0.0735 0.1027 F-C P-C
Manipulation 0.1631 0.0577 0.0952 0.0642 0.0782 0.0590 F-C C-F

In Table 5, the highlighted blue color shows an increase in information flow from drawing state
and red color shows a decrease in IF. The analysis clearly shows that expert users IF increased in
some region and decreased in other whereas for novice users the information flow has increased in
manipulation state from drawing state with some exception (user 6). It is also an indication that expert
users have developed the capability to control the performance of a specific brain region to perform a
certain task effectively.

In rest state most of the IF is through central region and the least information transfer was
in between frontal and parietal lobes for all users. All users show maximum information transfer
from the frontal cortex in manipulation state and minimum IF has been seen in the central cortex in
manipulation state. In drawing state maximum IF has been seen through the frontal to the central
cortex. The parietal and occipital lobes have shown minimum activation in sending information except
for user 8.

4.3. Classification Results

The classification results are shown in Tables 6–8. The data from all eight subjects were used
in this experiment. The data set was divided into training and testing data-sets and the results are
evaluated with 5-fold cross-validation. Table 6 shows the classification results of different classifiers
with all feature as input. The LDA classifier shows maximum classification accuracy of 88% with an
F-measure of 0.91. The NB classifier shows the least classification accuracy.

SFS has been used to select the best features and the results are shown in Table 7. The k-NN (k = 3)
shows the best classification accuracy of 95% with just 11 features. The classification accuracy for all
classifiers increased after applying SFS for feature selection except for LDA. NB classifier accuracy also
increased from 69% to 78% by selecting only 4 features.
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Table 6. Classification results using all features.

Classifiers Acc Sen Spec F-Measure

LDA 88% 0.94 0.80 0.91
KNN 71% 0.75 0.65 0.76
NB 69% 0.80 0.53 0.76

SVM 82% 0.87 0.74 0.85
Tree 83% 0.88 0.75 0.86

Table 7. Classification results after feature selection by SFS.

Classifiers Acc Sen Spec F-Measure Features

LDA 88% 0.95 0.76 0.90 40.00
KNN 95% 0.96 0.92 0.96 11.00
NB 78% 0.93 0.56 0.84 4.00
SVM 88% 0.95 0.76 0.90 20.00
Tree 89% 0.90 0.88 0.91 16.00

Table 8 shows the timing analysis to select five features using SFS. The SVM classifier takes the
maximum time (818.47 s) and k-NN takes the least time (7.30 s) to select five features. k-NN also gives
the maximum classification accuracy among all other algorithms. The results also show some common
features selected by different classification algorithms. The feature number 29, 32, 35 and 41 selected by
k-NN also appears in the features selected by other algorithms. The feature 29 is the characteristic path
length and 32, 35, and 41 belong to the mean information flow. The feature 32, 35, and 41 correspond
to the mean information flow of electrodes F3, T7 and F8, respectively. It shows that the channel that
contributes to maximum variance between novice and expert users are F3, and F4 from frontal lobe
and T8 from temporal lobe of the brain.

Table 8. Time taken by the algorithm to select features using various classifiers.

Classifiers Acc Feature Selected Time in s

LDA 80% 12 32 35 37 41 7.96
KNN 92% 23 29 32 35 41 7.30
NB 78% 29 30 32 35 41 7.52

SVM 81% 19 20 29 32 38 818.47
Tree 86% 9 17 22 29 35 7.71

Figure 16 shows the mean square error (MSE) of various classification algorithm with respect to
the features selected. The graph shows that the error decreased when the number of features increased.
After selecting a certain number of features, the change in MSE was not significant. The least MSE of
8% was observed with k-NN classifier and NB shows the maximum MSE compared to other classifiers.

Figure 16. Mean square error with respect to features selected.
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5. Conclusions

In this paper, a novice/expert study has been presented that uses NTE to construct FBN and
estimate the information flow patterns. Both binary and weighted directed FBNs were used for the
analysis. Using the techniques of signal and information processing to construct FBNs and applying
graph theory and statistical analysis, we have estimated the cognitive load and information flow
pattern for novice and expert users by measuring the CD, clustering coefficient, characteristic path
length, motif count, node strength and small-worldness. The results showed a significant difference in
information processing between novice and experts. The findings from the analysis are listed below:

1. The main difference was observed in the manipulation state, novice users information flow
patterns changed in manipulation state compared to experts. The CD, motif count, and clustering
coefficient all showed the same trend.

2. The network density increased from the baseline for both novice and expert users, but the change
is more for novice users compared to experts in drawing and manipulation states.

3. Most of the activity was focused in the frontal region, which indicates the use of
short-term memory.

4. The small-worldness shows that experts have relatively high global and local efficiency of
information transfer than novices.

5. The hemisphere analysis shows that the information flow has increased in both hemispheres for
novice users, but experts managed to control the information flow according to the task.

6. In the lobe-wise analysis, the frontal lobe was most active in sending and receiving information
in drawing and manipulation states for all users.

Expert users have developed a capability which gives them control over different brain regions
for different tasks, unlike novice users where almost all regions became active. The results indicate
that experts were more relaxed in both drawing and manipulation states, whereas novice users put
more effort into manipulation state than drawing state. If we somehow develop a system that allows
the user to control the activation of different brain regions such as trans-cranial magnetic stimulation,
then we may be able to decrease the novice user training time to become an expert. The results are
aligned with the earlier findings of Kavalki & Gero [41] regarding differences between novice and
experts concurrent cognitive processing.

The classification result shows the effectiveness of the proposed algorithm. A classification
accuracy of more than 90% was achieved with the proposed technique using a simple k-NN
classifier. The feature selection algorithm also helps us to find the features that maximize the accuracy.
These features belong to the frontal and temporal lobes of the brain.

In the future, we will focus on using these differences for identifying novice and expert users in
real time and develop an adaptive system for 3D modelling applications that will accommodate the
differences in skill levels.
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