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Abstract: Aerobic exercise promotes rapid and profound alterations in the brain. 
Depending upon the pattern and duration of exercise, these changes in the brain may 
extend beyond traditional motor areas to regions and structures normally linked to learning, 
cognition, and emotion. Exercise-induced alterations may include changes in blood flow, 
hormone and growth factor release, receptor expression, angiogenesis, apoptosis, 
neurogenesis, and synaptogenesis. Together, we believe that these changes underlie 
elevations of mood and prompt the heightened behavioral plasticity commonly observed 
following adoption of a chronic exercise regimen. In the following paper, we will explore 
both the psychological and psychobiological literatures relating to exercise effects on brain 
in both human and non-human animals and will attempt to link plastic changes in these 
neural structures to modifications in learned behavior and emotional expression. In 
addition, we will explore the therapeutic potential of exercise given recent reports that 
aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during 
normal and pathological aging. 
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1. The Effects of Exercise on Humans 

The human brain has the potential for neuroplasticity. One such environmental contributor to the 
brain’s ability to change both structurally and functionally is exercise. Many physiological effects that 
underlie neuroplasticity also contribute to a number of cognitive processes, thus leading to the notion 
that exercise benefits not only the function of the body, but that of the brain as well. In humans, the 
majority of the research on this topic focuses on aging populations in an effort to identify strategies for 
promoting healthy cognitive aging and reduce age-related declines in learning and memory. However, 
exercise proves to be beneficial to cognitive performance throughout the lifespan. Here we will 
consider the impact of exercise across the lifespan, beginning with the long-term effects of exercise in 
children. We will also consider both the acute and chronic effects of exercise in young and aging 
adults as well as in situations of brain injury and mental health.  

When considering human studies of exercise and cognition, there are a few important things to 
remember. First, while it is well understood that exercise correlates with better cognitive function, 
there is a good deal of variability in the research findings, which is most likely attributable to 
methodological variations between studies, including the age range of participants, intensity, and 
length of exercise interventions, and previous activity levels of participants [1]. In addition, the nature 
of experimental and control groups sometimes differ across studies, with control groups consisting of 
non-exercisers, non-aerobic exercisers that engage in strength and conditioning training, and  
non-aerobic exercisers that engage in flexibility training. Similarly, many studies have high rates of 
participant attrition, which may result in variable or inconsistent experimental outcomes such that it is 
difficult to draw valid conclusions regarding the relationship between exercise and cognitive function. 
We will address these issues further as we proceed with our discussion. 

1.1. Impact of Exercise on the Developing Brain  

1.1.1. Affect  

Physical activity affects mental health and psychological well-being in children and adolescents. In 
both male and female adolescents there is a significant inverse relationship between physical activity 
and depression [2,3], and physical activity and anxiety [2]. Physical activity is also negatively 
correlated with self-esteem [2,4]. Exercise intervention appears to improve mood in depressed children 
and adolescents. A four-year longitudinal study found a significant negative relationship between 
physical activity and depression in adolescent girls who had been diagnosed with a mood disorder at 
baseline [5]. They also found that depressed female adolescents who jogged as a part of therapy 
exhibited significantly lower levels of depression when compared to those who did not exercise [6].  

1.1.2. Cognition 

Aerobic exercise has also been linked to a number of changes in cognitive and neural development 
in children. Exercising and being physically fit are associated with better grades in school [7–9] 
whereas being overweight or obese, often part of a more sedentary lifestyle, are associated with poorer 
academic achievement [7,10]. In a meta-analysis of 44 studies on the effects of physical activity on 
cognition in children aged 4–18, Sibley and Etnier [11] found that there was a significant relationship 
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between physical activity and improved performance on tests of perceptual skills, developmental 
level/academic readiness, intelligence quotient (IQ), academic achievement, mathematics, and verbal 
abilities. Though all age groups appeared to benefit from exercise, the strongest association between 
physical activity and cognitive function was found in children aged 4–7. These data point to the strong 
relationship between exercise and a variety of cognitive processes in children of all ages and highlight 
the specific importance of physical activity particularly in young children.  

