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Abstract: Conscious and unconscious brain mechanisms, including cognition, emotions 
and language are considered in this review. The fundamental mechanisms of cognition 
include interactions between bottom-up and top-down signals. The modeling of these 
interactions since the 1960s is briefly reviewed, analyzing the ubiquitous difficulty: 
incomputable combinatorial complexity (CC). Fundamental reasons for CC are related to 
the Gödel’s difficulties of logic, a most fundamental mathematical result of the 20th 
century. Many scientists still “believed” in logic because, as the review discusses, logic is 
related to consciousness; non-logical processes in the brain are unconscious. CC difficulty 
is overcome in the brain by processes “from vague-unconscious to crisp-conscious” 
(representations, plans, models, concepts). These processes are modeled by dynamic logic, 
evolving from vague and unconscious representations toward crisp and conscious thoughts. 
We discuss experimental proofs and relate dynamic logic to simulators of the perceptual 
symbol system. “From vague to crisp” explains interactions between cognition and 
language. Language is mostly conscious, whereas cognition is only rarely so; this clarifies 
much about the mind that might seem mysterious. All of the above involve emotions of a 
special kind, aesthetic emotions related to knowledge and to cognitive dissonances. 
Cognition-language-emotional mechanisms operate throughout the hierarchy of the mind 
and create all higher mental abilities. The review discusses cognitive functions of the 
beautiful, sublime, music. 
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1. Overcoming Past Mathematical Difficulties 

According to modern neuroscience, object perception involves bottom-up signals from sensory 
organs and top-down signals from internal mind’s representations (memories) of objects. During 
perception, the mind matches subsets of bottom-up signals corresponding to objects with 
representations of object in the mind (and top-down signals). This produces object recognition; it 
activates brain signals leading to mental and behavioral responses [1–5]. This section briefly 
summarizes mathematical development in artificial intelligence, pattern recognition, and other 
computational methods used in cognitive science for modeling brain-mind processes. We discuss the 
fundamental difficulties preventing mathematical modeling of perception, cognition, emotions, and the 
role of dynamic logic (DL) in overcoming these difficulties. 

1.1. Computational Complexity since the 1950s 

Developing mathematical descriptions of the very first recognition step in this seemingly simple 
association-recognition-understanding process has not been easy, a number of difficulties have been 
encountered during the past 50 years. These difficulties were summarized under the notion of 
combinatorial complexity (CC) [6]. CC refers to multiple combinations of bottom-up and top-down 
signals, or more generally to combinations of various elements in a complex system; for example, 
recognition of a scene often requires concurrent recognition of its multiple elements that could be 
encountered in various combinations. CC is computationally prohibitive because the number of 
combinations is very large: for example, consider 100 elements (not too large a number); the number 
of combinations of 100 elements is 100100, exceeding the number of all elementary particle events in 
the life of the Universe; no computer would ever be able to compute that many combinations. 
Although, the story might sound “old”, we concentrate here on those aspects of mathematical 
modeling of the brain-mind, which remain current and affect thinking in computational modeling and 
in cognitive science of many scientists today. 

The problem of CC was first identified in pattern recognition and classification research in the 
1960s and was named “the curse of dimensionality” [7]. It seemed that adaptive self-learning 
algorithms and neural networks could learn solutions to any problem “on their own”, if provided with 
a sufficient number of training examples. The following decades of developing adaptive statistical 
pattern recognition and neural network algorithms led to a conclusion that the required number of 
training examples often was combinatorially large. This remains true about recent generation of 
algorithms and neural networks, which are much more powerful than those in the 1950s and 60s. 
Training had to include not only every object in its multiple variations, angles, etc., but also 
combinations of objects. Thus, self-learning approaches encountered CC of learning requirements.  
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Rule systems were proposed in the 1970s to solve the problem of learning complexity [8,9]. Minsky 
suggested that learning was a premature step in artificial intelligence; Newton “learned” Newtonian 
laws, most of scientists read them in the books. Therefore, Minsky has suggested, knowledge ought to 
be input in computers “ready made” for all situations and artificial intelligence would apply these 
known rules. Rules would capture the required knowledge and eliminate a need for learning. 
Chomsky’s original ideas concerning mechanisms of language grammar related to deep structure [10] 
were also based on logical rules. Rule systems work well when all aspects of the problem can be 
predetermined. However, in the presence of variability, the number of rules grew; rules became 
contingent on other rules and combinations of rules had to be considered. The rule systems 
encountered CC of rules.  

In the 1980s, model systems were proposed to combine advantages of learning and rules-models by 
using adaptive models [11–18]. Existing knowledge was to be encapsulated in models and unknown 
aspects of concrete situations were to be described by adaptive parameters. Along similar lines went 
the principles and parameters idea of Chomsky [19]. Fitting models to data (top-down to bottom-up 
signals) required selecting data subsets corresponding to various models. The number of subsets, 
however, is combinatorially large. A general popular algorithm for fitting models to the data, multiple 
hypotheses testing [20] is known to face CC of computations. Model-based approaches encountered 
computational CC (N and NP complete algorithms). None of the past computational approaches 
modeled specifically human, “aesthetic emotions” (discussed later) related to knowledge, cognitive 
dissonances, beautiful, and “higher” cognitive abilities. 

1.2. Logic, CC, and Amodal Symbols 

Amodal symbols and perceptual symbols described by perceptual symbol system (PSS) [21] differ 
not only in their representations in the brain, but also in their properties that are mathematically 
modeled in the referenced papers. This mathematically fundamental difference and its relations to CC 
of matching bottom-up and top-down signals are the subjects of this section. (A specific reason for 
connecting our cognitive-mathematical analysis to PSS is that it is a well recognized cognitive theory, 
giving a detailed non-mathematical description of many cognitive processes; later we discuss that PSS 
is incomplete and mathematically untenable for abstract concepts, language-cognition interaction, and 
for aesthetic emotions; necessary modifications are described in the following references [22–24].) 

The fundamental reasons for CC are related to the use of formal logic by algorithms and neural 
networks [6,25,26]. Logic serves as a foundation for many approaches to cognition and linguistics; it 
underlies most of computational algorithms. But its influence extends far beyond, affecting cognitive 
scientists, psychologists, and linguists, who do not use complex mathematical algorithms for modeling 
the mind. All of us operate under the influence of formal logic, which roots are more than 2000 years 
old, making a more or less conscious assumption that the mechanisms of logic serve as the basis of 
human cognition. As discussed in details later, our minds are unconscious about its illogical 
foundations. We are mostly conscious about a small part of the mind mechanisms, which is 
approximately logical. Our intuitions, therefore, are unconsciously affected by the bias toward logic. 
Even when the laboratory data drive thinking away from logical mechanisms, humans have difficulties 
overcoming the logical bias [1,4,25,27–34]. 
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The relationships between logic, cognition, and language have been a source of longstanding 
controversy. The widely accepted story is that Aristotle founded logic as a fundamental mind 
mechanism, and only during the recent decades science overcame this influence. We would like to 
emphasize the opposite side of this story. Aristotle assumed a close relationship between logic and 
language. He emphasized that logical statements should not be formulated too strictly and language 
inherently contains the necessary degree of precision. According to Aristotle, logic serves to 
communicate already made decisions [32]. The mechanism of the mind relating language, cognition, 
and the world Aristotle described as forms. Today we call similar mechanisms mental representations, 
or concepts, or simulators in the mind. Aristotelian forms are similar to Plato’s ideas with a marked 
distinction, forms are dynamic: their initial states, before learning, are different from their final states 
of concepts [35]. Aristotle emphasized that initial states of forms, forms-as-potentialities, are not 
logical (i.e., vague), but their final forms, forms-as-actualities, attained in the result of learning, are 
logical. This fundamental idea was lost during millennia of philosophical arguments. As discussed 
below, this Aristotelian process of dynamic forms corresponds to the mathematical model, DL, for 
processes of perception and cognition, and to Barsalou idea of PSS simulators. 

The founders of formal logic emphasized a contradiction between logic and language. In the  
19th century George Boole and the great logicians following him, including Gottlob Frege, Georg 
Cantor, David Hilbert, and Bertrand Russell (see [36] and references therein) eliminated the 
uncertainty of language from mathematics, and founded formal mathematical logic, the foundation of 
the current classical logic. Hilbert developed an approach named formalism, which rejected intuition 
as a matter of scientific investigation and formally defined scientific objects in terms of axioms or 
rules. In 1900 he formulated famous Entscheidungsproblem: to define a set of logical rules sufficient 
to prove all past and future mathematical theorems. This was a part of “Hilbert’s program”, which 
entailed formalization of the entire human thinking and language. Formal logic ignored the dynamic 
nature of Aristotelian forms and rejected the uncertainty of language. Hilbert was sure that his logical 
theory described mechanisms of the mind. “The fundamental idea of my proof theory is none other 
than to describe the activity of our understanding, to make a protocol of the rules according to which 
our thinking actually proceeds.” [37]. However, Hilbert’s vision of formalism explaining mysteries of 
the human mind came to an end in the 1930s, when Gödel [38] proved internal inconsistency of formal 
logic. This development called Gödel theory is considered among most fundamental mathematical 
results of the previous century. Logic, that was believed to be a sure way to derive truths, turned out to 
be basically flawed. This is a reason why theories of cognition and language based on formal logic are 
inherently flawed.  

There is a close relation between logic and CC. It turned out that combinatorial complexity of 
algorithms is a finite-system manifestation of the Gödel’s theory [30]. If Gödelian theory is applied to 
finite systems (all practically used or discussed systems, such as computers and brain-mind, are finite), 
CC is the result, instead of the fundamental inconsistency. Algorithms matching bottom-up and  
top-down signals based on formal logic have to evaluate every variation in signals and their 
combinations as separate logical statements. A large, practically infinite number of combinations of 
these variations cause CC.  

This general statement manifests in various types of algorithms in different ways. Rule systems are 
logical in a straightforward way, and the number of rules grows combinatorially. Pattern recognition 
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algorithms and neural networks are related to logic in learning procedures: every training sample is 
treated as a logical statement (“this is a chair”) resulting in CC of learning. Multivalued logic and 
fuzzy logic were proposed to overcome limitations related to logic [39]. Yet the mathematics of 
multivalued logic is no different in principle from formal logic [31]. Fuzzy logic uses logic to set a 
degree of fuzziness. Correspondingly, it encounters a difficulty related to the degree of fuzziness: if 
too much fuzziness is specified, the solution does not achieve a needed accuracy, and if too little, it 
becomes similar to formal logic. If logic is used to find the appropriate fuzziness for every model at 
every processing step, then the result is CC. The mind has to make concrete decisions, for example one 
either enters a room or does not; this requires a computational procedure to move from a fuzzy state to 
a concrete one. But fuzzy logic does not have a formal procedure for this purpose; fuzzy systems treat 
this decision on an ad-hoc logical basis. A more general summary of this analysis relates CC to logic 
in the process of learning. Learning is treated in all past algorithms and in many psychological theories 
as involving learning from examples. An example such as “this is a chair” is a logical statement. 
Hence the ubiquitous role of logic and CC.  

Is logic still possible after Gödel’s proof of its incompleteness? The contemporary state of this field 
was reviewed in [26]. It appears that logic after Gödel is much more complicated and much less logical 
than was assumed by founders of artificial intelligence. CC cannot be solved within logic. Penrose 
thought that Gödel’s results entail incomputability of the mind processes and testify for a need for new 
physics “correct quantum gravitation”, which would resolve difficulties in logic and physics [40]. An 
opposite position in [25,30,31] is that incomputability of logic does not entail incomputability of the 
mind. These references add mathematical arguments to Aristotelian view that logic is not the basic 
mechanism of the mind. 

To summarize, various manifestations of CC are all related to formal logic and Gödel theory. Rule 
systems rely on formal logic in a most direct way. Even mathematical approaches specifically 
designed to counter limitations of logic, such as fuzzy logic and the second wave of neural networks 
(developed after the 1980s) rely on logic at some algorithmic steps. Self-learning algorithms and 
neural networks rely on logic in their training or learning procedures: Every training example is treated 
as a separate logical statement. Fuzzy logic systems rely on logic for setting degrees of fuzziness. CC 
of mathematical approaches to the mind is related to the fundamental inconsistency of logic. All past 
algorithms and theories capable of learning involved logic in their learning procedures. Therefore 
logical inspirations, leading early cognitive scientists to amodal brain mechanisms, could not realize 
their hopes for mathematical models of the brain-mind. 

Why did the outstanding mathematicians of the 19th and early 20th century believe in logic to be 
the foundation of the mind? Even more surprising is the belief in logic after Gödel. Gödelian theory 
was long recognized among most fundamental mathematical results of the 20th century. How is it 
possible that outstanding minds, including founders of artificial intelligence, and many cognitive 
scientists and philosophers of mind insisted that logic and amodal symbols implementing logic in the 
mind are adequate and sufficient? The answer, in our opinion, might be in the “conscious bias”. As we 
discuss, non-logical operations making up more than 99.9% of the mind functioning are not accessible 
to consciousness [4,25,27,29,30]. However, our consciousness functions in a way that makes us unaware 
of this. In subjective consciousness we usually experience perception and cognition as logical. Our 
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intuitions are “consciously biased”. This is why amodal logical symbols, which describe a tiny fraction 
of the mind mechanisms, have seemed to many the foundation of the mind [4,25,28–34,41]. 

