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Abstract: Non-invasive brain-computer interfaces (BCI) have been developed for recognizing human
mental states with high accuracy and for decoding various types of mental conditions. In particular,
accurately decoding a pilot’s mental state is a critical issue as more than 70% of aviation accidents are
caused by human factors, such as fatigue or drowsiness. In this study, we report the classification
of not only two mental states (i.e., alert and drowsy states) but also five drowsiness levels from
electroencephalogram (EEG) signals. To the best of our knowledge, this approach is the first to
classify drowsiness levels in detail using only EEG signals. We acquired EEG data from ten pilots in
a simulated night flight environment. For accurate detection, we proposed a deep spatio-temporal
convolutional bidirectional long short-term memory network (DSTCLN) model. We evaluated the
classification performance using Karolinska sleepiness scale (KSS) values for two mental states
and five drowsiness levels. The grand-averaged classification accuracies were 0.87 (±0.01) and
0.69 (±0.02), respectively. Hence, we demonstrated the feasibility of classifying five drowsiness levels
with high accuracy using deep learning.

Keywords: Brain-Computer Interface; electroencephalogram; mental states; drowsiness levels
classification; deep learning

1. Introduction

A brain-computer interface (BCI) is used between human and devices for recognizing user
intention. Non-invasive BCI technology allows users to communicate with external devices without
brain implant surgery [1–4] using the brain’s pattern encoding [5,6] or decoding ability [7–9].
Over the past decades, non-invasive BCI systems [10,11] have been validated for interaction using
a robotic arm [12–14], a wheelchair [15], and a speller [16–19]. Recently, as one of the critical
issues, the BCI technology has been investigated for recognizing human mental states with high
accuracy and decoding various types of mental conditions [20–22]. In particular, the detection of
the drowsy state for autonomous driving (e.g., vehicle and aircraft) using physiological signals has
been developed for artificial intelligence (AI) [23–25]. The drowsy state is caused by various factors
such as fatigue [22,23,26–28], workload [22,29], and distraction [30]. Detecting the drowsy state in a
driving environment has mostly been done through camera-based vision technology using human face
variability. This vision technology has achieved sufficient detection accuracy [31,32]. However, if the
subjects wear glasses or do not look straight ahead, the camera cannot detect drowsy state robustly [33].
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Therefore, BCI-based detection for a user’s mental state is being developed because it can reflect the
actual condition of the human mental states.

Some research groups have studied how to detect the drowsy state using various physiological
signals, such as electrocardiogram (ECG), electrooculogram (EOG), near-infrared spectroscopy (NIRS),
and electroencephalogram (EEG) signals. Fujiwara et al. [34] detected drowsy state-based multivariate
statistical process control from ECG and EEG signals. A new heart rate variability (HRV)-based driver
drowsiness detection algorithm is proposed by utilizing the framework of HRV-based epileptic seizure
prediction. They showed 92.0% sensitivity across 34 subjects. This sensitivity value was almost the
same as that obtained using conventional camera-based detection methods. Also, the grand-average
false positive rate was 2.15. Hong et al. [35] also detected the drowsy state based on various machine
learning methods. They measured EEG signals not only with standard 16-channel EEGs but also ear
canal EEG electrodes. Also, they acquired other physiological signals such as photoplethysmography
(PPG) and ECG signals. They showed the highest performance using a random forest with a kappa
value of 0.98 for all subjects. In addition, the mean importance point sum of the alpha/beta power
ratio was 12.76 and 11.59, respectively. Mårtensson et al. [36] decoded the drowsy state using
ECG, EOG, and EEG signals. Subjective ratings using the Karolinska sleepiness scale (KSS) was
used to split the data as sufficiently alert (KSS ≤ 6) or sleepy (KSS ≥ 8). KSS = 7 was excluded to
get a clearer distinction between the groups. They proceeded binary classification using adaptive
boosting (AdaBoost), k-nearest neighbors, linear support vector machine (SVM), Gaussian SVM,
and random forest. The best performance was observed when using a random forest with 97.2%
accuracy, 95.7% sensitivity, and 97.9% specificity. Awais et al. [37] recognized the drowsy state using
the SVM from ECG and EEG signals in a driving environment, using a video camera to establish a
ground truth for human face variability. They proposed a feature combination method of ECG and
EEG signals to detect drowsy state across all subjects. They showed detection accuracies of 70.0% using
ECG, 76.3%, and 80.9% using ECG and EEG signals, respectively. Nguyen et al. [38] also classified
the drowsy state or not, based on Fisher’s linear discriminative analysis. EEG, EOG, ECG and NIRS
signals have been measured during a simulated driving task. The blinking rate, eye closure, heart rate,
alpha and beta band power were used to identify the subject’s condition. Also, a camera was installed
to record the subject’s behavior. They showed 73.7% accuracy using NIRS, 70.5% accuracy using EEG,
and 79.2% accuracy using NIRS+EEG across 11 subjects. Moreover, the mean of oxy-hemoglobin
concentration were 0.019 and 0.017 in awake and drowsy state, respectively. In contrast, the mean of
deoxy-hemoglobin concentration were −0.003 and 0.005 in awake and drowsy state, respectively.

