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Abstract: In the past twenty years, evidence of neurotoxicity in the developing brain in animal
studies from exposure to several general anesthetics has been accumulating. Propofol, a commonly
used general anesthetic medication, administered during synaptogenesis, may trigger widespread
apoptotic neurodegeneration in the developing brain and long-term neurobehavioral disturbances in
both rodents and non-human primates. Despite the growing evidence of the potential neurotoxicity
of different anesthetic agents in animal studies, there is no concrete evidence that humans may be
similarly affected. However, given the growing evidence of the neurotoxic effects of anesthetics
in laboratory studies, it is prudent to further investigate the mechanisms causing these effects and
potential ways to mitigate them. Here, we review multiple studies that investigate the effects of
in utero propofol exposure and the developmental agents that may modify these deleterious effects.
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1. Introduction

Propofol is the most commonly used intravenous agent in current anesthesia practice. While it is
generally considered safe in a mature brain, the safety of propofol exposure on a developing brain is
questionable. Many general anesthetics such as isoflurane, sevoflurane, ketamine, and midazolam
have been shown to cause adverse changes of the brain in neonatal animal studies. In recent years,
evidence of the neurotoxic effects of propofol in the neonatal animals has also begun to accumulate.
However, most current studies of propofol-induced neurotoxicity are derived from neonatal animal
studies; much less is known about the effects of propofol exposure on a fetal brain. This review covers
uncertainties about whether propofol would have a similar neurotoxicity profile in the fetal animal
brain as in the neonatal animal brain. This review also addresses currently available methods to modify
any potential neurotoxic effects of propofol on the fetal brain.

2. Current Understanding of Anesthetic Neurotoxicity

Since the 1980s, evidence of the potential neurotoxicity of anesthetic agents given to neonatal
animals has emerged [1,2]. Numerous studies have confirmed that anesthetic agents given to neonatal
rats lead to neurodegeneration and subsequent neurocognitive deficits and behavioral changes [3–7].
These results have been replicated in many different species, including primates [8–10].

Various factors contribute to the degree of neurodegeneration observed in these animal studies.
Factors that influence the toxicity of anesthetic agents are characteristics of exposure, sensitivity of the
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brain and nervous system, and metabolic competency of the organism. Studies have demonstrated that
evidence of neurodegeneration increases with longer duration, greater dosage, and higher frequency
of anesthetic exposure [1,3,11]. A key factor of anesthetic-related neurotoxicity is the period or timing
of the exposure in relationship to neuronal maturity. The vulnerability of neurons to exposure of
anesthetics revolves around the concept of the brain growth spurt period (BGSP), a period of rapid
formation of synapses (synaptogenesis) between the neurons of the central nervous system [12].
Significant evidence of neurodegeneration in rats occurs after exposure to anesthetic gases on postnatal
day 7 (PND 7), which coincides with the peak of BGSP [3,6]. This observation is becoming a concerning
issue with obstetrical and pediatric clinical anesthesia since the human BGSP is estimated to occur
from the second trimester to three years of age [12,13]. Propofol is a relatively new general anesthetic
that is being used in many of these procedures and is becoming a concern in the field of neurotoxicity.

3. Effects of Propofol on Neonatal Animal Brain

The findings from animal studies within the past ten years have shown that propofol exposure may
induce similar neurotoxicity in neonatal animals of several species [14–27]. Evidence for neurotoxicity
was supported by elevations in caspase-3 activity in neurons, an indication of neuronal apoptosis or
death [17–25]. Caspase-3 is a protein that plays a central role in both the extrinsic and intrinsic apoptotic
pathways. These neurodegenerative effects following propofol exposure have been observed in various
animal models, including rhesus monkeys [28]. Furthermore, the observed neurodegeneration was
associated with significant long-term behavioral deficits [18,26,27].