Another aspect of logic is that it lacks dynamics; logic operates with static statements such as  
“this is a chair”. Classical logic is good at modeling structured statements and relations, yet it misses 
the dynamics of the mind and faces CC, when attempts to match bottom-up and top-down signals. The 
essentially dynamic nature of the brain-mind is not represented in mathematical foundations of logic. 
Dynamic logic discussed in the next section is a logic-process. It overcomes CC by automatically 
choosing the appropriate degree of fuzziness-vagueness for every mind’s concept at every moment. 
DL combines advantages of logical structure and connectionist dynamics. This dynamics 
mathematically represents the learning process of Aristotelian forms (which are opposite to classical 
logic as mentioned) and serves as a foundation for PSS concepts and simulators.  

1.3. Dynamic Logic-Process 

DL models perception as an interaction between bottom-up and top-down signals [25,30–34]. This 
section concentrates on the basic relationship between the brain processes and the mathematics of DL. 
To concentrate on this relationship, we much simplify the discussion of the brain structures. We 
discuss visual recognition of objects as if the retina and the visual cortex each consist of a single 
processing level of neurons where recognition occurs (which is not true, detailed relationship of the 
DL process to brain is considered in given references). Perception consists of the association-matching 
of bottom-up and top-down signals. Sources of top-down signals are mental representations, memories 
of objects created by previous simulators [21]; these representations model the patterns in bottom-up 
signals. In this way they are concepts (of objects), symbols of a higher order than bottom-up signals; 
we call them concepts or mental models. In perception processes the models are modified by  
learning and new models are formed; since an object is never encountered exactly the same as 
previously, perception and cognition are always learning processes. The DL processes along with 
concept-representations are mathematical models of the PSS simulators. The bottom-up signals, in this 
simplified discussion, are a field of neuronal synapse activations in visual cortex. Sources of top-down 
signals are mental representation-concepts or, equivalently, model-simulators (for short, models; 
please notice this dual use of the word model, we use “models” for mental representation-simulators, 
which match-model patterns in bottom-up signals; and we use “models” for mathematical modeling of 
these mental processes). Each mental model-simulator projects a set of priming, top-down signals, 
representing the bottom-up signals expected from a particular object. The salient property of DL is that 
initial states of mental representations are vague and unconscious (or not fully conscious). In the 
processes of perception and cognition representations are matched to bottom-up signals and become 
more crisp and conscious. This is discussed in detail later along with references to experimental 
publications proving that this is a valid model for brain-mind processes of perception and cognition. 
Mathematical models of mental models-simulators characterize these mental models by parameters. 
Parameters describe object position, angles, lightings, etc. (In case of learning situations considered 
later, parameters characterize objects and relations making up a situation.) To summarize this highly 
simplified description of a visual system, the learning-perception process “matches” top-down and 
bottom-up activations by selecting “best” mental models-simulators and their parameters and fitting 
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them to the corresponding sets of bottom-up signals. This DL process mathematically models multiple 
simulators running in parallel, each producing a set of priming signals for various expected objects. 

Mathematical criteria of the “best” fit between bottom-up and top-down signals were given 
in [16,25,30,31]. They are similar to probabilistic or informatics measures. In the first case they 
represent probabilities that the given (observed) data or bottom-up signals correspond to 
representations-models (top-down signals) of particular objects. In the second case they represent 
information contained in representations-models about the observed data (in other words, information 
in top-down signals about bottom-up signals). These similarities are maximized over the model parameters. 
Results can be interpreted correspondingly as a maximum likelihood that models-representations fit 
sensory signals, or as maximum information in models-representations about the bottom-up signals. 
Both similarity measures account for all expected models and for all combinations of signals and 
models. Correspondingly, a similarity contains a large number of items, a total of MN, where M is a 
number of models and N is a number of signals; this huge number is the cause for the combinatorial 
complexity discussed previously. 

Maximization of a similarity measure is a mathematical model of an unconditional drive to improve 
the correspondence between bottom-up and top-down signals (representations-models). In biology and 
psychology it was discussed as curiosity, a need to reduce cognitive dissonance, or a need for 
knowledge since the 1950s [42–44]. This process involves knowledge-related emotions evaluating 
satisfaction of this drive for knowledge [25,30–32,45,46]. In computational intelligence it is even more 
ubiquitous, every mathematical learning procedure, algorithm, or neural network maximizes some 
similarity measure.  

The DL learning process can be understood as both an artificial intelligence system or a cognitive 
model. Let us repeat, DL consists in estimating parameters of concept-models (mental representations) 
and associating subsets of bottom-up signals with top-down signals originating from these models-concepts 
by maximizing a similarity. Although a similarity contains combinatorially many items, DL maximizes 
it without combinatorial complexity [25,27,30–32,34,47] as follows. First, vague-fuzzy association 
variables are defined, which give a measure of correspondence between each signal and each model. 
They are defined similarly to the a posteriori Bayes probabilities, they range between 0 and 1, and as a 
result of learning they converge to the probabilities, under certain conditions. Often the association 
variables are close to bell-shapes. 

The DL process is defined by a set of differential equations given in the above references; together 
with models discussed later it gives a mathematical description of perception and cognition processes, 
including the PSS simulators. To keep the review self-consistent we summarize these equations in 
Appendix. Those interested in mathematical details can read the Appendix. However, basic principles 
of DL can be adequately understood from a conceptual description and examples in this and following 
sections. As a mathematical model of perception-cognitive processes, DL is a process described by 
differential equations given in the Appendix; in particular, fuzzy association variables f associate 
bottom-up signals and top-down models-representations. Among unique DL properties is an 
autonomous dependence of association variables on models-representations: in the processes of 
perception and cognition, as models improve and become similar to patterns in the bottom-up signals, 
the association variables become more selective, more similar to delta-functions. Whereas initial 
association variables are vague and associate near all bottom-up signals with virtually any top-down 
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model-representations, in the processes of perception and cognition association variables are becoming 
specific, “crisp”, and associate only appropriate signals. This is a process “from vague to crisp”, and 
also “from unconscious to conscious mental states” (The exact mathematical definition of crisp 
corresponds to values of f = 0 or 1; values of f in between 0 and 1 correspond to various degrees of 
vagueness.) The fact that “vague to crisp” is equivalent to “unconsciousness to conscious” has been 
experimentally demonstrated in [4]. 

DL processes mathematically model PSS simulators and not static amodal signals. Another unique 
aspect of DL is that it explains how logic appears in the human mind; how illogical dynamic PSS 
simulators give rise of classical logic, and what is the role of amodal symbols. This is discussed 
throughout the paper, and also in specific details in section 6. 

An essential aspect of DL, mentioned above, is that associations between models and data  
(top-down and bottom-up signals) are uncertain and dynamic; their uncertainty matches uncertainty of 
parameters of the models and both change in time during perception and cognition processes.  
As the model parameters improve, the associations become crisp. In this way the DL model of 
simulator-processes avoids combinatorial complexity because there is no need to consider separately 
various combinations of bottom-up and top-down signals. Instead, all combinations are accounted for 
in the DL simulator-processes. Let us repeat that, initially, the models do not match the data. The 
association variables are not the narrow logical variables 0, or 1, or nearly logical, instead they are 
wide functions (across top-down and bottom-up signals). In other words, they are vague, initially they 
take near homogeneous values across the data (across bottom-up and top-down signals); they associate 
all the representation-models (through simulator processes) with all the input signals [25,30,33]. Here 
we conceptually describe the DL process as applicable to visual perception, taking approximately  
160 ms, according to the reference below. Gradually, the DL simulator-processes improve matching, 
models better fit data, the errors become smaller, the bell-shapes concentrate around relevant patterns 
in the data (objects), and the association variables tend to 1 for correctly matched signal patterns and 
models, and 0 for others. These 0 or 1 associations are logical decisions. In this way, classical logic 
appears from vague states and illogical processes. Thus certain representations get associated with 
certain subsets of signals (objects are recognized and concepts formed logically or approximately 
logically). This process “from vague-to-crisp” that matches bottom-up and top-down signals has been 
independently conceived and demonstrated in brain imaging research to take place in human visual 
system [4,48]. Thus DL PSS simulators describe how logic appears from illogical processes, and 
actually model perception mechanisms of the brain-mind as processes from unconscious to conscious 
brain states. By connecting conscious and unconscious states DL resolves a long-standing difficulty of 
free will and explains that past difficulties related to the idea of free will are difficulties of logic, the 
mind and DL overcomes these difficulties [49,50]. 

Mathematical convergence of the DL process was proven in [25]. It follows that the simulator-process 
of perception or cognition assembles objects or concepts among bottom-up signals, which are most 
similar in terms of the similarity measure. Despite a combinatorially large number of items in the 
similarity, a computational complexity of DL is relatively low, it is linear in the number of signals, and 
therefore could indeed model physical systems, like a computer or brain.  
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1.4. Example of DL, Object Perception in Noise 

The purpose of this section is to illustrate the DL perception processes, multiple simulators running 
in parallel as described above. We use a simple example, still unsolvable by other methods, 
(mathematical details are omitted, they could be found in [51]). In this example, DL searches for 
patterns in noise. Finding patterns below noise can be an exceedingly complex problem. If an exact 
pattern shape is not known and depends on unknown parameters, these parameters should be found by 
fitting the pattern model to the data. However, when the locations and orientations of patterns are not 
known, it is not clear which subset of the data points should be selected for fitting. A standard 
approach for solving this kind of problem, which has already been mentioned, is multiple hypotheses 
testing [20]; this algorithm exhaustively searches all logical combinations of subsets and models and is 
not practically useful because of CC. Nevertheless, DL successfully find the patterns under noise. In 
the current example, we are looking for “smile” and “frown” patterns in noise shown in Figure 1a 
without noise, and in Figure 1b with noise, as actually measured. Object signals are about 2–3 times 
below noise and cannot be seen by human visual system (it is usually considered that human visual 
system is better than any algorithm for perception of objects, therefore we emphasize that DL exceeds 
performance of human perception in this case because DL models work well with random noise, while 
human perception was not optimized by evolution for this kind of signals). 

To apply DL to this problem, we used DL equations given in the Appendix. Specifics of this 
example are contained in models. Several types of models are used: parabolic models describing 
“smiles” and “frown” patterns (unknown size, position, curvature, signal strength, and number of 
models), circular-blob models describing approximate patterns (unknown size, position, signal 
strength, and number of models), and noise model (unknown strength). Exact mathematical description 
of these models is given in several references cited above. 

The image size in this example is 100 × 100 points (N = 10,000 bottom-up signals, corresponding to 
the number of receptors in an eye retina), and the true number of models is 4 (3 + noise), which is not 
known. Therefore, at least M = 5 models should be fit to the data, to decide that 4 fits best. This yields 
complexity of logical combinatorial search, MN = 105000; this combinatorially large number is much 
larger than the size of the Universe and the problem was considered unsolvable. Figure 1 illustrates DL 
operations: (a) true “smile” and “frown” patterns without noise; (b) actual image available for 
recognition; (c) through (h) illustrates the DL process, they show improved models at various steps of 
solving DL equation A3, total of 22 steps (noise model is not shown; figures (c) through (h) show 
association variables, f, for blob and parabolic models). By comparing (h) to (a) one can see that the 
final states of the models match patterns in the signal. Of course, DL does not guarantee finding any 
pattern in noise of any strength. For example, if the amount and strength of noise would increase  
10-fold, most likely the patterns would not be found (this would provide an example of “falsifiability” 
of DL; however more accurate mathematical description of potential failures of DL algorithms is 
considered later). DL reduced the required number of computations from combinatorial 105000 to about 
109. By solving the CC problem DL was able to find patterns under the strong noise. In terms of 
signal-to-noise ratio this example gives 10,000% improvement over the previous state-of-the-art.  
(We repeat that in this example DL actually works better than human visual system; the reason is that 
human brain is not optimized for recognizing these types of patterns in noise.)  
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The main point of this example is that DL perception process, or PSS “simulator” is a process 
“from vague-to-crisp”, similar to visual system processes demonstrated in [4] (in that publication 
authors use the term “low spatial frequency” for what we call “vague” in Figure 1).  