Few research groups have investigated detecting mental states using only EEG signals.
Gao et al. [23] evaluated the fatigue state based on deep neural networks using raw EEG signals.
They proposed a spatio-temporal convolutional neural network (CNN) model for robust detection.
They constructed deep artificial neural networks of 14 layers using a relatively small EEG dataset.
In addition, by sharing the weight parameters among core blocks, the number of parameters could
be reduced, which was directly related to increased performance. Wei et al. [39] detected the drowsy
state from EEG signals using an SVM. They attached EEG electrodes on a non-hair-bearing area using
six channels. They showed 80.0% accuracy and an area under the curve (AUC) of 0.86. Min et al. [40]
compared the fatigue state as evaluated by various machine learning methods, including a neural
network, random forest, k-nearest neighbors, and SVM from EEG signals. In addition, they chose
significant electrodes using accuracy-based weight values. The electrodes on the left temporal-parietal
region were the most significant. Dimitrakopoulos et al. [41] detected fatigue based on SVM with radial
basis function from EEG signals. The subjects were asked to perform one-hour of simulated driving
and 30 min of a psychomotor vigilance task in two different sessions. Once they obtained a functional
brain network, they characterized the graph in terms of small-world metrics, like clustering coefficients,
characteristic path lengths, and small-worldness, through graph theoretical analysis. Liang et al. [42]
predicted the drowsy state based on logistic regression from EEG. They collected driving performance
data and showed an AUC of 0.93 and 69% sensitivity across 16 subjects.
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Accordingly, the EEG-based detection system of the drowsy state has three main advantages
compared to peripheral physiological measures (PPMs) like ECG, electrodermal activity,
and respiration: (i) accurate reflection of current mental states, (ii) state detection using a short length
of data, (iii) consideration of various signal information such as spectral, temporal, and spatial aspects.
However, EEG signals-based BCI system has one of the critical issues such as the constrained number
of classes since non-stationary signal characteristics of the signals [43,44]. In particular, the current
related studies based on EEG signals have investigated for binary classification only (i.e., alert state
vs. drowsy state) due to the limited number of classes. To solve this important issue, in this paper,
we focused on not only classifying the two mental states, but also on the feasibility of classifying
drowsiness levels with high accuracy. We proposed a deep spatio-temporal convolutional bidirectional
long short-term memory network (DSTCLN) model for classifying various drowsiness levels. In this
study, drowsiness level was divided into five stages based on KSS values [45] (very alert (VA), fairly
alert (FA), neither alert nor sleepy (NAS), sleepy but no effort to keep awake (SNEA), and very sleepy
(VS)). We also measured EEG data related to drowsiness in the simulated night flight environment.
To the best of our knowledge, this is the first attempt that demonstrates the possibility of classifying
the drowsiness levels based on deep learning architecture robustly.

2. Methods

2.1. Subjects

Ten healthy subjects (S1–S10, 9 males and 1 female, aged 25.6 (±5.0)), each with over 100 h of
flight experience from the Taean Flight Education Center (an affiliated educational organization of
Hanseo University), participated in our experiment. All subjects were naïve BCI users and without any
known neurophysiological anomalies or musculoskeletal disorders. The day before the experiment, we
asked that subjects abstain from alcohol and coffee, and that they sleep for 6∼8 h the night before the
experiment. Subjects were informed of the entire experimental protocol and paradigms and consented
according to the Declaration of Helsinki. Experimental protocols and environment were reviewed
and approved by the Institutional Review Board of Korea University [1040548-KU-IRB-18-92-A-2].
The subjects were instructed to fill out two questionnaires to check their mental and physical health
conditions before the experiment to evaluate the experimental paradigm.

2.2. Experimental Protocols and Paradigm

The flight simulator used the Cessna 172 simulator (Garmin, Olathe, KS) as shown in Figure 1.
The cockpit consisted of a monitor display, a flight yoke, and other control panels to simulate a realistic
flight environment. The screen provided a 210◦ view of what the pilot could see outside of the aircraft.
The flight yoke had a wireless KSS keypad for drowsiness level input. The keypad was attached to the
flight yoke for minimizing external noise caused by movement when subjects pressed the KSS keypad.