On standardized neuropsychological measures, executive functions appear to be the most highly 
associated with exercise [12]. In one study, 38 children were divided into higher-fit and lower-fit 
groups based on their performance on a field test of aerobic fitness [13]. The children performed a 
Flanker task, which requires varying levels of executive control, while event-related brain potential 
(ERP) responses were measured. Findings indicated that higher-fit children had more accurate 
performance across the various conditions of the Flanker task, though there were no group differences 
in the reaction time. In addition, the ERP data indicated that the higher-fit children had a larger P3 
amplitude across all conditions of the Flanker task compared to lower-fit children. The P3 amplitude is 
believed to index the brain activity necessary to maintain working memory and therefore is said to be 
proportional to the amount of attentional resources allocated to a given task [14]. Hillman et al. [13] 
also found that across all conditions of a flanker task, higher-fit children had a significantly greater P3 
amplitude compared to lower-fit children. Furthermore, compared to lower-fit children, the negative 
amplitude of the wave related to error was smaller in higher-fit children, and these children also had 
increased positive error-related amplitude. These results suggest that during the initial learning of the 
task, higher-fit children are better able to attend to the relevant information, and thus experience less 
interference when the time comes to make the response. All of these factors lead higher-fit children’s 
performance to be superior to their less-fit peers. Hillman and colleagues have also reported that higher 
levels of physical fitness are associated with faster cognitive processing speeds and better performance 
on the Stroop and Flanker tasks [13,15,16].  

While the previously mentioned research suggests a strong relationship between physical activity 
and cognitive performance, the limitation of these studies is the failure to utilize a true experimental 
design. However, studies of exercise and cognition that can be classified as truly experimental have 
found that exercise does have a significant effect on cognitive performance. Davis and colleagues 
showed that the neuroanatomical changes in the brain associated with enhanced performance on 
cognitive tasks can be visualized and localized. One hundred seventy-one overweight, sedentary  
7- to 11-year-old children were randomly assigned to either an exercise program or a no exercise 
control group for approximately 13 weeks [17]. Children in the exercise group were further divided 
into high-dose (40 min/day) or low-dose (20 min/day) exercise groups. Functional magnetic resonance 
imaging (fMRI) was used to evaluate brain activation while the children completed tests of executive 
function. As in previous studies [18], results indicated that there was a significant dose-response 
related benefit of exercise on executive functions as well as mathematics achievement on the 
Woodcock-Johnson Tests of Achievement III. Further, fMRI results indicated that there was increased 
bilateral prefrontal cortex activity and reduced bilateral posterior activity in the children who 
exercised, indicating that exercise preferentially impacted areas of the brain necessary for higher 
cognitive functioning.  
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Subcortical structures have also been demonstrated to be affected by physical activity, though these 
structures have been less researched in humans. Consistent with the animal literature, the human 
hippocampus appears to benefit from exercise. In one behavioral study, higher-fit and lower-fit 
children were asked to study faces and houses under relational and non-relational encoding conditions [19]. 
Results indicated that higher-fit children performed selectively better on the relational encoding 
condition. In addition, magnetic resonance imaging (MRI) has revealed larger hippocampal [20] and 
dorsal striatal [21] volumes in higher-fit children that were associated with better relational memory 
and Flanker task performance. Because relational memory is dependent on the prefrontal-hippocampal 
circuitry, these results provide behavioral support for the claim that exercise improves subcortical 
neural function associated with learning and memory output.  

Perhaps what is most significant about physical fitness in children is that there is evidence that 
aerobic exercise in childhood might increase the resiliency of the brain later in life, a phenomenon 
referred to as “cognitive reserve” (for review, see [22]). According to some researchers, physical 
fitness increases the brain’s resilience to neurological damage. Though speculative at this point, the 
cognitive reserve might result from enhanced development of the cerebral cortex during childhood, 
which might then provide long-lasting changes in brain structure and function later in life [23]. 

1.2. Impact of Exercise on the Adult Brain 

1.2.1. Affect 

The therapeutic role of aerobic exercise in mental health has long been recognized [24–26]. In fact, 
evidence suggests that sedentary behavior may be associated with mental disorders such as depression 
and anxiety disorders. For instance, according to a survey of 1900 healthy individuals between the 
ages of 25–77 years, physical inactivity was found to be a risk factor for depressive symptoms [27]. 
Another study conducted using a community sample of 1536 individuals ages 15 and up found that the 
odds ratio for depression was significantly higher for the physically inactive participants compared to 
participants that exercised regularly [28]. In a sample of 19,288 individuals, lower levels of depression, 
anxiety, and neuroticism were observed in the individuals who exercised regularly [29]. Importantly, 
data from cross-sectional and prospective-longitudinal clinical and epidemiological studies indicates 
that there is a direct relationship between physical inactivity and symptoms of depression and anxiety [30].  