The role of excessive apoptosis has been a major research focus as a cause of the neurodegeneration
that results from early propofol exposure [17,22,23,29]. Studies have found that anesthetic agents
binding to the GABA and NMDA receptors during the BGSP may potentially trigger excess apoptosis
and affect neuronal development [30–33]. A rationale for the increased vulnerability during this period
is that exposure of anesthetics leads to excitation, rather than inhibition, of the GABAA receptors
during BGSP [34,35]. Other studies have investigated the specific secondary messengers that may be
involved in the apoptotic cascade, such as the role of neurotrophins and the enzymes involved in its
downstream cascade [17,22,23,29,36–38], the expression of tumor necrosis factor [17,23,29], and the
activation of microglial cells in the brain. Other features such as suppression of neurogenesis [14,15]
and alterations of dendritic spinogenesis may contribute to propofol-induced neurotoxicity [16].
More recently, study shows propofol promotes blood-brain barrier breakdown in the developing
mouse brain [39]. The mechanism of neurotoxicity associated with neonatal propofol exposure has not
yet been clearly identified. Nevertheless, these various mechanisms provide a positive indication that
neonatal propofol exposure does cause neurotoxicity.

It is worth noting that the timing of propofol exposure of the young animal was very critical to
detect neurotoxic effects [17,29], which has been verified in many studies involving other anesthetic
agents [3,6]. The reason that anesthetic-induced neurotoxicity can arise in 7-day-old rats may directly
relate to the contemporaneous peak of synaptogenesis. It is interesting to determine whether propofol
exposure in younger rats (<7 days) can induce any detectable neurotoxicity. What stages of brain
development are vulnerable to the neurotoxic effects of propofol? Would propofol exposure have an
effect on the brain during gestation? Here, we review the few studies in the literature that address
these questions.

4. Effects of Propofol in Fetal Animal Brain

Fetal exposure to general anesthetics may have a significantly different response to that of the
neonatal brain. For example, Bai et al showed that neural stem cells were actually more resistant
to neurotoxic damage than two-week-old differentiated neurons in vivo [40]. A number of animal
studies showed that fetal exposure to volatile anesthetics does cause neurodegeneration and long-term
change [41–44]. Anesthetic exposure of the dam also exposes the fetus to propofol since the highly
lipid soluble propofol has been shown to transfer through the placenta [45,46]. However, whether
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this exposure leads to neurodegeneration remains largely unknown, but is an important research and
clinical issue.

Xiong and Li et al. have investigated the effects of fetal exposure in utero to propofol, as a model
for surgery during pregnancy [36,47]. Xiong’s study assesses whether an intravenous infusion of
propofol to a pregnant rat on gestational day 18 would lead to detectable neurotoxic effects in the brain
of the offspring. Pregnant rats were exposed to propofol via tail vein infusion for 1 to 2 h on gestational
day 18; they maintained normal pregnancy, and delivered offspring on day 21 to 23. Through this
process, the study was able to control the dosage of propofol exposure. The initial study administered
the subclinical dosage of propofol to pregnant rats, which was maintained at the infusion rate of
0.4–0.5 mg/kg/min for 0.5 to 2 h and produced a light sedation (defined as reduced activity but with
intact righting reflex). The propofol-exposed pregnant rats were divided into two experimental groups
to assess the early and long-term effect of propofol. Group one consisted of fetuses that were harvested
via Cesarean section six hours after propofol exposure to investigate immediate effects of propofol
exposure. Group two consisted of offspring of the pregnant rats that were allowed to undergo normal
spontaneous vaginal delivery. These pups would then be followed for up to one month to look into
long-term effects of propofol exposure.