We designed the experimental paradigm to induce the pilot’s drowsiness levels with EEG signals
(Figure 2). The subjects carried out a simulated sustained night flight (high: 3000 feet, heading:
0 degrees, speed: 100 knot) for 1 h. The subjects entered KSS values for their current drowsiness level
within 10 s of hearing a beeping sound. The beeping sound made the role of indexing their drowsiness
level voluntarily and concentrating the experiment from inattention state due to time evolution [46].
KSS values consist of 9 drowsiness levels from KSS 1 (clearly alert state) to KSS 9 (extremely drowsy
state). If the subjects failed to input KSS values or could not perform the simulated flight due to a
continuous drowsy state, we regarded that interval as KSS 9.
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Figure 1. Experimental environment for EEG data acquisition in the simulated night flight.
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Figure 2. Experimental paradigm for acquiring data of various drowsiness levels.

2.3. Data Acquisition

The EEG and EOG signals were continuously recorded by BrainAmp devices (Brain Products
GmbH, Gilching, Germany). The sampling frequency of EEG and EOG was 1000 Hz, and a 60 Hz
notch filter was applied for power supply noise reduction. 30 EEG channels were placed on the
scalp according to the standard international 10-20 system (Fp1-2, F3-4, Fz, FC1-2, FC5-6, T7-8, C3-4,
Cz, CP1-2, CP5-6, TP9-10, P3-4, P7-8, Pz, PO9-10, O1-2, and Oz). 4 EOG channels (vertically with
electrodes above and below the left eye; EOG1 and EOG2, respectively, and horizontally with electrodes
at the outer canthus; left: EOG3 and right: EOG4) were also recorded. The reference and ground
electrodes were placed on the FCz and AFz channels, respectively (Figure 3). During signal recording,
the impedance of EEG and EOG electrodes was maintained below 10 kΩ by injecting conductive gel.

EOG channels

EOG1

EOG2

EOG3EOG4

EEG channels

GND

REF

Figure 3. Data acquisition for 30 EEG channels and 4 EOG channels.



Brain Sci. 2019, 9, 348 5 of 18

2.4. EEG Pre-Processing

EEG signal processing was conducted using a BBCI toolbox [47] and an OpenBMI toolbox [48]
in a MATLAB 2019a environment. The EEG data were band-pass filtered between 1 to 50 Hz using a
second-order zero-phase Butterworth filter and were down-sampled from 1000 Hz to 100 Hz. The data
for each trial (1 min) were segmented into 1-s data without overlap as a data sample except the 10-s of
data after the beep sound (Figure 2) [23]. Therefore, we could obtain 3600 samples (60 samples for a
single-trial × 60 trials for an hour) for each subject. Across all subjects, for 36,000 samples in a total,
we randomly selected 75% of the trials as a training set and used the remaining 25% as a test set for
adopting 4-fold cross-validation. In addition, to avoid the overfitting problem for model learning,
we randomly selected the data samples in a fair manner by using 75% of the samples as the training
sets and the remaining 25% as the test sets for each trial [36]. We defined drowsiness levels by two
approaches using the marked KSS values; (i) 2-class: alert state (KSS 1∼6) and drowsy state (KSS
7∼9) [36], and (ii) 5-class: VA (KSS 1∼2), FA (KSS 3∼4), NAS (KSS 5∼6), SNEA (KSS 7∼8), and VS
(KSS 9). To obtain clear EEG data, we applied an independent component analysis (ICA) [49] to remove
contaminated data components generated by eye blinks and body movement. The 4 EOG channels
were used as the contaminated reference signals to reject the independent component (IC).

EEG acquisition

Band-pass filter

(1-50 Hz)

Down-sampling

(100 Hz)

Artifact rejection

(ICA)

Time

segmentation

Data pre-processing

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Bi-LSTMSpatio-temporal CNN

DSTCLN for detecting drowsiness levels Classification

Z
Z Z

Very alert

Fairly alert

Neither alert 

nor sleepy

Sleepy but no effort 

to keep awake

Very sleepy

Figure 4. Overall flowchart for the proposed deep spatio-temporal convolutional bidirectional LSTM
network (DSTCLN)-based drowsiness levels classification.

2.5. DSTCLN

We proposed the DSTCLN-based deep learning framework to classify mental states and
drowsiness levels (Figure 4). In conventional studies [50,51], various EEG features such as spectral,
temporal, and spatial information have been used to train deep learning models. For example, the CNN
architecture could extract spatio-temporal information by considering spectral components depending
on filter size [51]. Based on this characteristic, we adopted the principle of hybrid deep learning
architecture (e.g., CNN+Bi-LSTM). We constructed a hierarchical CNN architecture for extracting
high-level spatio-temporal features [52] and applied the Bi-LSTM network to consider time-series data
characteristics like brain signals. Table 1 indicates the structure of the DSTCLN framework in detail.