1.2.1.1. Depression 

A number of studies have reported that exercise may reduce symptoms of depression in both 
nonclinical and clinically depressed populations. In a meta-analysis of 80 studies, exercise was 
associated with depression scores approximately half a standard deviation lower than control groups [31]. 
In another meta-analysis of 30 studies using only participants diagnosed with clinical depression,  
the length of the exercise intervention was reported to be a significant moderator for depressive 
symptoms [32]. That is, interventions that lasted nine weeks or more were associated with larger 
reductions in depressive symptoms. A meta-analysis of 14 randomized controlled trials comparing 
exercise intervention groups to non-treatment control groups reported that exercise was just as 
effective as cognitive therapy in amelioration of depressive symptoms [33]. 
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In fact, multiple studies have reported that exercise may be used as a first-line of treatment for mild 
to moderate symptoms of depression. In one randomized controlled trial of 156 adults, participants 
were assigned aerobic exercise, the antidepressant sertraline (Zoloft), or both [34]. When tested  
4 months later, all three groups had a statistically significant improvement in depressive symptoms. 
Though the medication group had a faster response to treatment in the first 4 weeks, there was  
no statistically significant difference between the three groups at the 4-month time period. Similar 
results were reported in a follow-up study [35].  

It appears that the exercise intervention need not be lengthy or intensive in order to be associated 
with a clinically significant reduction in reported symptoms of depression. For instance, in one study, 
30 min of treadmill walking for 10 consecutive days was enough to produce a clinically and 
statistically relevant reduction in points from baseline on the Hamilton Rating Scale for  
Depression [36]. In addition, there was a significant correlation in subjective and objective changes in 
depression scores. However, evidence does indicate that less strenuous exercise may be comparable to 
placebo effects [37]. 

Though all or most forms of exercise appear to be beneficial for depressive symptoms, it appears 
that aerobic exercise may have an advantage over other forms of exercise [38]. In one study, participants 
placed in a placebo exercise group were required to do low intensity stretching and relaxation 
exercises. These participants had a smaller reduction in depression scores compared to the aerobic 
exercise group [39]. In addition, a larger proportion of patients exhibited a reduction of depressive 
symptoms in the exercise group compared to the placebo group (65% vs. 22%, respectively).  

Although these studies demonstrate that exercise can reduce symptoms of depression, the variable 
findings of these studies suggest future research should continue to explore the relationship between 
exercise and depression [40]. The fact that many individuals with depression may not be motivated to 
engage in exercise and would thus be screened out from the study may influence results. In addition, 
more studies using intent-to-treat analyses are needed to make findings more conclusive. 

1.2.1.2. Anxiety and Panic Disorders 

As with patients with depression, individuals with anxiety and related disorders may benefit from 
exercise, though exercise has been less studied in this population (for review, see [41]). Furthermore, 
because anxiety disorders vary widely, it is difficult to generalize research conducted on one type of 
anxiety disorder to other anxiety disorders [30].  

Research suggests that exercise may help reduce anxiety sensitivity. For instance, individuals with 
high scores on the Anxiety Sensitivity Index-Revised reported significantly less anxiety sensitivity 
following six 20-min aerobic exercise sessions [42]. Scores for self-reported fear of anxiety sensations, 
respiratory and cardiovascular symptoms, publically observable symptoms of anxiety, and cognitive 
dyscontrol all decreased in the exercise group. Scores for the no-exercise control condition, on the 
other hand, did not significantly change.  

Evidence suggests that as with depression, exercise may be just as beneficial for symptoms of 
anxiety as pharmacological treatment. In one study, 70 participants were randomly placed into one of 
four groups: cognitive group therapy, aerobic exercise, both treatments, or a control group [43].  
Six weeks later, the change in the State-Trait Anxiety Inventory scores revealed that all three treatment 
groups were equally effective in reducing anxiety compared to the control group.  
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1.2.2. Cognition 

A large proportion of research on exercise and cognition in adult humans has focused on older 
adults. The neuroprotective effects of exercise have been of particular interest in this population.  
For example, in a longitudinal study of 349 participants over the age of 55, a positive correlation was 
reported between cardiovascular fitness and measures of global cognitive function [44]. Similar results 
were found in a longitudinal study that followed over 18,000 women between the ages of 70 and 81 for 
9 years [45]. The women who had higher physical fitness levels not only had better performance on 
cognitive measures at the start of the study, but they also demonstrated less cognitive decline over the 
course of the study.  

Interestingly, the time in life at which exercise is initiated does not seem to be of great importance, 
though evidence does suggest that individuals who report having been physically active early in life 
tend to have less likelihood of cognitive impairment in older adulthood compared to those who report 
initiating exercise later in life [46,47]. The intensity of exercise, however, does appear to be important. 
Evidence suggests that at least moderate levels of physical activity are necessary to decrease the 
likelihood of cognitive decline in older adulthood [46,48]. 