The immediate effects of gestational propofol exposure were dependent on the duration
of exposure. Gestational exposure to propofol for a short duration (0.5 h) at a light sedation
(reduced activity but intact righting reflex; propofol infusion rate of 0.4–0.5 mg/kg/min) did not
affect the levels of cleaved caspase-3 in the fetal brain. In contrast, 1- or 2-h propofol infusion at the
same infusion rate (i.e., providing 2ˆ or 4ˆ the dosage) significantly increased the activation of capase-3
in the fetal brain at 6 h post infusion (Figure 1). The increased apoptotic activity occurred in many
different brain regions, with the heaviest concentrations in the cortex, thalamus, and hypothalamus
regions. Double staining with anti-cleaved caspase-3 and anti-NeuN, a neuron-specific nuclear protein,
demonstrated that the majority of the cleaved caspase-3 positive cells were neurons [36] (Figure 1).
This widespread apoptosis in the fetal brains was documented via immunohistology and Western
blotting. In addition, the fetal brains showed a significant activation of central neural inflammation
including activation of microglial cells, which may serve as another possible mechanism for the
observed neurodegeneration [36]. The results from Xiong et al. and Li et al. studies extended
Creeley et al.’s primate studies in which the effects of propofol exposure in neonates and fetuses
were compared. Creeley et al.’s study compared two experimental groups of rhesus monkeys: fetuses
were exposed in utero on preconception day 120 and neonates were exposed on postnatal day 6.
Different areas of neurodegeneration occurred in the two groups, with the damage more pronounced
in the in utero exposed group [28]. Taken together, these studies are the first to demonstrate that
prenatal exposure of propofol in animals may trigger similar or more pronounced neurodegeneration
than that in neonatal animals [28,36,47].

The long-term effects of prenatal-propofol exposure are also very interesting. Besides the acute
changes seen immediately following exposure to propofol, there seems to be an impact on the
development of the offspring. Li et al. demonstrated developmental delays such as slower growth
of body and brain, and slower maturation of neurological reflexes in rats that had been exposed to
propofol prenatally (gestational day 20). However, these signs of developmental delays were no
longer detectable on postnatal day 28 [37]. In addition to the apoptotic changes, the pups exposed
in utero to light sedation with propofol on gestational day 18 also showed a significant decrease
in synaptophysin on postnatal day 28 [47]. Synaptophysin expression is an indicator of ongoing
synaptogenesis. The reduced synaptogenesis observed on postnatal day 28 may be one of the causes
for long-term damages observed in pups exposed on gestational day 18 [47].

Addressing whether this persistent alteration of synaptogenesis would lead to behavioral and
learning changes was an important question. Xiong et al. found that the propofol in utero exposed
group possessed less exploratory activity and spatial learning deficits at postnatal day 28 in an eight
arm radial maze than the control pups. These results suggested that the damage to the brain during
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fetal development can last longer than the transient activation of the apoptotic pathway [47]. This idea
that the neurotoxicity induced by general anesthetics can lead to long-term behavioral change is not
an isolated finding. Exposure of isoflurane and repetitive propofol administration to neonatal rats
have been shown to cause long-term behavioral change [4,6]. However, given the complexity and
different interpretations of animal behavioral studies, it is hard to conclude whether prenatal exposure
of propofol can truly lead to long-term behavioral change at this time. More animal behavioral
studies using different methods or different analytical strategies would help verify this conclusion.
Nevertheless, Xiong et al. and Creeleys et al. research gives a clear indication that gestational propofol
exposure may induce damage or at least alter the development of a fetal brain [28,36,47].
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Figure 1. Propofol anesthesia for 1 h in pregnant rats induces caspase-3 activation in the brain
tissues of fetal rats within 6 h. Propofol general anesthesia or intralipid (IV, 1 h) was administered
to pregnant rats at the age of gestational days 20. After six hours, fetuses were removed, and fetal
brain tissues were harvested and analyzed by Western blot. (A,B) Western blot data of cleaved
caspase-3 in the fetal brain tissues exposed to propofol in utero and control condition (* p < 0.001, n = 4
fetuses/group); (C) Representative photomicrographs of the distribution of activated caspase-3-positive
cells in the fetal brain tissues exposed to propofol in utero and control condition. There are sparse
activated caspase-3-positive cells in the control fetal brain. However, activated caspase-3-positive
neuronal profiles were abundant and heavily concentrated in regions such as the frontal cortex and
thalamus in the fetal brains exposed to propofol. Double staining with antibody to cleaved caspase-3
(green) and antibody to NeuN, a neuron-specific nuclear protein (red), demonstrated that most of the
cleaved caspase-3 positive cells were neurons (white arrows). v3, third ventricle. The small squares
outlined in white in the right panel indicate the regions shown at higher magnification in the left panel.
Scale bar = 100 µm in right panel; scale bar = 50 µm in left panel [36].