The input data was composed of the total number of EEG channels and sampling points (30 × 100)
after pre-processing step. The spatio-temporal CNN in the DSTCLN was designed in the form of
a hierarchical CNN which was divided into five convolutional blocks to deeply extract high-level
features [23]. Each convolutional block was constructed into two convolution layers and a batch
normalization layer with a batch size of 32. In the convolutional blocks I, II, and III, the filter size for
extracting temporal features was 1 × 5 and the stride was 1 × 1. In blocks IV and V, the filter sizes
were 5 × 1 and 3 × 1, respectively, for considering spatial information. Convolutional block V was set
with a 0.5 dropout ratio and the maximum-pooling and average-pooling layers were used for avoiding
overfitting. We applied exponential linear units (ELUs) as activation functions in convolutional block
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V [51]. After filtering through the convolutional blocks, the output data sized at 1 × 256 × 76 was
assigned as input data for the Bi-LSTM block.

We adopted the Bi-LSTM network to consider the long-term dependency problem for time-series
data [53]. The recurrent deep learning model such as Bi-LSTM has been developed as one of the
effective deep network architecture for mental state recognition based on physiological signals [54,55].
The Bi-LSTM network consists of two LSTM layers that process sequential information in two opposing
directions simultaneously. One layer processes sequential instances of input data from the first-time
instance to the end-time instance, and the other processes the same input data in the reverse order [53].
The final output of the Bi-LSTM at each instance in sequence is calculated by combining the two outputs
of each LSTM layer. Each LSTM memory cell is processed using input data X = (x1, x2, x3, · · · , xn) for
n time steps as below.

At time t, using input xt and the previous hidden state ht−1, the memory cell selects what to keep
or forget from the previous states using the forget gate ft (1). The memory cell computes the current
state ct in two steps. First, the cell calculates a memory cell candidate state c̃t (4). Next, using the
previous cell state ct−1 and input gate it (2), the cell decides how much information to write in the
current state ct (5). The output gate decides how much information ht (6) will be transferred into the
next cell using the output gate ot (3). W denotes weight matrices or weight vectors, b denotes biases,
σ is the logistic function and ◦ is the Hadamard product operator.

ft = σ(Wjhht−1 + W f xxt + b f ), (1)

it = σ(Wjhht−1 + Wixxt + bi), (2)

ot = σ(Wohht−1 + Woxxt + bo), (3)

c̃t = tanh(Wchht−1 + Wcxxt + bc), (4)

ct = ft ◦ ct−1 + it ◦ c̃t, (5)

ht = ot ◦ tanh(ct) (6)

The proposed model consisted of four Bi-LSTM layers with 256 or 128 hidden units, and one
dropout layer. The first three Bi-LSTM layers used a many-to-many approach for the input sequence
of the fourth Bi-LSTM layer. The last layer used a many-to-one approach for the input into the
classification block. Finally, three fully connected layers and one softmax layer were used for final
decision-making in the classification block. The last fully-connected layer’s output is fed to 2 or 5-way
softmax which produces a distribution over the 2 (alert or drowsy states) or 5 (five drowsiness levels)
class labels [56].

Table 1. The structure of the proposed DSTCLN framework.

Input Size Block Layer Parameter Output Size

- - Input - 30 × 100

30 × 100 Convolutional
block I

Convolution

Layer number: 2
Filter size: 1 × 5
Feature map: 32
Stride size: 1 × 1

30 × 32 × 92

BatchNorm -

30 × 32 × 92 Convolutional
block II

Convolution

Layer number: 2
Filter size: 1 × 5
Feature map: 64
Stride size: 1 × 1

30 × 64 × 84

BatchNorm -
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Table 1. Cont.

Input Size Block Layer Parameter Output Size

- - Input - 30 × 100

30 × 64 × 84 Convolutional
block III

Convolution

Layer number: 2
Filter size: 1 × 5
Feature map: 128
Stride size: 1 × 1

30 × 128 × 76

BatchNorm -

30 × 128 × 76 Convolutional
block IV

Convolution

Layer number: 3
Filter size: 5 × 1
Feature map: 128
Stride size: 1 × 1

18 × 128 × 76

18 × 128 × 76 Maxpool Filter size: 2 × 1
Stride size: 2 × 1 9 × 128 × 76

BatchNorm -

9 × 128 × 76

Convolutional
block V

Convolution

Layer number: 3
Filter size: 1 × 3
Feature map: 256
Stride size: 1 × 1

3 × 256 × 76

3 × 256 × 76

Avgpool Filter size: 3 × 1

1 × 256 × 76BatchNorm -
Acvivation (ELU) -

Dropout (0.5) -

1 × 256 × 76

Bi-LSTM
block

Bi-LSTM Hidden units: 256 512 × 76
512 × 76 Bi-LSTM Hidden units: 256 512 × 76
512 × 76 Bi-LSTM Hidden units: 128 256 × 76

256 × 76 Bi-LSTM Hidden units: 128 256 × 1
Dropout (0.5) -

256 × 1

Classification

Fully connected Hidden units: 128 128 × 1
128 × 1 Fully connected Hidden units: 64 64 × 1

64 × 1 Fully connected Hidden units: 5 5 × 1
Softmax -

We performed 50 iterations (epochs) for the model training process and saved the trained DSTCLN
model weights and hyper-parameters that have the lowest loss of the training process. The final
classification performance was evaluated on the test dataset in terms of classification accuracy, standard
deviation (Std), sensitivity, and specificity.