As in patients with traumatic brain injury (TBI), the frontal, prefrontal, and temporal brain regions 
appear to be the most susceptible to the loss of brain tissue in older adults [49]. Importantly, losses in 
these regions are also correlated with cardiovascular fitness. As such, exercise appears to be most 
beneficial for frontally-mediated cognitive functions in older adults. In a randomized controlled study 
of 124 elderly participants, those who were placed in a walking intervention demonstrated significant 
improvement in executive functions such as planning, inhibition, and working memory [50]. The 
intervention did not significantly improve cognitive functions not related to the frontal lobe. 

In a study that utilized fMRI, 29 high-functioning, community-dwelling older adults were randomly 
assigned to an aerobic fitness group or a stretching and toning control group [51]. After participating in 
the intervention for 45 min a day, 3 times per week for 6 months, the aerobic exercise group 
demonstrated a significantly higher VO2max. The same group had significantly lower reaction times on 
the Flanker task following the intervention, and fMRI data indicated that these participants had 
significantly increased activity in regions involved in attentional control, including the right medial 
frontal gyrus, superior frontal gyrus, and superior parietal lobe. The aerobic exercise group also 
demonstrated a significant decrease in activity of the anterior cingulate, which indicates that following 
the intervention, the participants had a decreased need to monitor conflict during complex cognitive tasks.  

Data from a similar study also indicates that exercise can increase brain volume in regions 
associated with age-related decline [52]. Fifty-nine healthy but sedentary community-dwelling adults 
between the ages of 60 to 79 were again randomly assigned to an aerobic exercise group or a stretching 
and toning control group. Gray and white matter volumes were collected using magnetic resonance 
imaging (MRI) before and after the 6-month long intervention. Results indicated that there were 
significant increases in both gray and white matter for the participants in the aerobic exercise group, 
but not for the control group. Importantly, this study demonstrates that aerobic exercise is capable of 
not only preventing decline in tissue volumes, but it might be used to recover some of the losses in 
brain volume incurred as a result of normal aging.  
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The finding that exercise maintains and possibly increases brain tissue volume in older adults is 
important because there appears to be a relationship between cardiorespiratory fitness and brain 
atrophy in the earliest clinical stages of Alzheimer’s disease [53]. Early-stage Alzheimer’s participants 
with higher fitness levels had less brain atrophy. This was independent of age and dementia severity. 
This last factor is important because one common aspect of Alzheimer’s disease is that it is associated 
with reductions in physical activity, which in turn can reduce fitness levels.  

Evidence indicates that older individuals who already demonstrate cognitive impairments may 
benefit from exercise in the same way cognitively intact individuals do. For example, in a meta-analysis of 
thirty randomized trials, exercise was shown to increase physical fitness and function, cognitive 
function, and positive behavior in individuals with dementia and related cognitive impairments [54].  

In addition, exercise may be able to prevent or postpone Alzheimer’s disease and other forms of 
dementia [55–57]. In a longitudinal study conducted on 4615 community-dwelling adults over the age 
of 65, the presence of physical activity at the beginning of the study was associated with lower risks of 
cognitive impairment, Alzheimer’s, and dementia of any type at the 5-year follow-up assessment [57]. 
In addition, a significant neuroprotective effect was found in women with the highest levels of physical 
activity. In another longitudinal study conducted on 2257 men between the ages of 71 to 93, the 
distance walked per day at the beginning of the study was linked to the probability of developing 
dementia up to eight years later [2].  

1.2.3. Neurological Damage 

Emerging evidence in the human literature suggests that aerobic exercise may be therapeutic in 
individuals recovering from neurological damage caused by stroke or TBI. Cognitive deficits are 
observed in up to two-thirds of stroke patients, which can in turn negatively affect response to 
rehabilitation and global functioning [58]. Encouragingly, several studies have reported that aerobic 
exercise can improve both cognitive and motor functions in stroke survivors. In one study, nine older 
adults with chronic stroke participated in a 12-week exercise program [59]. The participants engaged 
in aerobic and lower extremity muscle strengthening exercise for three 1-h sessions a week. Post-test 
results indicated that there were significant improvements on the Digit Span Backwards test, a test of 
working memory; the memory component of the Stroke Impact Scale, a self-report questionnaire that 
asks about how life has changed after one’s stroke; and the Fugl-Meyer score, a test of voluntary motor 
control. Moreover, there was a significant correlation between improved aerobic capacity and 
improved performance on the Flanker test.  