Figure 1. Finding “smile” and “frown” patterns in noise, an example of dynamic logic 
operation: (a) true “smile” and “frown” patterns are shown without noise; (b) actual image 
available for recognition (signals are below noise, signal-to-noise ratio is between ½ and ¼, 
100 times lower than usually considered necessary); (c) an initial fuzzy blob-model, the 
vagueness corresponds to uncertainty of knowledge; (d) through (h) show improved 
models at various steps of dynamic logic (DL) (equation A3 are solved in 22 steps). Between 
stages (d) and (e) the algorithm tried to fit the data with more than one model and decided 
that it needs three blob-models to “understand” the content of the data. There are several 
types of models: One uniform model describing noise (it is not shown) and a variable number 
of blob-models and parabolic models, which number, location, and curvature are estimated 
from the data. Until about stage (g) the algorithm “thought” in terms of simple blob models, 
at (g) and beyond, the algorithm decided that it needs more complex parabolic models to 
describe the data. Iterations stopped at (h), when similarity (equation A1) stopped increasing. 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

We would also like to take this moment to continue the arguments from sections 1.1, 1.2, and to 
emphasize that DL is a fundamental and revolutionary improvement in mathematics [33,34]; it was 
recognized as such in mathematical and engineering communities; it is the theory that has suggested 
vague initial states; it has been developed for over 20 years; yet it might not be well known in 
cognitive science community. Those interested in a large number of mathematical and engineering 
applications of DL could consult given references and references therein. Here we would like to 
address two specific related concerns, first, if the DL algorithms are falsifiable, second, a possibility 
that Figure 1 example could be “lucky” or “erroneous”. We appreciate that some readers could be 
skeptical about 10,000% improvement over the state of the art. In mathematics there is a standard 
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procedure for establishing average performance of detection (perception) and similar algorithms. It is 
called “operating curves” and it takes not one example, but tens of thousands examples, randomly 
varying in parameters, initial conditions, etc. The results are expressed in terms of probabilities of 
correct and incorrect algorithm performance (this is an exact mathematical formulation of the idea of 
“falsifiability” of an algorithm). These careful procedures demonstrated that Figure 1 represents an 
average performance of the DL algorithm [25,52,53]. 

1.5. The Knowledge Instinct (KI) 

The word “instinct” fell out of favor in psychology and cognitive science, because of historical 
uncertainties of what it means. It was mixed up with “instinctual behavior” and other not well defined 
mechanisms and abilities. However, using a word “drive” is not adequate either, because fundamental 
inborn drives and culturally evolved drives are mixed up. In this section we follow instinctual-emotional 
theory of Grossberg and Levine [45] that gives succinct definition of instincts, enables mathematical 
modeling of these mechanisms underlying this review, corresponds to psychological, cognitive, and 
physiological data, and thus restores the scientific credibility of the word “instinct”. According to [45] 
instinct is an inborn mechanism that measures vital organism data and determines when these data are 
within or outside of safe regions. These results are communicated to decision-making brain regions 
(conscious or unconscious) by emotions (emotional neural signals), resulting in allocating resources to 
satisfying instinctual needs. Emotional neural signals also result in various physiological and 
psychological effects, however we would like to emphasize that for mathematical modeling and 
scientific understanding of the nature of instincts and emotions Grossberg-Levine theory is 
fundamental, whereas Damasio’s emotions as “bodily markers” are secondary. For some purposes it 
might be necessary to analyze physiological mechanisms of instincts, as well as physiological and 
psychological manifestations of emotions. However, within this review the Grossberg-Levine theory is 
a fundamental level of analysis. 

A simplified example of the instinctual-emotional theory is an instinctual need for food. Special 
sensory-like physiological mechanisms measure sugar level in blood. When it drops below certain 
level an organism feels an emotion of hunger. Emotional neural signals indicate to decision-making 
parts of the brain that more resources have to be allocated to finding food. We have dozens of similar 
instinctual-emotional mechanisms: sensory-like measurements mechanisms and corresponding 
emotional signals. 

Matching bottom-up and top-down signals, as mentioned, is the essence of perception and cognition 
processes, and constitutes an essential need for understanding the surrounding world. Models stored in 
memory as representations of past experiences never exactly match current objects and situations. 
Therefore thinking and even simple perception always require modifying existing models; otherwise 
the brain-mind would not be able to perceive the surroundings and the organism would not be able to 
survive. To survive, humans and higher animals have an inborn drive to fit top-down and bottom-up 
signals. Because the very survival of a higher animal or human depends on this drive, it is even more 
fundamental than drives for food or procreation; understanding the world around is a condition for 
satisfying all other instinctual needs. Therefore this drive for knowledge is called the knowledge 
instinct, KI [13,16,25,27,30].  
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This mechanism is similar to other instincts [13,25,30,45] in that our mind has a sensor-like 
mechanism that measures a similarity between top-down and bottom-up signals, between concept-models 
and sensory percepts. Brain areas participating in the knowledge instinct were discussed in [54]. As 
discussed in that publication, biologists considered similar mechanisms since the 1950s; without a 
mathematical formulation, however, its fundamental role in cognition was difficult to discern. All 
learning algorithms have some models of this instinct, maximizing correspondence between  
sensory input and an algorithmic internal structure (knowledge in a wide sense). According to the 
Grossberg-Levine instinct-emotion theory, satisfaction or dissatisfaction of every instinct is 
communicated to other brain areas by emotional neural signals. Emotional signals related to KI are felt 
as harmony or disharmony between our knowledge-models and the world. At lower levels of everyday 
object recognition these emotions are usually below the threshold of consciousness; at higher levels of 
abstract and general concepts this feeling of harmony or disharmony could be strong, as discussed  
in [13,28], it is a foundation of human higher mental abilities. Since Kant [55], emotions related to 
knowledge are called aesthetic emotions. Here we emphasize that they are related to every process of 
perception and cognition. They are “higher” emotions in the sense that they are related to knowledge, 
rather than to bodily needs; we would emphasize that this distinction is not fundamental in terms of 
mechanisms, all instinctual and emotional mechanisms involve brain. Yet for understanding human 
psychology it is a fundamental distinction. Their relations to higher cognitive abilities, to emotions of 
the beautiful and sublime are discussed later. 

Mathematical modeling of perception and thinking emphasized fundamental nature of KI: all 
mathematical algorithms for learning have some variation of this process, matching bottom-up and 
top-down signals. Without matching previous models to the current reality we will not perceive 
objects, or abstract ideas, or make plans. This process involves learning-related emotions evaluating 
satisfaction of KI [25,27,30,46,56]. 

1.6. Emotions of Beautiful and Sublime 

DL model of KI inherently involves emotional signals related to satisfaction or dissatisfaction of 
KI. These emotions are modeled by changes in the similarity between bottom-up and top-down 
signals, in other world by KI satisfaction. We perceive these emotions as feelings of harmony or 
disharmony between our knowledge and the world or within the knowledge; these emotions related to 
knowledge are called aesthetic emotions [55]. KI and aesthetic emotions drive the brain-mind to improve 
mental models-concepts for better correspondence to surrounding objects and events. This section 
relates aesthetic emotions to the beautiful and sublime according to [25,28,30,34,57–64]. 

Cognitive science and psychology for decades have been at a complete loss when trying to identify 
cognitive functions of the highest human abilities, the most important and cherished ability to create 
and perceive the beautiful. Its role in the working of the mind was not understood. Aesthetic emotions 
discussed above are often below the level of consciousness at lower levels of the mind hierarchy. 
Simple harmony is an elementary aesthetic emotion related to improvement of mental models of 
objects. Higher aesthetic emotions are related to the development and improvement of more complex 
“higher” models at higher levels of the mind hierarchy. At higher levels, when understanding 
important concepts, aesthetic emotions reach consciousness. 
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Models at higher levels of the mind hierarchy are more general than lower-level models; they unify 
knowledge accumulated at lower levels. This is the purpose for which neural mechanisms of concepts 
emerged in genetic and cultural evolution, and this purpose in inseparable from the content of these 
models. The highest forms of aesthetic emotions are related to the most general and most important 
models near the top of the mind hierarchy. The purpose of these models is to unify our entire life 
experience. This conclusion is identical to the main idea of Kantian aesthetics. According to Kantian 
analysis among the highest models are models of the meaning of our existence, of our purposiveness 
or intentionality. KI drives us to develop these models. The reason is in the two sides of knowledge: on 
one hand knowledge consists in detailed models of objects and events generating bottom-up signals at 
every hierarchical level, on the other, knowledge is a more general and unified understanding of  
lower-level models at higher levels, generating top-down signals. These two sides of knowledge are 
related to viewing the knowledge hierarchy from bottom up or from top down. In the top-down 
direction, models strive to differentiate into more and more detailed models accounting for every detail 
of the reality. In the bottom-up direction, models strive to make a larger sense of the detailed 
knowledge at lower levels. In the process of cultural evolution, higher, general models have been 
evolving with this purpose, to make more sense, to create more general meanings. In the following 
sections we consider mathematical models of this process of cultural evolution, in which top mental 
models evolve. The most general models, at the top of the hierarchy, unify all our knowledge and 
experience. The mind perceives them as the models of meaning and purpose of existence. In this way 
KI theory corresponds to Kantian analysis.  

Everyday life gives us little evidence to develop models of meaning and purposiveness of our 
existence. People are dying every day and often from random causes. Nevertheless, belief in one’s 
purpose is essential for concentrating will and for survival. Is it possible to understand psychological 
contents and mathematical structures of models of meanings and purpose of human life? It is a 
challenging problem yet DL gives a foundation for approaching it. 

Consider a simple experiment: remember an object in front of your eyes. Then close eyes and 
recollect the object. The imagined object is vague, not as crisp as this same object a moment ago, when 
perceived with opened eyes. Imaginations of objects are top-down projections of object representations 
on the visual cortex. We conclude that mental representations-models of everyday objects are vague 
(as modeled by DL). We can conclude that models of abstract situations, higher in the hierarchy, 
which cannot be perceived with “opened eyes”, are much vaguer. Even much vaguer have to be 
models of the purpose of life at the top of the hierarchy. As mentioned, everyday life gives us no 
evidence that such a meaning and purpose exist at all. And many people do not believe that life has a 
meaning. When we ask our colleagues-scientists if life has a meaning, most protest against such a 
nebulous, indefinable, and seemingly unscientific idea. However, nobody would agree that his or her 
personal life is as meaningless as a piece of rock at a road wayside. 

Is there a scientific way to resolve this contradiction? This is exactly what we intend to do in this 
section with the help of DL mathematical models and recent results of neuro-psychological 
experiments. Let us go back again to the closed eye experiment. Vague imaginations with closed eyes 
cannot be easily recollected when eyes are opened. Vague states of mental models are not easily 
accessible to consciousness. To imagine vague objects we should close eyes. Can we “close mental 
eyes” that enable cognition of abstract models? Later we consider mathematical models of this 
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process. Here we formulate the conclusions. “Mental eyes” enabling cognition of abstract models 
involve language models of abstract ideas. These language models are results of millennia of cultural 
evolution. High-level abstract models are formulated crisply and consciously in language. To 
significant extent they are cultural constructs, and they are different in different cultures. Every 
individual creates cognitive models from his or her experience guided by cultural models stored in 
language. Whereas language models are crisp and conscious, cognitive models are vague and less 
conscious. Few individuals in rare moments of their lives can understand some aspects of reality 
beyond what has been understood in culture over millennia and formulated in language. In these 
moments “language eyes” are closed and an individual can see “imagined” cognitive images of reality 
not blinded by culturally received models. Rarely these cognitions better represent reality than 
millennial cultural models. And even rarer these cognitions are formulated in language so powerfully 
that they are accepted by other people and become part of language and culture. This is the process of 
cultural evolution. We will discuss it in more details later.  

Understanding the meaning and purpose of one’s life has been important for survival millions of 
years ago and is important for achieving higher goals in contemporary life. Therefore all cultures and 
all languages forever have been formulating contents of these models. And the entire humankind has 
been evolving toward better understanding of the meaning and purpose of life. Those individuals and 
cultures that do not succeed are handicapped in survival and expansion. But let us set aside cultural 
evolution for later sections and return to how an individual perceives and feels his or her models of the 
highest meaning. 

As discussed, cognitive models at the very top of the mind hierarchy are vague and unconscious. 
Even so many people are versatile in talking about these models, and many books have been written 
about them, cognitive models that correspond to the reality of life are vague and unconscious. Some 
people, at some points in their life, may believe that their life purpose is finite and concrete, for 
example to make a lot of money, or build a loving family and bring up good children. These crisp 
models of purpose are cultural models, formulated in language. Usually they are aimed at satisfying 
powerful instincts, but not KI and they do not reflect the highest human aspirations. Reasons for this 
perceived contradiction are related to interaction between cognition and language that we have 
mentioned and will be discussing in more details later. Anyone who has achieved a finite goal of 
making money or raising good children knows that this is not the end of his or her aspirations. The 
psychological reason is that everyone has an ineffable feeling of partaking in the infinite, while at the 
same time knowing that one’s material existence is finite. This contradiction cannot be resolved. For 
this reason cognitive models of our purpose and meaning cannot be made crisp and conscious, they 
will forever remain vague, fuzzy, and mostly unconscious.  