3. Results

3.1. Classification Performances for Drowsiness Levels

Table 2 shows the overall classification performances of drowsiness levels across all subjects.
We applied the 4-fold cross-validation method for evaluating classification accuracy fairly.
The grand-averaged performance was 0.87 (±0.01) for classifying two mental states, and the sensitivity
value was 0.86 and the specificity value was 0.88. In classifying five drowsiness levels, we obtained
a classification performance of 0.69 (±0.02) that was a highly accurate compared to what would be
expected by chance (0.2).
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Table 2. Overall classification performances for two mental states and five drowsiness levels.

1-Fold 2-Fold 3-Fold 4-Fold Classification Accuracy Std

2-class
(Alert state / Drowsy state)

0.86 0.87 0.88 0.87 0.87 ±0.01

5-class
(VA / FA / NAS / SNEA / VS)

0.67 0.69 0.70 0.71 0.69 ±0.02

Figure 5 shows the confusion matrices for 2-class and 5-class classification using the DSTCLN.
Each column of the confusion matrix represents the target state and each row represents the predicted
state. The element (i, j) is the ratio samples in class j that is classified as state i. Figure 5a shows the
results of classifying two mental states. The true positive rate for the alert state was 0.86 and the true
negative rate for the drowsy state was 0.88. In contrast, the false positive and false negative rates
were 0.14 and 0.12, respectively. Figure 5b indicates the results of classifying five drowsiness levels.
This figure shows the highest true positive rate for the VA level at 0.88, while NAS and VS levels had
the lowest values.

Figure 5. Confusion matrices of classification accuracy for each class across all subjects. (a) confusion
matrix of classifying two mental states, (b) confusion matrix of classifying five drowsiness levels.

3.2. Comparison Classification Performances with Conventional Methods

Table 3 shows a comparison of classification performances using the proposed DSTCLN and
conventional methods. We evaluated the classification performances for two mental states and five
drowsiness levels using our experimental data. The representative conventional methods with respect
to mental state detection are: power spectrum density (PSD)-SVM [57], canonical correlation analysis
(CCA)-SVM [46], channel-wise CNN (CCNN) [58], EEG-based spatial-temporal CNN (ESTCNN) [23],
and Deep LSTM (LSTM-D) [55].

The PSD-SVM [57] method, one of the most common conventional method, extracted spectral
density power while neglecting spatial information of EEG signals, and then trained the SVM classifier.
In a similar fashion, the CCA-SVM [46] method calculated the PSD corresponding to EEG channels
and chose features considering the canonical correlation coefficient. After feature selection, spectral
features were classified using the SVM classifier. CCNN [58], ESTCNN [23], and LSTM-D [55] methods
were used to the performance comparison. The CCNN method adopted a channel-wise filter for
reflecting EEG spatial adjacency to predict driver’s cognitive state. The ESTCNN [23] also considered
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the spatial relations and temporal dependencies using EEG signals for classifying fatigue states based
on KSS values. LSTM-D [55] was comprised of a sequence-to-sequence LSTM layer and many-to-one
LSTM layer for mental workload classification.

Table 3. Comparison of classification performances using the conventional methods and the DSTCLN.

Methods
Alert State and Drowsy State (2-Class) Drowsiness Levels (5-Class)

Accuracy Std Sensitivity Specificity Accuracy Std

PSD-SVM [57] 0.64 0.03 0.77 0.50 0.31 0.04
CCA-SVM [46] 0.78 0.02 0.73 0.84 0.47 0.05
CCNN [58] 0.52 0.01 0.68 0.34 0.33 0.03
ESTCNN [23] 0.78 0.01 0.73 0.85 0.56 0.01
LSTM-D [55] 0.74 0.01 0.55 0.92 0.45 0.02
Proposed DSTCLN 0.87 0.01 0.86 0.88 0.69 0.02

The text using bold type represents classification performances of the proposed DSTCLN.

The sensitivity and specificity showed similar patterns for accuracy in classifying two mental
states. The sensitivity values were 0.77, 0.73, 0.68, 0.73, and 0.55 for conventional methods, with 0.86 as
the maximum sensitivity value of DSTCLN. The specificity values were 0.50, 0.84, 0.34, 0.85, 0.92 and
0.88 for each method, respectively. These results indicated that the DSTCLN model could detect the
drowsy state with higher performance than the alert state across all subjects.