5. Reversal Agents: Their Use in Understanding the Neurotoxic Effects of Propofol Exposure in a
Fetal Brain

Propofol-induced apoptotic activity in the fetal animal brain is still under active investigation.
Finding the mechanisms of this neurotoxicity is a focus of future studies. The role of the fetal
exposure of propofol on the significant apoptosis in the fetal brain from in vivo studies needs to
be substantiated, especially upon recognizing other variables that may contribute to the apoptosis.
They include: (A) propofol exposure via the placenta may cause hypo-perfusion or other physiological
condition changes to both the fetus and mother; (B) The propofol solution used contained several
other compounds such as EDTA, which could potentially be a neurotoxic compound; (C) The stress
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from these procedures, such as inserting an intravenous line, may also cause abnormal changes in
the fetal brain. Those questions are only partially addressed in the previous experiments with the
monitoring of the health status of the pregnant rats during the anesthesia and the use of control
groups. A scientific model that may validate fetal exposure of propofol’s neurotoxicity but also
limit the role of those previous variables is required for the analysis of possible ways to block or
diminish the apoptosis under identical experimental conditions. Recently, many agents including
lithium, erythropoietin, and dexmedetomidine (Dex) were shown to reverse the anesthetic-induced
toxicity [48–50]. More recently, pre-administration of rutin, curcumin and Dex can attenuate neuronal
apoptosis, showing significant protection against anesthetic-induced neurodegeneration and learning
and memory disturbances [36,51,52]. Of these agents, Dex is a very promising neuroprotective agent
since it is already being used in clinical anesthesia practice. Dex may achieve its neuroprotection via its
interactions with the alpha-2 adrenoreceptor [53,54], or by modulating the effect of other anesthetics
on secondary messengers involved in the apoptotic cascade [55–58].

Recognizing Dex’s role in attenuating the effects of many anesthetics in neonatal animal models,
Li et al. investigated whether Dex would have a similar neuroprotective effect during fetal exposure of
propofol [36]. Dex attenuates the neurotoxic effects induced by in utero propofol exposure in three ways.
Dex not only reduced propofol-induced caspase-3 activation and microglial cell response in the pups,
but also improved the long-term neurocognitive function of the in utero propofol-exposed offspring [36].
These results provide additional evidence that fetal propofol exposure may cause neurotoxicity.
These findings indicate that future studies using other reversal agents in a similar experimental
animal model are warranted. Such in vivo animal studies can further extend the mechanisms causing
neurotoxicity by fetal exposure to propofol. These studies may also help develop potential clinical
applications to block or minimize any potential neurotoxic effects.

6. Conclusions

Propofol, like most other general anesthetics, induce increased apoptotic activity in neonatal and
fetal brains. These changes may lead to rewiring of the young brain, causing long-term behavioral
changes and memory loss observed in animal studies. Thus, it is important to verify the mechanism(s)
of propofol-induced neurotoxicity in young animals in order to modify the risk of neurodegeneration
associated with propofol exposure. There are already some promising ideas that may serve to mitigate
certain anesthetic-induced neurotoxicity including the addition of dexmedotomedine as a part of a
general anesthetic regime.

Conflicts of Interest: The authors declare no conflict of interest.
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