As discussed, better understanding of what the model is about leads to satisfaction of KI, and to 
corresponding aesthetic emotions. Higher in the hierarchy the models are vague, less conscious and 
emotional contents of mental states are less separated from their conceptual contents. At the top of the 
mind hierarchy, the conceptual and emotional contents of cognitive models of the meaning of life are 
not separated. In those rare moments when one improves these models, improves understanding of the 
meaning of one’s life, or even feels assured that the life has meaning, he or she feels emotions of the 
beautiful, the aesthetic emotion related to satisfaction of KI at the highest levels.  
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These issues are not new; philosophers and theologians expounded them from time immemorial. 
The DL-KI theory gives us a scientific approach to the eternal quest for the meaning. We perceive an 
object or a situation as beautiful, when it stimulates improvement of the highest models of meaning. 
Beautiful is what “reminds” us of our purposefulness. This is true about perception of beauty in a 
flower or in an art object. Just an example, R. Buckminster Fuller, an architect, best known for 
inventing the geodesic dome wrote: “When I’m working on a problem, I never think about beauty.  
I think only how to solve the problem. But when I have finished, if the solution is not beautiful, I know 
it is wrong.” Similar things were told about scientific theories by Einstein and Poincare, emphasizing 
that the first proof of a scientific theory is its beauty. The KI theory explanation of the nature of the 
beautiful helps understanding an exact meaning of these statements and resolves a number of mysteries 
and contradictions in contemporary aesthetics. 

Emotions of spiritually sublime are similar to and different from emotions of the beautiful. 
Emotions of the beautiful are related to understanding contents of the highest concepts of meaning. 
Emotions of spiritually sublime are related to behavior that could make the meaning and beautiful a 
part of one’s life [59]. This is the foundation of all religions. It is unfortunate that this foundation has 
been almost forgotten and often hidden behind fog of pragmatic usefulness of church life, differences 
among churches, historical enmity between religion and science, neglect and often contempt by scientists 
toward religion. This explanation is a bridge required by culture to connect science and religion. 

Finishing scientific discussion of the beautiful and sublime, we would like to emphasize again that 
these are emotions related to knowledge at the top of the mind hierarchy, the knowledge of the life 
meaning. It is governed by KI, not by sex and instinct for procreation. Sexual instinct is among the 
strongest of our bodily instincts, and it makes use of all our abilities, including knowledge, beauty, and 
strivings for sublime. And yet the ability for feeling and creating the beautiful and sublime are related 
not to sexual instinct but to the instinct for knowledge. 

A fundamental conclusion from this section is that the brain-mind is not logical, whereas intuition 
of most lay people and scientists that brain-mind is mostly logical is wrong. This conclusion is difficult 
to accept and to make sense of for non-mathematicians as well as for many mathematicians. Future 
developments in psychology and cognitive science require no less than a revolution in scientific 
intuition and thinking. And the current review might help in this process. 

2. DL of PSS: Perceptual Cognition and Simulators 

2.1. Introduction. PSS, Challenge of Computational Model 

Let us repeat that PSS is a well accepted and intuitively clear cognitive (non-mathematical) model 
of perception and cognition. Therefore connecting the previous discussion with PSS might help in 
making the revolutionary step toward new intuition of the brain-mind. PSS grounds cognition in 
perception [21]. “Grounded cognition … rejects the standard view that amodal symbols represent 
knowledge in semantic memory” [21]. PSS emphasized the roles of simulation in cognition. 
“Simulation is the reenactment of perceptual, motor, and introspective states acquired during 
experience with the world, body, and mind … when knowledge is needed to represent a category  
(e.g., chair), multimodal representations captured during experiences … are reactivated to simulate 



Brain Sci. 2012, 2 805 
 
how the brain represented perception, action, and introspection associated with it.” Simulation is an 
essential computational mechanism in the brain. The best known case of these simulation mechanisms 
is mental imagery [2,3]. According to PSS cognition supports action. Simulation is a central mechanism 
of PSS, yet rarely, if ever, they recreate full experiences. Using the mechanism of simulators, which 
approximately correspond to concepts and types in amodal theories, PSS implements the standard 
symbolic functions of type-token binding, inference, productivity, recursion, and propositions. Using 
these mechanisms PSS retains the symbolic functionality. “Thus, PSS is a synthetic approach that 
integrates traditional theories with grounded theories” [21,65,66]. 

According to Barsalou, during the Cognitive Revolution in the middle of the last century, cognitive 
scientists were inspired by new forms of representation “based on developments in logic, linguistics, 
statistics, and computer science”. They adopted amodal representations, such as feature lists, semantic 
networks, and frames [67]. Little empirical evidence supports amodal symbolic mechanisms [21]. It 
seems that amodal symbols were adopted largely because they promised to provide “elegant and 
powerful formalisms for representing knowledge, because they captured important intuitions about the 
symbolic character of cognition, and because they could be implemented in artificial intelligence”. As 
we have discussed these promises were unfulfilled due to fundamental mathematical difficulties. 

There is a number of past and ongoing developments of computational implementations of 
PSS [68,69] and references therein. Yet, computational models for PSS [21,61] require new 
mathematical methods of DL different from traditional artificial intelligence, pattern recognition, or 
connectionist methods. We discussed the reason: the traditional methods encountered combinatorial 
complexity (CC), an irresolvable computational difficulty, when attempting to model complex 
systems. Cognitive modeling requires learning combinations of perceptual features and objects or 
events [17,18,23,24,28,31,70–72]. 

In this review we discuss a realistic and scalable mathematical model of perception, cognition, 
grounded symbols and formalization of PSS based on a new computational technique of DL as 
developed in [23,24]. Although the developed mathematical formalism is quite general, here we first 
concentrate on just one example of PSS mechanism: a mathematical description of models and 
simulators for forming and enacting representations of situations (higher level symbols) from 
perceptions of objects (lower level symbols), and then we discuss its general applicability. In addition 
to simulators, we consider concepts, grounding, binding, dynamic aspect of PSS (DIPSS), abstract 
concepts, the mechanism of amodal symbols within PSS, and the role of logic. The mathematical 
models of PSS serving as a foundation for this discussion enabled establishing limits of PSS as 
conceived by Barsalou [21], and later we discuss necessary modifications and extension of PSS. 

2.2. Initial Relation of DL and PSS 

Section 1.4 illustrated DL for recognition of simple objects in noise, a case complex and unsolvable 
for prior state-of-the-art algorithms, still too simple to be directly relevant for PSS. Here we consider a 
problem of situation learning, assuming that object recognition has been solved. In computational 
image recognition this is called “situational awareness” and it is a long-standing unsolved problem. 
The principled difficulty is that every situation includes many objects that are not essential for 
recognition of this specific situation; in fact there are many more “irrelevant” or “clutter” objects than 
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relevant ones. Let us dwell on this for a bit. Objects are spatially-limited material things perceptible by 
senses. A situation is a collection of contextually related objects that tend to appear together and are 
perceived as meaningful, e.g., an office, a dining room. The requirement for contextual relations and 
meanings makes the problem mathematically difficult. Learning contexts comes along with learning 
situations; it reminds of the problem of a chicken and egg. We subliminally perceive many objects, 
most of which are irrelevant, e.g., a tiny scratch on a wall, which we learn to ignore. Combinations of 
even a limited number of objects exceed what is possible to learn in a single lifetime as meaningful 
situations and contexts (e.g., books on a shelf) from random sets of irrelevant objects (e.g., a scratch on 
a wall, a book, and a pattern of tree branches in a window). Presence of hundreds (or even dozens) 
irrelevant objects makes learning by a child of mundane situations a mathematical mystery. In 
addition, we constantly perceive large numbers of different objects and their combinations, which do 
not correspond to anything worth learning and we successfully learn to ignore them.  

An essential part of learning-cognition is to learn which sets of objects are important for which 
situations (contexts). The key mathematical property of DL that made this solution possible, same as in 
the previous section, is a process “from vague-to-crisp”. Concrete crisp models-representations of 
situations are formed from vague models in the process of learning (or cognition-perception). We 
illustrate below how complex symbols, situations, are formed by situation-simulators from simpler 
perceptions, objects, which are simpler perceptual symbols, being formed by simulators at “lower” 
levels of the mind, comparative to “higher” situation-simulators. Situation-simulators operate on 
mental representations of situations (such as described by PSS), which are dynamic and vague 
assemblages of situations from imagery (and other modalities), bits and pieces along with some 
relations among them perceived at lower levels. These pieces and relations may come from different 
past perceptions, not necessarily from a single perceptual mode, and not necessarily stored in a 
contiguous parts of the brain. The dynamic process of DL-PSS-simulation, which assembles these bits 
into situations attempting to match those before the eyes, is mostly unconscious. We will discuss in 
details in section 6 that these are perceptual symbols as described in [21]. DL mathematically models 
PSS simulators, processes that match bottom-up perceptions with top-down signals, assemble symbols 
in cognition-perception, and assemble conceptual representations by recreating patterns of activation  
in sensorimotor brain areas (as discussed later in the paper). An essential mechanism of DL  
cognition-perception is a process of simulation of perceptual imagination-cognitions; these  
situation-symbols are simulated from simpler perceptions-objects (we repeat that these  
simulations-imaginations are not limited to imagery, and are mostly unconscious). And the same 
mechanism can simulate plans and more complex abstract thoughts, as discussed in later sections. 
Thus, in the following sections we demonstrate that DL successfully models PSS simulators, in this 
case simulators of situations and leads to learning of situations, while discarding irrelevant objects. 

2.3. DL for Learning Situations 

In a simplified problem considered here, the task is for an intelligent agent (a child) to learn to 
recognize certain situations in the environment; while it is assumed that a child has learned to recognize 
objects. In real life a child learns to recognize situations, to some extent, in parallel with recognizing 
objects. But for simplicity of the illustration examples and discussions below, we consider a simplified 
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case of objects being already known. For example, situation “office” is characterized by the presence 
of a chair, a desk, a computer, a book, a book shelf. Situation “playground” is characterized by the 
presence of a slide, a sandbox, etc. The principal difficulty is that many irrelevant objects are present 
in every situation. (This child learning is no different mathematically from an adult recognition.) 

In the example below, Do is the total number of objects that the child can recognize in the world  
(it is a large number). In every situation he or she perceives Dp objects. This is a much smaller number 
compared to Do. Each situation is also characterized by the presence of Ds objects essential for this 
situation (Ds < Dp). Normally nonessential objects are present and Ds is therefore less than Dp. The sets 
of essential objects for different situations may overlap, with some objects being essential to more than 
one situation. The real life learning is sequential as a child is exposed to situations one at a time. DL 
can handle this, but in this paper we consider the data about all the situations available at the time of 
learning. A mathematical formulation is given in the Appendix. Here we discuss the problem 
conceptually and illustrate the solution in the following figures. 

In the following example we set the total number of recognizable objects equal to 1000 (Do = 1000). 
The total number of objects perceived in a situation is set to 50 (Dp = 50). The number of essential 
objects is set to 10 (Ds = 10). The number of situations to learn (M − 1) is set to 10. Note that the true 
identities of the objects are not important in this simulation so we simply use object indexes varying 
from 1 to 1000 (this index points to neural signals corresponding to a specific object-simulators). The 
situation names are also not important and we use situation indexes (this index points to neural signals 
corresponding to a specific situation-simulators). We would emphasize that the use of numbers for 
objects and situation, while may seem consistent with amodal symbols, in fact is nothing but notations. 
We repeat that the principled differences between The DL-PSS and amodal systems are mechanisms in 
the brain and their modeling, not mathematical notations. Among these mechanisms are simulators, 
mathematically described by DL. Let us repeat, amodal symbols are governed by classical logic, which 
is static and faces CC. DL is a process and overcomes CC. DL operates on PSS representations 
(models described in the Appendix), which are vague collections of objects (some of these objects 
could also be vague, not completely assembled yet representations). Another principled difference is 
interaction between perceptual-based bottom-up and top-down neural fields. In this review we 
consider object perception and situation perception in different sections, but of course the real  
mind-brain operates continuously, “objects” in this section are neural signals sent to situation-recognition 
brain area (and corresponding simulators) by excited neuron fields corresponding to models of 
recognized-objects (partially, as described in section 2; and as discussed, these signals are being sent 
before objects are fully recognized, while object simulators are still running). 

The data for this example are generated by first randomly selecting Ds = 10 specific objects for each 
of the 10 groups of objects, allowing some overlap between the groups (in terms of specific objects). 
This selection is accomplished by setting the corresponding probabilities pmi = 1. Next we add 40 more 
randomly selected objects to each group (corresponding to Dp = 50). We also generate 10 more random 
groups of 50 objects to model situations without specific objects (noise); this is of course equivalent to 
1 group of 500 random objects. We generate N′ = 800 perceptions for each situation resulting in  
N = 16,000 perceptions (data samples, n = 1 … 16,000) each represented by 1000-dimensional vector 
of observed data. These data are shown in Figure 2 sorted by situations. 
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Figure 2. Generated data; object index is along vertical axes and situation index is 
horizontal. The perceptions (data samples) are sorted by situation index (horizontal axis); 
this makes visible the horizontal lines for repeated objects. 