The comparison results showed that the proposed DSTCLN had the highest classification
performance as 0.87 (±0.01) for two mental states and 0.69 (±0.02) for five drowsiness levels.
The ESTCNN method achieved the highest performances with 0.78 (2-class) and 0.56 (5-class) among
the conventional methods for each comparison. The proposed DSTCLN and the ESTCNN had
significant performance differences for both 2-class and 5-class problems. To the statistical analysis of
both two different models, we applied a paired t-test to the classification performance for each fold.
A paired t-test has commonly used to determine two samples in which observations in one sample can
be paired with observations in the other sample. The p-values as statistical results between models
were observed below 0.002 and 0.001 for 2-class and 5-class problems, respectively. The CCA-SVM
method showed sufficient classification accuracy in classifying two mental states but could not achieve
a high performance for classifying five drowsiness levels. Although the PSD and CCA features could
be extracted to robust EEG characteristics for a binary class problem, it is still limited when it comes to
the multi-class problem.

3.3. Neurophysiological Analysis from EEG Signals

Figure 6 shows scalp topographies according to the spectral bands of EEG signals across all
subjects. The scalp topographies show the grand-averaged band power to visualize brain activation
during the transitional phase from the alert to drowsy state. Figure 6a,b indicate the scalp patterns
corresponding to the classification of two mental states and five drowsiness levels, respectively.
The amplitude was computed for all EEG channels and for each frequency band (delta, theta, alpha,
beta, and gamma) across all subjects. The scalp topographies show that the amplitude was significantly
different for each spectral band and brain region, not only between the two mental states in Figure 6a
but also among the five drowsiness levels in Figure 6b.

As shown in Figure 6a, the amplitudes of scalp distribution between the alert state and drowsy
states had significant differences in the theta, alpha, and beta bands through the paired t-test
(p-value < 0.005). In contrast, in the delta and gamma bands, there is no significant difference for the
amplitude variations. Additionally, the increased amplitude of theta power in the temporoparietal
region, the increased amplitude of alpha power in the occipitoparietal region, and the increased



Brain Sci. 2019, 9, 348 10 of 18

amplitude of beta power in the frontal region were seen during the drowsy state compared to the alert
state. In contrast, there was no difference in spatial activation between the two mental states in the
delta and gamma bands.

Figure 6b for five drowsiness levels shows similar spatial patterns to the two mental states.
For example, in the alpha band, the scalp distribution between the VA and VS levels showed a
significant difference through the paired t-test (p-value < 0.005), but represented similar spatial
patterns between each neighboring drowsiness level such as VA vs. FA and FA vs. NAS. In addition,
for multiple comparisons with Bonferroni correction among the levels, we confirmed that the significant
difference among VA, NAS, and VS, which are extremely discriminant drowsiness levels across all
bands (p < 0.001). However, the p-values between FA and NAS for the delta, theta, alpha, and beta
band were observed no significant difference as 0.56, 0.32, 0.21, and 0.11, respectively. In the case of
the gamma band, the p-value was 0.33 between NAS and SNEA. Additionally, positive activation of
theta power in the temporoparietal region, positive activation of alpha power in the occipitoparietal
region, and positive activation of beta power in the frontal region appeared with increasing the
drowsiness levels. There were no particular patterns in the delta and gamma bands when increasing
the drowsiness levels.

Table 4. EEG mean frequencies according to spectral bands in both 2-class and 5-class problem for
all subjects.

State
Delta

(1–4 Hz)
Theta

(4–8 Hz)
Alpha

(8–13 Hz)
Beta

(13–30 Hz)
Gamma

(30–50 Hz)

2-class
Alert 1.99 Hz 5.98 Hz 9.86 Hz 20.74 Hz 36.96 Hz
Drowsy 1.98 Hz 6.22 Hz 9.68 Hz 19.87 Hz 36.77 Hz
Difference 0.01 −0.24 0.18 0.87 0.19

5-class

VA 2.19 Hz 5.82 Hz 9.92 Hz 20.68 Hz 36.59 Hz
FA 2.22 Hz 5.92 Hz 10.01 Hz 20.82 Hz 37.12 Hz
NAS 2.15 Hz 6.05 Hz 9.84 Hz 20.80 Hz 37.13 Hz
SNEA 2.04 Hz 6.17 Hz 9.69 Hz 20.21 Hz 36.92 Hz
VS 2.24 Hz 6.29 Hz 9.70 Hz 19.38 Hz 36.00 Hz