 

Then the samples are randomly permuted, according to randomness of real life perceptual 
situations, in Figure 3. The horizontal lines disappear; the identification of repeated objects becomes 
nontrivial. An attempt to learn groups-situations (the horizontal lines) by inspecting various horizontal 
sortings (until horizontal lines would become detectable) would require MN = 1016000 inspections, 
which is of course impossible. This CC is the reason why the problem of learning situations has been 
standing unsolved for decades. By overcoming CC, DL can solve this problem as described in the 
Appendix and is illustrated below. 

Figure 3. Data, same as Figure 2, randomly sorted by situations (horizontal axis), as 
available to the DL algorithm for learning. 
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The DL algorithm is initiated similarly to section 2 by defining 20 situational models (an arbitrary 
selection, given actual 10 situations) and one random noise model to give a total of M = 21 models  
(in section 1.4, Figure 1 models were automatically added by DL as required; here we have not done 
this because it would be too cumbersome to present results). The models are initialized by assigning 
random probability values to the elements of the models. These are the initial vague perceptual 
models, which assign all objects to all situations.  

Figure 4 illustrates the initialization and the iterations of the DL algorithm (the first 3 steps of 
solving DL equations). Each subfigure displays the probability model-vector for each of the 20 models. 
The vectors have 1000 elements corresponding to objects (vertical axes). The values of each vector 
element are shown in gray scale. The initial models assign nearly uniformly distributed probabilities to 
all objects.  

Figure 4. DL situation learning. Situation-model parameters converge close to true values in three steps. 

 

The horizontal axes are the model index changing from 1 to 20. The noise model is not shown. As 
the algorithm progresses, situation grouping improves, and only the elements corresponding to 
repeating objects in “real” situations keep their high values, the other elements take low values. By the 
third iteration the 10 situations are identified by their corresponding models. The other 10 models 
converge to more or less random low-probability vectors. This fast and accurate convergence can be 
seen from Figures 5 and 6.  

Again, as in section 2, learning of perceptual situation-symbols has been accomplished due to the 
DL process-simulator, which simulated internal model-representations of situations to match patterns 
in bottom-up. 

The correct associations on the main diagonal in Figure 6 are 1 (except noise model, which is 
spread among 10 computed noise models, and therefore equals 0.1) and off-diagonal elements are near 
0 (incorrect associations, corresponding to small errors shown in Figure 5). In [22–24] we discussed 
why errors in Figure 5 do not converge exactly to 0. The reason is numerical, and if desirable smaller 
values could have been obtained with few more iterations. Figure 6 demonstrates that nevertheless, 
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convergence to the global maximum was achieved (the exactly known solution in terms of learning the 
correct situations).  

Figure 5. Errors of DL learning are quickly reduced in 3–4 steps, iterations continue until 
average error reached predetermined threshold of 0.05 (10 steps). 

 

Figure 6. Correct associations are near 1 (diagonal, except noise) and incorrect associations 
are near 0 (off-diagonal). 

 

3. DL and PSS 

3.1. Simulators, Concepts, Grounding, Binding, and DL  

As described previously, PSS grounds perception, cognition, and high-level symbol operation in 
modal symbols, which are ultimately grounded in the corresponding brain systems. Previous section 
provides an initial development of formal mathematical description suitable for PSS: the DL process 
“from vague-to-crisp” models PSS simulators. We have considered just one subsystem of PSS, a 

True situation models (m)



Brain Sci. 2012, 2 811 
 
mechanism of learning, formation, and recognition of situations from objects making up the situations. 
(More generally, the formalized mechanism of simulators includes recognition of situations by 
recreating patterns of activations in sensorimotor brain areas, from objects, relations, and actions 
making up the situations). The mind’s representations of situations are symbol-concepts of a higher 
level of abstractness than symbol-objects making them up. The proposed mathematical formalism can 
be advanced straightforwardly to “higher” levels of more and more abstract concepts. However, as we 
discuss in the following sections such application to abstract concepts requires an additional grounding 
in language [73,74] as we consider in the next sections.  

The proposed mathematical formalism can be similarly applied at a lower level of recognizing 
objects as constructed from their parts; mathematical techniques of sections 1 and 2 can be combined 
to implement this PSS object recognition idea as described in [21]. Specific models considered in 
section 1 are likely to be based on inborn mechanisms specific to certain aspects of various sensor and 
motor modalities; general models of section 2 can learn to represent and recognize objects as 
collections of multi-modal perceptual features and relations among them. In both cases principal 
mechanisms of object perception such as discussed in [75] can be modeled, either as properties of 
object models, or as relations between perceptual features. Since relations specific to object 
recognition, according to this reference are learned in infancy, the mechanism of section 2 seems 
appropriate (it models learning of relations, whereas models in section 1 do not readily contain 
mechanisms of learning of all their structural aspects and are more appropriate to modeling inborn 
mechanisms). Object representations, as described by Barsalou are not similar to photographs of 
specific objects, but similar to models in Figure 4 are more or less loose and distributed (among 
modalities) collections of features (determined in part by inborn properties of sensor and motor organs) 
and relations.  

We note that the described theory, by modeling the simulators, also mathematically models 
productivity of the mind concept-simulator system. The simulated situations and other concepts are 
used not only in the process of matching bottom-up and top-down signals for learning and recognizing 
representations, but also in the motor actions, and in the processes of imagination and planning. 

Modeling situations in PSS as a step toward general solution of the binding problem is discussed 
in [76]. DL provides a general approach to the binding problem similar to the “corkboard” approach 
described in [77]. That publication also discusses the role of context similar to the DL scene modeling. 
Here we would emphasize two mechanisms of binding modeled in the developed theory. First, binding 
is accomplished hierarchically: e.g., object representations-simulators bind features into objects, 
similarly situation representations-simulators bind objects into situations, etc. Second, binding is 
accomplished by relations that are learned similarly to objects and “reside” at the same level in the 
hierarchy of the mind with the bound entities. These two types of binding mechanisms is another novel 
prediction of the DL theory that could be tested experimentally. 

Below we discuss other relationships between the mathematical DL procedures of previous sections 
and the fundamental ideas of PSS. Section 1 concentrated on the principal mathematical difficulty 
experienced by all previous attempts to solve the problem of complex symbol formation from less 
complex symbols, the combinatorial complexity (CC). CC was resolved by using DL, a mathematical 
theory, in which learning begins with vague (non-specific) symbol-concepts, and in the process of 
learning symbol-concepts become concrete and specific. Learning could refer to a child’s learning, 
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which might take days or months or an everyday perception and cognition, taking approximately 1/6th 
of a second (in the latter case, learning refers to the fact that every specific realization of a concept in 
the world is different in some respects from any previous occurrences, therefore learning-adaptation is 
always required; in terms of PSS, a simulator always have to re-assemble the concept). In the case of 
learning situations as compositions of objects, the initial vague state of each situation-symbol is a 
nearly random and vague collection of objects, while the final learned situation consists of a crisp 
collection of few objects specific to this situation. This specific of the DL process “from vague-to-crisp” 
is a prediction that can be experimentally tested, and we return to this later. In the learning process 
random irrelevant objects are “filtered out”, their probability of belonging to a concept-situation is 
reduced to zero, while probabilities of relevant objects, making up a specific situation is increased to a 
value characteristic of this object being actually present in this situation.  

Relation of this DL process to PSS is now considered. First we address concepts and their 
development in the brain. According to [61], 

“The central innovation of PSS theory is its ability to implement concepts and their 
interpretative functions using image content as basic building blocks.” 

This aspect of PSS theory is implemented in DL in a most straightforward way. Concept-situations 
in DL are collections of objects (symbol-models at lower levels, which are neurally connected to 
neural fields of object-images). As objects are perceptual entities-symbols in the brain, concept-situations 
are collections of perceptual symbols. In this way situations are perceptual symbols of a higher order 
complexity than object-symbols, they are grounded in perceptual object-symbols (images), and in 
addition, their learning is grounded in perception of images of situations. A PSS mathematical 
formalization of abstract concepts [78], not grounded in direct perceptions, is considered in the next 
section. Here we just mention that the proposed model is applicable to higher levels, “beyond”  
object-situations; it is applicable to modeling interactions between bottom-up and top-down signals at 
every level. 

Barsalou [79] has described development of concepts in the brain as forming collections of 
correlated features. This is explicitly implemented in the DL process described in section 3. The 
developed mathematical representation corresponds to multimodal and distributed representation in the 
brain. It has been suggested that a mathematical set or collection is implemented in the brain by a 
population of conjunctive neurons [80]. 

DL learning and perception-cognition processes are mathematical models of PSS simulators. DL 
symbol-situations are not static collections of objects but dynamic processes. In the process of learning 
they “interpret individuals as tokens of the type” [72]. They model multi-modal distributed 
representations (including motor programs) as described in the reference.  

The same DL mathematical procedure can apply to perception of a real situation in the world as 
well as an imagined situation in the mind. This is the essence of imagination. Models of situations 
(probabilities of various objects belonging to a situation, and objects attributes, such as their locations) 
can depend on time, in this way they are parts of simulators accomplishing cognition of situations 
evolving in time. If “situations” and “time” pertain to the mind’s imaginations, the simulators 
implement imagination-thinking process, or planning.  
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Usually we perceive-understand a surrounding situation, while at the same time thinking and 
planning future actions and imagine consequences. This corresponds to running multiple simulators in 
parallel. Some simulators support perception-cognition of the surrounding situations as well as ongoing 
actions, they are mathematically modeled by DL processes that converged to matching internal 
representations (types) to specific subsets in external sensor signals (tokens). Other simulators simulate 
imagined situations and actions related to perceptions, cognitions, and actions, produce plans, etc. 

Developed here DL modeling of PSS models mathematically what Barsalou [71] called dynamic 
interpretation of PSS (DIPSS). DIPSS is fundamental to modeling abstraction processes in PSS. Three 
central properties of these abstractions are type-token interpretation; structured representation; and 
dynamic realization. Traditional theories of representation based on logic model interpretation and 
structure well but are not sufficiently dynamical. Conversely, connectionist theories are dynamic but 
are inadequate at modeling structure. PSS addresses all three properties. Similarly, the DL 
mathematical process developed here addresses all three properties. In type-token relations 
“propositions are abstractions for properties, objects, events, relations and so forth. After a concept has 
been abstracted from experience, its summary representation supports the later interpretation of 
experience.” Correspondingly in the developed mathematical approach, DL models a situation as a 
loose collection of objects and relations. Its summary representation (the initial model) is a vague and 
loose collection of property and relation simulators, which evolves-simulates representation of a 
concrete situation in the process of perception of this concrete situation according to DL. This DL 
process involves structure (initial vague models) and dynamics (the DL process).  

3.2. Perceptual vs. Amodal Symbols in DL and PSS 

Since any mathematical notation may look like an amodal symbol, in this section we discuss the 
roles of amodal vs. perceptual symbols in DL and PSS. This would require clarification of the word 
symbol. We touch on related philosophical and semiotic discussions and relate them to mathematics of 
DL and to PSS. For the sake of brevity within this review we limit discussions to the general interest, 
emphasizing connections between DL, perceptual, and amodal symbols; extended discussions of 
symbols can be found in [31,81–83]. Kovalerchuk et al. discussed relationships of DL to other types of 
logic [84]. We also summarize here related discussions scattered throughout the review. 

“Symbol is the most misused word in our culture” [85]. Why the word “symbol” is used in such a 
different way: to denote trivial objects, like traffic signs or mathematical notations, and also to denote 
objects affecting entire cultures over millennia, like Magen David, Swastika, Cross, or Crescent? Let 
us compare in this regard opinions of two founders of contemporary semiotics, Charles Peirce [86] and 
Ferdinand De Saussure [87]. Peirce classified signs into symbols, indexes, and icons. Icons have 
meanings due to resemblance to the signified (objects, situations, etc.), indexes have meanings by 
direct connection to the signified, and symbols have meaning due to arbitrary conventional 
agreements. Saussure used different terminology, he emphasized that signs receive meanings due to 
arbitrary conventions, whereas symbol implies motivation. It was important for him that motivation 
contradicted arbitrariness. Peirce concentrated on the process of sign interpretation, which he 
conceived as a triadic relationship of sign, object, and interpretant. Interpretant is similar to what we 
call today a representation of the object in the mind. However, this emphasis on interpretation was lost 
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in the following generation of scientists. This process of “interpretation” is close to the DL processes 
and PSS simulators. We therefore follow Saussurean designation of symbol as a motivated process. 
Motivationally loaded interpretation of symbols was also proposed by Jung [88]. He considered 
symbols as processes bringing unconscious contents to consciousness. Similar are roles of PSS 
simulators and DL processes. (Motivated in DL means in particular related to drives, emotions). 