We also investigated changes in the mean EEG frequency during alert and drowsy states.
The mean frequency of EEG signals is used as an indicator of the general slowing of brain activity [59].
For calculating the mean frequency for all channels, we used the PSD on each spectral interval. Table 4
represented the mean frequency of each band across all subjects. This multivariate analysis revealed a
significant decrease in power at high frequency and an increase at a lower frequency for all channels.
In our experiment, the mean frequency of alert state was slightly higher than that of drowsy state
except in theta band (difference: −0.23 Hz). In addition, we compared the mean EEG frequency for
five drowsiness levels. In the case of 5-class problem, the mean frequencies were slightly different
depending on the drowsiness level. The mean frequency of FA level showed the highest in alpha
(10.01 Hz), beta (20.82 Hz), and gamma (37.13 Hz) bands. Also, in the VS level, the mean frequency
was the lowest in alpha (9.69 Hz), beta (19.38 Hz), and gamma (36.00 Hz) bands. In addition, we found
out the decreasing tendency when the drowsiness level was increased in the same bands.

Figure 7 shows the channel-wise spectral power in each frequency band. The highest difference
value of theta power between VA and VS levels showed at the frontal region. Also, we could observe
the discriminant difference between VA and VS levels of alpha power at the parietooccipital region.
The relative change of beta power between VA and VS levels represented at the parietal region.

Figure 8 shows the PSD of alpha band corresponding to two mental states. The PSD of drowsy
state was higher than that of alert state. Therefore, the activation degree of drowsy state was more
than that of alert state in the alpha band.
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Figure 6. Grand-averaged scalp topographies across each spectral band (delta, theta, alpha, beta,
and gamma) for two mental states (a) and five drowsiness levels (b) in all subjects. VA (very alert),
FA (fairly alert), NAS (neither alert nor sleepy), SNEA (sleepy but no effort to keep awake), and VS
(very sleepy).
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Figure 7. Channel-wise spectral power in each frequency band across all subjects; δ (delta band), θ

(theta band), α (alpha band), β (beta band), and γ (gamma band).
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Figure 8. Alpha spectral peak using the PSD for alert state and drowsy state across all subjects.

4. Discussion

In this paper, we demonstrated the feasibility of simple classification for two mental states as well
as multi-classification for detailed drowsiness levels based on deep learning techniques. The proposed
DSTCLN model was based on the principle of hybrid deep learning frameworks, combining CNN
and Bi-LSTM. The DSTCLN considered EEG features with respect to the human’s mental state using a
spatio-temporal filter. To the best of our knowledge, this study is the first time to classify drowsiness
levels using a deep learning technique with robust classification performance.
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Recent conventional works with respect to the BCI-based detection of mental states have focused
on accurate classification of user mental states using advanced machine learning algorithms and
deep learning architecture [60–65]. Recognizing the mental conditions of drivers or pilots is a critical
issue in systems using AI technology, such as autonomous vehicles and autopilot. Therefore, some
groups have focused on detecting the drowsy state in a vehicle-driving environment [23–25,27,30,31],
while a few groups performed the analysis of physiological signals for detecting the drowsy state in
an aircraft environment [22,28,46]. In particular, aviation accidents do not happen more frequently
than vehicle accidents; but, when they occur, they cause far worse casualties and large explosions.
Statistically, more than 70% of aviation accidents can be attributed to human factors like pilot fatigue,
and the drowsy state might be an important contributor to a large number of aviation accidents [66].
These aviation accidents not only have immediate effects (worse casualties and aircraft explosion) but
could extend to secondary accidents such as harming the surrounding environment [67]. Therefore,
in this study, we focused on data regarding drowsy states in a simulated flight experience with human
pilots. Only volunteers with at least 100 h of flight experience were allowed to participate in this study.
To induce the pilot’s drowsy state, we assigned the night flight simulation. Hence, our experimental
data was able to indicate the pilot’s mental condition (alert state vs. drowsy state), and we showed
that the DSTCLN could contribute in the real world by preventing not only large aviation accidents
but also vehicle accidents as it can robustly detect a user’s mental condition.