In the development of scientific understanding of symbols and semiotics, the two functions, 
understanding the language and understanding the world, have often been perceived as identical. This 
tendency was strengthened by considering logical rules to be the mechanism of both, language and 
cognition. According to Russell [89], language is equivalent to axiomatic logic, “[a word-name] 
merely to indicate what we are speaking about; [it] is no part of the fact asserted … it is merely part of 
the symbolism by which we express our thought.” Hilbert [37] was sure that his logical theory also 
describes mechanisms of the mind, “The fundamental idea of my proof theory is none other than to 
describe the activity of our understanding, to make a protocol of the rules according to which our 
thinking actually proceeds.” Similarly, logical positivism centered on “the elimination of metaphysics 
through the logical analysis of language”—according to Carnap [90] logic was sufficient for the 
analysis of language. As discussed in section 2.2, this belief in logic is related to functioning of human 
mind, which is conscious about the final states of DL processes and PSS simulators; these final states 
are perceived by our minds as approximately logical amodal symbols. Therefore we identify amodal 
symbols with these final static logical states, signs. 

DL and PSS explain how the mind constructs symbols, which have psychological values and are 
not reducible to arbitrary logical amodal signs, yet are intimately related to them. In section 3 we have 
considered objects as learned and fixed. This way of modeling objects indeed is amenable to 
interpreting them as amodal symbols-signs. Yet, we have to remember that these are but final states of 
previous simulator processes, perceptual symbols. Every perceptual symbol-simulator has a finite 
dynamic life, and then it becomes a static symbol-sign. It could be stored in memory, or participate in 
initiating new dynamical perceptual symbols-simulators. This infinite ongoing dynamics of the  
mind-brain ties together static signs and dynamic symbols. It grounds symbol processes in perceptual 
signals that originate them; in turn, when symbol-processes reach their finite static states-signs, these 
become perceptually grounded in symbols that created them. We become consciously aware of static 
sign-states, express them in language and operate with them logically. Then, outside of the mind-brain 
dynamics, they could be transformed into amodal logical signs, like marks on a paper. Dynamic 
processes—symbols-simulators are usually not available to consciousness. These PSS processes 
involving static and dynamic states are mathematically modeled by DL in section 3 and further 
discussed in section 4.  

To summarize, in this review we follow a tradition using a word sign for an arbitrary, amodal, 
static, unmotivated notation (unmotivated means unemotional, in particular). We use a word symbol 
for the PSS and DL processes-simulators, these are dynamic processes, connecting unconscious to 
conscious; they are motivationally loaded with emotions. As discussed in section 2, DL processes are 
motivated toward increasing knowledge, and they are loaded with knowledge-related emotions, even 
in absence of any other motivation and emotion. These knowledge-related emotions are called 
aesthetic emotions since Kant. They are foundations of higher cognitive abilities, including abilities for 
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the beautiful, sublime, and they are related to musical emotions. More detailed discussions can be 
found in [25,49,51–55,57,66,77,78,91–94]. 

DL mathematical models (in section 3) use mathematical notations, which could be taken for 
amodal symbols. Such an interpretation would be erroneous. Meanings and interpretations of 
mathematical notations in a model depends not on the appearance, but on what is modeled. Let us 
repeat, any mathematical notation taken out of the modeling context, is a notation, a static sign.  
In DL model-processes these signs are used to designate neuronal signals, dynamic entities evolving 
“from vague to crisp” and mathematically modeling processes of PSS simulators-symbols. Upon 
convergence of DL-PSS simulator processes, the results are approximately static entities, approximately 
logical, less grounded and more amodal.  

DL models both, grounded, dynamic symbol-processes, overcoming combinatorial complexity and 
amodal static symbols, which are governed by classical logic and in the past have led to combinatorial 
complexity. DL operates on a non-logical type of PSS representations, which are vague combinations 
of lower-level representations. These lower-level representations are not necessarily complete images 
or events in their entirety, but could include bits and pieces of various sensor-motor modalities, 
memory states, as well as vague dynamic states from concurrently running simulators—DL processes 
of the on-going perception-cognition. (In section 3, for simplicity of presentation, we assumed that the 
lower-level object-simulators have already run their course and reached static states; however, the 
same mathematical formalism can model simulators running in parallel on multiple hierarchical 
levels.) The mind-brain is not a strict hierarchy, the same-level and higher-level representations could 
be involved along with lower levels. DL models processes-simulators, which operate on PSS 
representations. These representations are vague and incomplete, and DL processes are assembling and 
concretizing these representations. As described in several references by Barsalou, bits and pieces 
from which these representations are assembled could include mental imagery as well as other 
components, including multiple sensor, motor, and emotional modalities; these bits and pieces are 
mostly inaccessible to consciousness during the process dynamics. 

DL also explains how logic and ability to operate amodal symbols originate in the mind from 
illogical operations of PSS: mental states approximating amodal symbols and classical logic appear as 
the end of the DL process-simulators. At this moment they become conscious static representations 
and loose that component of their emotional-motivational modality, which is associated with the need 
for knowledge (to qualify as amodal, these mental states should have no sources of modality, including 
emotional modality). The developed DL formalization of PSS, therefore suggests using a word signs 
for amodal mental states as well as for amodal static logical constructs outside of the mind, including 
mathematical notations; and to reserve symbols for perceptually grounded motivational cognitive 
processes in the mind-brain. Memory states, to the extent they are static entities, are signs in this 
terminology. Logical statements and mathematical signs are perceived and cognized due to PSS 
simulator symbol-processes and become signs after being understood. Perceptual symbols, through 
simulator processes, tie together static and dynamic states in the mind. Dynamic states are mostly 
outside of consciousness, while static states might be available to consciousness. 
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4. Abstract Concepts, Language, and the Mind Hierarchy 

Here we discuss DL as a general model of interacting bottom-up and top-down signals throughout 
the hierarchy-heterarchy of the mind-brain, including abstract concepts. The DL mathematical analysis 
suggests that modeling the process of learning abstract concepts has to go beyond PSS analysis. In 
particular, we discuss the role of language in learning abstract concepts [73,93,95–102] and connect it 
to the PSS mechanisms. The mind-brain is not a strict hierarchy, interactions across levels are present 
and this is sometimes addressed as heterarchy [41]. To simplify discussion we would use a term hierarchy. 

Section 2 discussed assembling situation representations from object representations. This addresses 
interaction between top-down and bottom-up signals in two adjacent levels of the mind hierarchy. The 
mathematical description presented in section 2 (and the Appendix) addresses top-down and bottom-up 
signals and representations without explicit emphasis on their referring to objects or situations. 
Accordingly, we would emphasize here that the mathematical formulation underlining section 2 
analysis equally addresses interaction between any two adjacent levels in the entire hierarchy of the 
mind-brain, including high-level abstract concepts. DL overcomes the ubiquitous problem of CC, the 
presented DL mathematics is practically computable in a machine or mind. However, another 
fundamental aspect, grounding, remains questionable and is addressed below.  

In the PSS formulation Barsalou assumed that higher level abstract concepts remain grounded since 
they are based on lower level grounded concepts, and down the hierarchy to perceptions directly 
grounded in sensory-motor signals. The DL modeling suggests that this aspect of the PSS theory has to 
be revisited for the following two reasons. First, each higher level is vaguer than a lower level. Several 
levels on top of each other would result in representations too vaguely related to sensory-motor signals 
to be grounded in them with any reliability. Second, the section 2 example is impressive in its numerical 
complexity, which significantly exceeds anything that has been computationally demonstrated 
previously. We would like to emphasize again that this is mostly due to overcoming difficulty of CC. 
Still statistically, learning of situations was based on these situations being present among the data 
with statistically sufficient information to distinguish them among each other and from noise. In real 
life however, human learn complex abstract concepts, such as “state”, “law”, “rationality”, and many 
other abstract concepts, without statistically sufficient information been experienced (we return to this 
statement later and discuss its various aspects and a need for experimental verification). Now we 
would like to emphasize the role of language in learning abstract concepts.  

Language is learned at all levels of the hierarchy of the mind-brain and cultural knowledge from 
surrounding language. Experience of talking with other people operates in significant way with “ready 
made” language concepts. This makes it possible for kids to talk about much of cultural contents by 
the age of five or seven. At this age kids can talk about many abstract ideas, which they cannot yet 
adequately use in real life. This suggests that language concepts and cognitive concepts are different. 
Language concepts are grounded in surrounding language at all hierarchical levels. But learning 
corresponding cognitive concepts grounded in life experience takes an entire lifetime. Learning 
language, like learning cognition is driven by an inborn drive, the language instinct [103] (LI). 
Mathematically it can be modeled by DL [22,23,74,104]. Linguists consider words to be learned by 
memorizing them. Learning meaningful phrases and syntax is similar to learning situations and 
relations among objects in section 2. Morphology is not unlike object composition.  



Brain Sci. 2012, 2 817 
 
5. The Dual Model: Joint Language and Cognition 

A fundamental difference of LI from KI is that KI drives matching cognitive mental representations 
to objects and events in the world. LI drives matching language mental representations to patterns in 
the surrounding language. In other words this difference between language and cognition is called 
grounding [29,37,91,93,99]. Language is grounded in direct experience (of talking, reading) at all 
levels of the hierarchy, whereas cognition is grounded in direct perceptions only at the bottom of the 
hierarchy. Abstract concepts at every level are a tiny part of all possible combinations of bottom-up 
signals coming from the lower level. Useful combinations cannot be learned from life experience 
alone. Higher abstract levels of cognition are grounded in both language and experience. The detailed 
theory of interaction between cognition and language is considered in [29,48,94,96,105]. The main 
mechanism of interaction between language and cognition is the dual model, which suggests that every 
mental model-representation has two neurally connected parts, language model and cognitive model. 
Language models are learned by simulator processes, similar to PSS simulators, however, “perception” 
in case of language refers to perception of language facts. Through neural connections between the two 
parts of each model, the early acquired abstract language models guide the development of abstract 
cognitive models in correspondence with personal experience and cultural knowledge stored in 
language. The dual model leads to the dual hierarchy illustrated in Figure 7. 

Figure 7. The dual-model architecture, modeling interaction of language and cognition. 
Learning of cognition is grounded in experience and guided by language. Learning of 
language is grounded in the surrounding language at all hierarchical levels. 
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DL described in previous sections has overcome CC of learning situations and phrases. The 
simulation examples illustrated fast convergence. However from the analysis in the previous section it 
follows that human level cognition requires joint learning of language and cognition. This requires an 
architecture capable of learning two parallel hierarchies of Figure 7. This architecture models 
individual learning from a surrounding language with joint learning of cognition, as well as emergence 
of language and cognition in biological and cultural evolution.  

This dual-model suggests that the connection between language and cognitive models is inborn. In a 
newborn mind both types of models are vague mostly empty placeholders for future cognitive and 
language contents. An image, say of a chair, and the sound “chair” do not exist in a newborn mind. But 
the neural connections between the two types of models are inborn. This solves a problem of 
“association”: how words are associated with correct objects. A currently prevailing assumption that 
correct associations are learned from experience is untenable. The number of possible associations 
between words and objects (and abstract concepts) is combinatorially large. Because of this CC, no 
amount of experience would be sufficient for this learning.  

Instead, the brain-mind first learns language models from surrounding language; surrounding 
language contains language models “ready-made” and no real-life experience (beyond language) is 
needed; this language learning proceeds fast (as described by DL) from vague inborn contents to crisp 
knowledge of language by the age of about 5. Second, beginning with vague contents of cognitive 
model, vague associations with language models, and vague associations with various experiences, the 
brain-mind learns contents of cognitive models according to language and according to experience. So 
that cognitive contents become crisp (more or less) and always remain associated with the appropriate 
language models.  

The dual model is mathematically described in the Appendix. It solves several puzzles of learning 
language and cognition, which have remained unanswered ever since philosophy (since Locke 1690) 
and psychology attempted to explain them. These puzzles include: How does every child, even without 
schooling, learn correct correspondence between objects and words among zillions of possible 
correspondences? Why do children learn a language by 5 years of age and can talk about the entire 
cultural contents, but cannot act like adults? What exactly do children miss in terms of cognitive 
mechanisms? How do words get connected with objects and events? Why can animals not speak 
similarly to humans? How do language and cognition interact in thinking? Do we use words to label 
completed thoughts for communication? Or do we think with words?  

The dual model architecture, Figure 7, implies neural connections between cognitive and language 
representations. These connections are likely to be of ancient origins due to the mirror neuron system, 
MNS [106]. MNS implies neural connections between perceptual-cognitive brain areas, oro-laryngeal 
movement control, and the brain area, which in humans became Broca’s area fundamentally involved 
in language [107]. It is therefore considered a precursor to human language. M. Arbib [108] called 
these neural mechanisms “language prewired brain”. 

Language models become less vague and more specific much faster than the corresponding 
cognitive models for the reason that they are acquired ready-made from the surrounding language. 
This is especially true about the contents of abstract models, which cannot be directly perceived by the 
senses, such as “law”, “abstractness”, “rationality”, etc. This explains how it is possible that kids by 
the age of five can talk about most contents of the surrounding culture, but cannot function like adults: 
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cognitive models remain vague and gradually acquire more concrete contents throughout life. 
According to the dual-model hypothesis, this is an important aspect of the mechanism of what is 
colloquially called the “acquiring experience”. It would be important in future research first, to identify 
the detailed neural mechanisms of models, second, the neural mechanism of connections between 
language and cognitive models, and third, to correlate the suggested mechanism (of cognitive models 
becoming crisper) with the currently known maturation mechanism of myelination, reaching into 
adulthood. Here we emphasize what could the reason be for significant differences in speeds of 
learning language and cognitive models. 

This dual-model hypothesis also suggests that the inborn neural connection between cognitive brain 
modules and language brain modules (evolving over thousands or millions of years of evolution) is 
fundamental to setting humans on an evolutionary path separating us from the animal kingdom. 
Eventually it led to rewiring emotional connections in the brain controlling voice, and evolution of the 
mental hierarchy. 

Human learning of cognitive models continues through the lifetime and is guided by language 
models. Here we would like to reconsider the experiment with closed eyes described previously. It is 
virtually impossible to remember imagined perceptions when eyes are opened. Similarly, language 
plays a role of eyes for abstract thoughts. On one hand, abstract thoughts are only possible due to 
language, on the other, language “blinds” our mind to vagueness of abstract thoughts. Whenever one 
can talk about an abstract topic, he (or she) might think that the thought is clear and conscious in his 
(or her) mind. But the above discussion suggests that we are conscious about the language models of 
the dual hierarchy. The cognitive models in most cases may remain vague and unconscious. The 
higher up in the hierarchy the vaguer are the contents of abstract thoughts, while due to crispness of 
language models we may remain convinced that these are clear conscious thoughts. 

The dual model further suggests a mechanism for what became known as basic human irrationality. 
The discovery of this was initiated in works of Tversky and Kahneman [109,110]; leading to a 2002 
Nobel Prize. Language is significantly crisp in the human brain, while cognition might be vague. 
Using the KI mechanisms to arrive at rational decisions (to make cognitive models crisp) requires a 
special effort and training. Language accumulates millennial cultural wisdom and it might be to one’s 
advantage to rely on heuristics formulated in language. This suggestion is a scientific hypothesis that 
can be and should be verified experimentally. In this future verification it is necessary to carefully 
consider the role of emotions. It was suggested that irrational heuristic decision making vs. KI-deliberate 
analysis activates the amygdala stronger than the cortex [111]. So that emotions may play a larger role 
in irrational decision making. Two words of caution are due. First, emotional decision making could be 
perfectly rational and not necessarily related preferentially to amygdala. Second, these rational 
emotions might be different from specific language emotions considered in the next section. 

6. Language Emotionality, or Emotional Sapir-Whorf Hypothesis 

The KI drives the human brain to develop more specific, concrete and conscious cognitive models 
by accumulating experience throughout life in correspondence with the language models. For this 
process to remain active, brains have to maintain “motivation” to do it. This motivation is not automatic. 
We have suggested the hypothesis that there are specific emotions related to language [112,113]. The 
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origin of language required freeing vocalization from uncontrolled emotional influences. Initial 
undifferentiated unity of emotional, conceptual, and behavioral-(including voicing) mechanisms had to 
separate, to differentiate into partially independent systems. Voicing separated from involuntary 
emotional control due to a separate emotional center in the cortex, which controls the larynx muscles, 
and which is partially under volitional control [79,114–116]. Evolution of this volitional emotional 
mechanism possibly paralleled the evolution of language computational mechanisms. In contemporary 
languages the conceptual and emotional mechanisms are significantly differentiated, as compared to 
animal vocalizations. The languages evolved toward conceptual contents, while their emotional 
contents were reduced.  

Language and voice started separating from ancient emotional centers possibly millions of years 
ago. Nevertheless, emotions are present in contemporary languages [106]. Emotionality in language is 
expressed in language sounds, what linguists call prosody or melody of speech. Emotions in language 
sounds may affect ancient emotional centers of the brain. This ability of human voice to affect us 
emotionally is most pronounced in songs. Songs and music, however, is a separate topic [117,118] 
addressed later. 

Everyday speech is low in emotions, unless affectivity is specifically intended. We may not notice 
emotionality of everyday “non-affective” speech. Nevertheless, “the right level” of emotionality is 
crucial for developing the cognitive parts of models. If language parts of the models were always 
highly emotional, any discourse would immediately resort to conflict and there would be no room for 
language development (as among primates). If the language parts of models were always non-emotional, 
there would be no motivational force to engage into conversations, and to develop cognitive models. 
The motivation for developing higher cognitive models would possibly be reduced. Lower cognitive 
models, say for object perception, would be developed because they are imperative for survival and 
because they can be developed independently from language, based only on direct sensory perceptions, 
like in animals. But models of situations and higher cognition (as discussed) are developed based on 
language models. This requires emotional connections between cognitive and language models.  

Primordial fused language-cognition-emotional models have differentiated long ago. The 
involuntary connections between voice-emotion-cognition have dissolved with the emergence of 
language. They have been replaced with habitual connections. The sounds of all languages have 
changed and, it seems, sound-emotion-meaning connections in languages should have been severed. 
Nevertheless, if the sounds of a language change slowly, connections between sounds and meanings 
persist and consequently the emotion-meaning connections persist. This persistence is a foundation of 
meanings because meanings imply motivations. If the sounds of a language change too fast, the 
cognitive models are severed from motivations, and meanings disappear. If the sounds change too 
slowly the meanings are fixed emotionally to the old ways, and culture stagnates. 

This statement is a controversial issue, and indeed, it may sound puzzling. Does culture not direct 
language changes or is the language the driving force of cultural evolution? Theoretical considerations 
suggest no neural or mathematical mechanism for culture directing evolution of language through 
generations; just the opposite, most cultural contents are transmitted through language. Cognitive 
models contain cultural meanings separate from language [99], but transmission of cognitive models 
from generation to generation is mostly facilitated by language. Cultural habits and visual arts can 
preserve and transfer meanings, but they contain a minor part of cultural wisdom and meanings 
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comparative to those transmitted through the language. Language models are major containers of 
cultural knowledge shared among individual minds and collective culture. Existing experimental 
evidence supports this view [119,120]. 

The arguments in the previous two paragraphs suggest that an important step toward the 
understanding of cultural evolution is to identify the mechanisms determining the changes of the 
language sounds. As discussed below, changes in language sounds are controlled by grammar. In 
inflectional languages, affixes, endings, and other inflectional devices are fused with sounds of word 
roots. Pronunciation-sounds of affixes are controlled by few rules, which persist over thousands of 
words. These few rules are manifest in every phrase. Therefore every child learns to pronounce them 
correctly, even if the child does not know which case or inclination to use in which sentence. Positions 
of vocal tract and mouth muscles for pronunciation of affixes (etc.) are fixed throughout a population 
and are conserved throughout generations. Correspondingly, the pronunciation of whole words cannot 
vary too much, and language sound changes slowly. Inflections therefore play a role of “tail that wags 
the dog” as they anchor language sounds and preserve meanings. This, we suggest is what  
Humboldt [121] meant by “firmness” of inflectional languages. When inflections disappear, this 
anchor is no more and nothing prevents the sounds of language to become fluid and change with  
every generation.  

This has happened with the English language after transition from Middle English to Modern 
English [122], most of inflections have disappeared, a great vowel shift occurred, and the sound of the 
language started changing within each generation, with this process continuing today. English evolved 
into a powerful tool of cognition unencumbered by excessive emotionality. The English language 
spreads democracy, science, and technology around the world. This has been made possible by 
conceptual differentiation empowered by language, which overtook emotional synthesis. But the loss 
of synthesis has also lead to ambiguity of meanings and values. Current English language cultures face 
internal crises, uncertainty about meanings and purposes. Many people cannot cope with the diversity 
of life. Future research in psycholinguistics, anthropology, history, historical and comparative linguistics, 
and cultural studies will examine interactions between languages and cultures. Initial experimental 
evidence suggests emotional differences among languages consistent with our hypothesis [113,114,123]. 

The opposite case is when emotional involvement is too strong. In this case learning does not take 
place because old knowledge is perceived as too valuable, and no change is possible. This case might 
be characteristic of “too strongly” inflected languages, in which sound changes “too slowly” and 
emotions are connected to meanings “too strongly”. A brief look at cultures and languages certainly 
points to many examples of this case: highly inflected languages and correspondingly “traditional” 
stagnating cultures. Preliminary analysis indicates some languages with strong fusional inflexitons as 
examples of highly emotional language with stagnating cultural evolution [124,125]. The other side of 
strong language emotionality is a strong feel of identity and purpose. This corresponds to Humboldtian 
analysis. The integrated dual model assumes “moderate” emotional connection between language and 
cognitive models, which fosters the integration and does not impede it. Humboldt suggested that this 
relationship is characteristic of inflectional languages (such as Indo-European), inflection provided 
“the true inner firmness for the word with regard to the intellect and the ear” (today we would say 
“concepts and emotions”). The integrated dual model leads to interaction between language and 
cognition and to accumulation of knowledge. This accumulation, however, does not proceed smoothly; 
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it leads to instabilities and oscillations, possibly to cultural calamities; this characterizes significant 
part of European history from the fall of Roman Empire to recent times.  

Much of contemporary world is “too flat” for an assumption of a single language and culture, 
existing without outside influences. In case of mutual influences of cultures, when cultures with 
strongly emotional and weekly emotional languages intereact, the opposite tendencies of these cultures 
may counterbalance each other, so that both evolve faster and more smoothly [67,70,91,106,109,126]. 

The neural mechanisms of grammar, language sound, related emotions-motivations, and meanings 
hold a key to connecting the neural mechanisms in the individual brains to the evolution of cultures. 
Studying them experimentally is a challenge for future research. Necessary experimental 
methodologies are at hand; they just should be applied to these issues, and several research groups 
pursue these experiments. 

7. Cognitive Function of Music  

When discussing KI previously we emphasized its function of maximizing a similarity between 
bottom up and top down signals. However, a single measure of similarity is too narrow for measuring 
human knowledge. Every two concepts-representations contradict each other to some extent  
(otherwise a single concept will be sufficient).  

Contradictions between different aspects of knowledge are difficult to tolerate. These contradictions 
are called cognitive dissonances, and this is a well studied area of psychology [127]. Ancient Greeks 
new that people tend to resolve the dissonances by devaluing a conflicting cognition. In the Aesop’s 
fable The Fox and the Grapes a fox sees high-hanging grapes. A desire to eat grapes and inability to 
reach them are in conflict. The fox overcomes this cognitive dissonance by deciding that the grapes are 
sour and not worth eating. Since the 1950s cognitive dissonances became a wide and well studied area 
of psychology. It is known that tolerating cognitive dissonances is difficult, and people often make 
irrational decisions to avoid them [104]. In 2002 this research was awarded Nobel Prize in economics, 
emphasizing the importance of this field of research.  

Perlovsky [56,88,89,111,112,128–130] emphasized that the evolution of language led to relatively 
fast cultural evolution of multiple mutually contradictory concepts (any different concept must be 
contradictory to some extent; otherwise one concept would be sufficient). This created cognitive 
dissonances, which consequently could lead to devaluing knowledge [43]. If cognitive dissonance 
could not be mitigated, our progenitors would devalue knowledge, and human language, knowledge, 
and culture would not evolve. The above references hypothesized that the fundamental function of 
music in cognition was to serve precisely this function, to mitigate cognitive dissonances.  
Other testable predictions, address the number of emotions of cognitive dissonances and musical 
emotions. Most studies of emotions address “basic emotions”, which are named by emotional words 
and indicate satisfaction of bodily instincts [131]. Since the number of cognitive dissonances is 
combinatorially large, it is predicted that the number of musical emotions is also combinatorially large  
(practically infinite). 

Debates about the function and origin of music have a long history. Aristotle [35] listed the power 
of music among the unsolved problems: “How music being just sounds reminds states of soul?”  
Kant [50], who so brilliantly explained the epistemology of the beautiful and the sublime, could not 
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explain music. According to Darwin [132], the human musical faculty “must be ranked amongst the 
most mysterious with which (man) is endowed” because “music is a human cultural universal that 
appears to serve no obvious adaptive purpose” [133]. While some scientists argue that music itself 
plays no adaptive role in human evolution, others suggest that music clearly has an evolutionary role, 
and point to music’s universality. In 2008, Nature published a series of essays on music authored by 
authorities in evolutionary psychology [134]. The authors agreed that music is a cross-cultural 
universal, still “none... has yet been able to answer the fundamental question: why does music have 
such power over us?”, “We might start by accepting that it is fruitless to try to define ‘music’” [135].  

In [136] an experimental confirmation has been obtained that music can reduce cognitive 
dissonances. These findings are tentatively supported by known physiology of brain mechanisms. 
Previous research demonstrated involvement of the anterior cingulate gyrus in creating cognitive 
dissonances [137]. At the same time, it is known that listening music decreases activity of the ventral 
medial prefrontal cortex as well as the limbic system, making listening more pleasurable, so that 
activation of the anterior cingulate gyrus is decreased [138]. 