Although direct performance comparison was impossible due to different experimental protocols
and paradigm, we compared the classification performances to conventional methods using our
experimental data. The DSTCLN showed the highest classification accuracies for both 2-class and
5-class classifications as 0.87 (±0.01) and 0.69 (±0.02), respectively. In addition, our proposed model
had 0.86 of sensitivity and 0.88 of specificity for 2-class classification. Sensitivity means that the
true data is classified as positive and specificity means that the false data is classified as negative.
LSTM-D, which is one of the conventional methods, showed the lowest sensitivity and the highest
specificity. However, the specificity of LSTM-D and DSTCLN could not achieve much difference.
In the view of accuracy, sensitivity, and specificity, the DSTCLN had the significant ability to classify
both 2-class and 5-class compared to the previous models. The proposed framework could consider
the spectral and spatial features of EEG signals through CNN architecture and reflect the temporal
information of time-series data using a Bi-LSTM network. In addition, we confirmed that certain
spatial distributions were represented in the alert and drowsy states, respectively. We also found
out that scalp topographies of VA and VS levels showed similar spatial patterns between the two
mental states, and observed the characteristics of the transitional phase between FA and NAS levels.
These results demonstrated that it could provide proper neurofeedback with BCI-users in a driving
environment. In addition, in the gamma band, we could observe the significant difference among the
various states of alert and drowsy through the one-way analysis of variance and paired t-test with
Bonferroni correction for multiple comparisons. The p-values presented relatively low when compared
to extremely discriminant drowsiness levels. Also, a little significant difference existed between alert
state and drowsy state for the 2-class problem. In the context of EEG activity, the drowsy state showed
a similar environment with inattention state [68]. Therefore, in our experiment, the gamma activity
also showed a little significant difference except for specific drowsiness level comparisons such as
between NAS level and SNEA level. This result could demonstrate the brain activities represented
similar activity patterns compared to the conventional works for inattention/attention tasks [68] in
our experiment.

Additionally, we have approached for the attempt to leave one subject out cross-validation,
which is one of the representative performance evaluation methods for a subject-independent BCI
paradigm for validation. In conventional works, few groups also adopted the leave one subject out
cross-validation to detect the drowsy state or not using their proposed method with multimodal
signals [36]. Our proposed DSTCLN using only EEG signals has also achieved high performance as
0.76 (±0.07) using leave one subject out cross-validation across ten subjects in the 2-class problem (i.e.,
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drowsy state vs. alert state). Next, we also applied the same evaluation approach to classifying five
drowsiness levels. For the 5-class problem, the classification performance was averaged 0.28 (±0.11)
that is a little high chance-level accuracy (0.20). This result was an insufficient performance to
implement the subject-independent BCI approach to real-world environment. The leave one subject
our cross-validation approach has not adopted to the dedicated drowsiness level classification problem
yet, since the standard index of drowsiness levels using KSS has much bias depending on each subject.
The KSS indices have generally used as a correct label for clear mental states, but it is a subjective
index for each subject. Therefore, we will consider investigating a standard index for labeling drowsy
states objectively, to solve a inter-subject variability problem.

Furthermore, in the aspect of the real-world scenarios, the DSTCLN architecture had more layers
than common deep learning architectures in the BCI fields, and therefore the computation cost for
model training had much time. For more accurately and rapidly detect drowsiness levels for real-world
scenarios, we will either modify the model configuration to a shallower model while maintaining
high performance, or we will adopt a weight-parameter sharing method [23,51]. Since providing
proper feedback to users and predicting mental states are critical techniques that could contribute to
preventing accidents before they happen [24].

5. Conclusions and Future Works

In this paper, we presented the feasibility of classification for five pilot’s drowsiness levels using
deep learning technique. We designed the experimental protocols to acquire EEG signals for the
drowsy state in a simulated night flight environment. The proposed DSTCLN has been evaluated for
its classification performance for the alert and drowsy states (2-class) and drowsiness levels (5-class)
across ten subjects. The experimental results demonstrated sufficient classification performances for
drowsiness levels using only EEG signals.

We will investigate advanced methods for classification performance improvement and modify
the proposed DSTCLN framework. In addition, we will evaluate the architecture to classify the mental
states for not only flight environment but also the vehicle-driving environment. We believe that this
study could contribute to realizing fully autopiloted aircraft and autonomous vehicles in the future.
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The following abbreviations are used in this manuscript:

BCI Brain-Computer Interface
EEG Electroencephalogram
DSTCLN Deep Spatio-Temporal Convolutional Bidirectional Long Short-Term Memory Network
KSS Karolinska Sleepiness Scale
AI Artificial Intelligence
ECG ElectroCardioGram
EOG ElectroOculoGram
NIRS Near-Infrared Spectroscopy
HRV Heart Rate Variability
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PPG PhotoPlethysmoGraphy
AdaBoost Adaptive Boosting
SVM Support Vector Machine
CNN Convolutional Neural Network
AUC Area Under the Curve
PPMs Peripheral Physiological Measures
VA Very Alert
FA Fairly Alert
NAS Neither Alert nor Sleepy
SNEA Sleepy but No Effort to keep Awake
VS Very Sleepy
ICA Independent Component Analysis
IC Independent Component
Bi-LSTM Bidirectional Long Short-Term Memory
ELUs Exponential Linear Units
LSTM Long Short-Term Memory
Std Standard Deviation
PSD Power Spectral Density
CCA Canonical Correlation Analysis
CCNN Channel-Wise Convolutional Neural Network
ESTCNN EEG-based Spatio-Temporal Convolutional Neural Network
LSTM-D Deep Long Short-Term Memory
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