8. Experimental Evidence  

Bar et al. [4] demonstrated in neuroimaging experiments that visual perception proceeds according 
to DL simulating crisp perceptions from initial vague representations (In this reference authors use 
terminology of “low spatial frequency” for what we call vague). Experimental procedures in this 
reference used functional Magnetic Resonance Imaging (fMRI) to obtain high-spatial resolution of 
processes in the brain, which they combined with magneto-encephalography (MEG), measurements of 
the magnetic field next to the head, which provided high temporal resolution of the brain activity. 
Combining these two techniques the experimenters were able to receive high resolution of cognitive 
processes in space and time. Bar et al. [4] concentrated on three brain areas: early visual cortex, object 
recognition area (fusiform gyrus), and object-information semantic processing area (OFC). They 
demonstrated that OFC is activated 130 ms after the visual cortex, but 50 ms before object recognition 
area. Their conclusion has been that OFC represents the cortical source of top-down facilitation in 
visual object recognition. This top-down facilitation is unconscious. They demonstrated that the 
imagined image generated by top-down signals facilitated from OFC to cortex is vague (the authors in 
this publication refer to low spatial-frequency content images), confirming the essential mechanism of 
DL. Conscious perception of an object occurs when vague projections become crisp and match the 
crisp and clear image from the retina, and an object recognition area is activated.  

The brain continuously extracts rudimentary information from early sensory data and simulates 
predictions, which facilitate perception and cognition in the relevant context by pre-sensitizing relevant 
representations. This includes predictions of complex information, such as situations and social 
interactions [139,140]. Predictions are initiated by gist information rapidly extracted from sensory 
data. At the “lower”-object level this gist information is a vague image of an object (low spatial 
frequency, Bar et al. [4]). At higher levels “the representation of gist information is yet to be defined”. 
The described model defines this higher-level gist information as vague collections of vague objects, 
with relevant objects for a specific situation having just slightly higher probabilities than irrelevant 
ones. The developed model is also consistent with the hypothesis in [43] that perception and cognition 
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at higher levels relies on mental simulations. Mathematical predictions in this paper suggest specific 
properties of these higher-level simulators (initial top-down representations are vague in terms of their 
associations with bottom-up signals), which could be verified experimentally. The DL process from 
vague to crisp and from unconscious to conscious is a fundamental mechanism of the brain. 

Existence of specific emotion involved with knowledge, aesthetic emotions, and therefore of KI has 
been demonstrated experimentally [46].  

Different languages have different strengths of emotional connections between sounds and 
cognitive meanings of words. These different emotionalities of languages have been experimentally 
confirmed in [113,114,117]. Franklin et al. [141] demonstrated that the direction of influence is indeed 
from language to brain (not the opposite) and hence from language to culture. Empirical evidence 
supports predicted relations between language flectivity and cultural evolution. 

9. Future Research  

Future research will address the DL mathematical description of PSS throughout the mind hierarchy; 
from features and objects “below situations” in the hierarchy to abstract models and simulators at 
higher levels “above situations”. Modeling across the mind modalities will be addressed including 
diverse modalities, symbolic functions, conceptual combinations and predication. Modeling features 
and objects would have to account for suggestions that perception of features is partly inborn [21]; this 
development therefore might require new experimental data on which feature aspects are inborn [142]. 
The developed DL formalization of PSS corresponds to observations in [143] and it will be used for 
generating more detailed experimentally verifiable predictions. A number of predictions have been 
made in this review, including influence of language on cognition.  

The proposed theory provides solutions to classical problems of conceptual relations, binding, and 
recursion. Binding is a mechanism connecting events into meaningful “whole” (or larger-scale events). 
The DL model developed here specifies two types of binding mechanisms “flat” and “hierarchical”, 
and suggests which mechanisms are likely to be used for various relations. Our model also suggests 
existence of binding mechanisms conditioned by culture and language. Recursion has been postulated 
to be a fundamental mechanism in cognition and language [144], however, that reference has not 
proposed specific mechanisms how recursion creates representations, nor how it maps representations 
into the sensory-motor or conceptual-intentional interfaces. In our opinion this is an erroneous 
assumption, and the error is similar to mistaking logical signs for symbol-processes (recursion is an 
important logical operation). According to the developed theory recursion is not a fundamental 
mechanism, instead the hierarchy is a mechanism of recursion. Successive hierarchical levels accomplish 
recursive cognitive and linguistic functions. Again, these predictions can be experimentally tested. 

Experimental research [4,43] can address specific properties of higher-level simulators predicted 
here. Among these is a prediction that early predictive stages of situation simulations are vague. 
Whereas vague predictions of objects resemble low-spatial frequency of object imagery,  
“the representation of gist information on higher levels of analysis is yet to be defined” [43]. 
According to the developed model, vague predictions of situations should contain many less-relevant 
(and likely vague) objects with lower probabilities. Since the mathematical model proposed here is 
applicable to higher levels (“above” object-situations), this hypothesis should be relevant to the nature 
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of information of higher-level gist: initial representation of abstract concepts are vague in terms of 
associations with constituent bottom-up signals (these associations are not exact, but vague; 
probabilistically, they are not close to zeroes and ones).  

The present model addresses another topic discussed in [43], “how the brain integrates and holds 
simultaneously information from multiple points in time”. Two different mechanisms are likely to be 
involved: first, explicit incorporation of time into models (so that model parameters-probabilities 
depend on time), and second, categorized temporal relations, such as “before”, “after” are included as 
any other relations-objects into models. A joint mathematical-experimental approach might be fruitful 
in this area. 

Future research will address interaction between language and cognition. Language is acquired 
from surrounding language, rather than from direct experience in the world; language therefore is 
closer aligned with amodal symbols than with perceptual symbols. Kids at 5 years of age can talk 
about much of cultural content of the surrounding language, including highly abstract contents; yet, 
clearly kids do not have necessary experience to understand highly abstract concepts, as perceptual 
symbols, and to relate them to the world. According to the developed theory, higher abstract concepts 
could be stronger grounded in language than in perception; not only kids, but also adults may operate 
with abstract concepts as with amodal symbols, and therefore have limited understanding grounded in 
experience of how abstract concepts relate to the world. It follows that higher-level concepts may be 
less grounded in perception and experience than in language. A brain implementation of dual model 
through nonlinear dynamics discussed in [145] The developed theory suggests several testable 
hypotheses: the dual model, postulating separate cognitive and language mental representations, neural 
connections between cognitive and language mental representations, language mental representations 
guiding acquisition of cognitive representations in ontological development, abstract concepts being 
more grounded in language than in experience; and this shift from grounding in perception and 
experience to grounding in language progresses up the hierarchy of abstractness; while grounding  
in perception and experience increases with age. These make a fruitful field for future  
experimental research. 

The suggested model of connections between language and cognition bears on language evolution, 
and future research should address theoretical and experimental tests of this connection between 
evolution of languages, cognition, and cultures [37,90,92,100,106,146]. 

The role of emotions in perception was addressed in [147]. There are several mechanisms of 
emotions and future research should extend this paper formalism to more detailed modeling of 
emotions and their role in cognition. The current review emphasizes functions of aesthetic emotions 
specific to knowledge and related to KI. Future research would explore roles of emotions in  
language-cognition interaction [106] and in symbol grounding. Discussions in this review predict that 
aesthetic emotions in cognitive dissonances are closely related to musical emotions. Whereas basic 
emotions that have been mostly studied by psychologists are few in number, emotions of cognitive 
dissonances could be combinatorially large corresponding to the number of combinations of various 
concepts (practically infinite). Similarly, there could be a practically infinite number of musical 
emotions [88,89,111,121,128,148]. 

To understand brain-mind mechanisms from perception to the highest cognitive and emotional 
abilities it is necessary to understand interactions between conscious and unconscious brain states. 
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10. Conclusion 

This review has summarized conscious and unconscious brain mechanisms, including cognition, 
emotions, language and interaction between language and cognition. The fundamental mechanisms of 
cognition include interactions between bottom-up and top-down signals. The difficulties of modeling 
these interactions since the 1960s are related to combinatorial complexity (CC), and fundamental 
reasons for CC are related to the Gödel’s difficulties of logic, a most fundamental mathematical result 
of the 20th century. The review discusses that conscious states in the mind-brain are approximately 
logical, whereas an overwhelming number of non-logical states and processes in the brain are 
inaccessible to consciousness. This is the reason for many scientists still “believing” in logic as 
fundamental to the brain. CC difficulty is overcome in the brains by processes “from vague-unconscious 
to crisp-conscious” (representations, plans, models, concepts). These processes are modeled by 
dynamic logic, a process from vague and unconscious representations toward crisp and conscious 
thoughts. We discuss experimental proofs and relate dynamic logic to simulators of the perceptual 
symbol system. “From vague-unconscious to crisp-conscious” is a fundamental mechanism of the 
brain. In addition to perception and cognition, it explains interactions between cognition and language. 
Language is mostly conscious, whereas cognition is only rarely so; this clarifies much about the  
mind-brain that might have seemed mysterious. All of the above involve emotions of a special kind, 
aesthetic emotions related to knowledge and to cognitive dissonances. Cognition-language-emotional 
mechanisms operate throughout the hierarchy of the mind and create all higher mental abilities. The 
review discusses cognitive functions of the beautiful, sublime, music. 
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Appendix 

Bottom-up signals {X(n)} in this simplified discussion, is a field of neuronal synapse activations in 
visual cortex. Here and below curve brackets {…} denote multiple signals, a field. Index n = 1, … N, 
enumerates neurons and X(n) are the activation levels. Sources of top-down signals are representations 
or concept-models {Mm(n)} indexed by m = 1, … M. Each model m Mm(n) projects a set of priming, 
top-down signals, representing the bottom-up signals X(n) expected from a particular object, m. 
Models depend on parameters {Sm}, Mm(Sm,n). Parameters characterize object position, angles, 
lightings, etc. (In case of learning situations considered in section 3, parameters characterize objects 
and relations making up a situation.) To summarize this highly simplified description of a visual system, 
n enumerates the visual cortex neurons, X(n) are the “bottom-up” activation levels of these neurons 
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coming from the retina, and Mm(n) are the “top-down” activation levels (priming) of the visual cortex 
neurons. The learning-perception process “matches” these top-down and bottom-up activations by 
selecting “best” models and their parameters and the corresponding sets of bottom-up signals.  

Let us concentrate on defining a mathematical measure of the “best” fit between bottom-up and  
top-down signals. It is constructed in such a way that any of object-models can be recognized. 
Correspondingly, a similarity measure is designed so that it treats each object-model as a potential 
alternative for each subset of signals [25,30],  

L({X},{M}) = ∏∑
n m

r(m) l(X(n)|Mm(n)) (A1)

Here, l(X(n)|Mm(n)) (or simply l(n|m)) is called a conditional similarity between one signal X(n) and 
one model Mm(n). Parameters r(m) are proportional to the number of objects described by the model 
m. Expression (A1) accounts for all combinations of signals and models in the following way. Sum ∑ 
ensures that any of the object-models can be considered (by the mind) as a source of signal X(n). 
Product ∏ ensures that all signals have a chance to be considered (even if one signal is not considered, 
the entire product is zero, and similarity L is 0; so for good similarity all signals have to be accounted 
for. This does not assume exorbitant amount of attention to each minute detail: among models there is 
a vague simple model for “everything else”). In a simple case, when all objects are perfectly 
recognized and separated from each other, there is just one object-model corresponding to each signal 
(other l(n|m) = 0). In this simple case expression (A1) contains just 1 item, a product of all non-zero 
l(n|m). In the general case, before objects are recognized, L contains a large number of combinations of 
models and signals; a product over N signals is taken of the sums over M models; this results in a total 
of MN items; this huge number is the cause for the combinatorial complexity discussed previously.  

The DL learning process consists in estimating model parameters Sm and associating subsets of 
signals with concepts by maximizing the similarity (A1). Although (A1) contains combinatorially 
many items, DL maximizes it without combinatorial complexity [25,27,30,56,71,72]. First, fuzzy 
association variables f(m|n) are defined, 

f(m|n) = r(m) l(n|m)/(∑
'm

r(m′) l(n|m′)) (A2)

These variables give a measure of correspondence between signal X(n) and model Mm relative to 
all other models, m′. They are defined similarly to the a posteriori Bayes probabilities, they range 
between 0 and 1, and as a result of learning they converge to the probabilities under certain conditions.  

DL process is defined by the following set of differential equations,  

df(m|n)/dt = f(m|n)∑
'm

{[δmm′ − f(m′|n)] [∂ln l(n|m′)/∂Mm′] (∂Mm′/∂Sm′) dSm′/dt}, 

dSm/dt = ∑
n

f(m|n)[∂ln l(n|m)/∂Mm]∂Mm/∂Sm, δmm′ = 1 if m = m′, 0 otherwise. 
(A3)
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