In another study, 38 chronic stroke survivors were randomly assigned to either an aerobic exercise 
group or a stretching control group, which they participated in for 45 min a day, 3 times a week, for  
8 weeks [60]. The aerobic exercise group had significantly improved VO2max and information 
processing speeds based on performance on the serial reaction time task. This group also had 
significant improvement on sensorimotor control tasks. Interestingly, there was no significant 
improvement on tasks of executive function following the intervention, though Quaney and colleagues 
suggest that 8 weeks might not have been a long enough intervention to see cognitive effects.  

As with stroke patients, a large portion of individuals with TBI demonstrate impairments in 
cognitive function; one study reported that 33% of TBI patients had impaired cognitive function 
following discharge from the hospital [61]. Emerging evidence supports the claim that aerobic exercise 



Brain Sci. 2012, 2 716 

may lead to cognitive improvement in TBI patients [62]. In one retrospective study, a community-based 
sample of 240 individuals was divided into an exercise or non-exercise group. Exercisers with TBI had 
fewer self-reported depression and cognitive symptoms [63].  

In another study, 13 moderate TBI patients participated in a virtual reality aerobic exercise 
intervention for at least 25 min a day, 3 days a week, for 4 weeks [64]. The patients began the 
intervention at least 6 weeks after the injury. Following the intervention, the exercisers performed 
significantly better than age- and injury-matching controls on verbal, visual learning tasks, and 
processing speed tasks. 

Thus, although evidence is still fairly limited, research suggests that aerobic exercise may have 
therapeutic benefits for cognitive performance in stroke and TBI patients. 

2. Effect of Exercise on Behavior in Non-Human Animals  

Physical activity may be defined in a multitude of ways. For some people, exercise is aerobic and 
includes activities such as walking, running and bicycling. For others, exercise is anaerobic and 
includes activities such as strength training, yoga and Pilates. Just as exercise varies across humans in 
real life, it varies in its application in non-human animal research. Whereas one study may examine the 
effects of a two-week exercise program on behavior, another may examine the extent to which 
behavior is affected after six months of physical activity. The following discussion describes how 
aerobic activity impacts animal models of affect and cognition. Due to the variability in how exercise 
is defined in this literature, the discussion is broken down to examine the extent to which  
short-term (less than three weeks of physical activity; acute) and longer-term (chronic) exercise 
contributes to behavior. 

2.1. Acute Exercise 

In the non-human animal literature, acute exercise is typically described as less than three weeks of 
physical activity. While most exercise paradigms utilize voluntary physical activity, namely in the 
form of wheel running, some paradigms also employ forced exercise through swimming or running on 
a motorized treadmill. The general consensus from this existing body of literature suggests that acute 
physical activity is capable of producing significant changes in a variety of behavior, and in the 
following section we will describe the ways in which it affects animal models of anxiety, depression, 
learning and memory.  

2.1.1. Affect 

2.1.1.1. Anxiety 

A classic measure of anxiety in non-human animal models is the open field test. First described by 
Hall in 1934 [65], the open field test is based on the observation that when provided access to a novel 
open environment, animals exhibit significantly less exploratory and locomotor behavior presumably 
due to a heightened level of anxiety over the new surroundings. The extent of exploration and 
locomotion is quantified by dividing the open field into several quadrants and measuring how many 
quadrant crossings occur, as well as how much time is spent in each quadrant. Animals that are more 
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anxious tend to remain in, or around, the quadrant in which they are placed and therefore also spend a 
greater proportion of time there. Anxiety, as measured by the open field test, is altered in rodents that 
exercise acutely. Mello and colleagues [66] found that rats subject to two weeks of forced treadmill 
running exhibited substantially more locomotor behavior relative to inactive controls. Similarly, Salam 
and colleagues [67] demonstrated that after two weeks of voluntary wheel running mice spent more 
time in the center of the open field, made more crossings between the quadrants of the open field and 
made fewer escape attempts when compared to sedentary cohorts. The length of the open field test 
may in itself affect anxiety, however. In contrast to observing a beneficial effect of voluntary exercise 
on anxiety when observed for six minutes in an open maze, as was done in the Salam et al. [67] study, 
Hopkins and Bucci [68] reported an increase in anxiety, as measured by significantly less locomotion, 
in rats that were exposed to an open field for 15 min. This finding is particularly interesting given that 
both experiments reported identical exercise regimens. Given that vast behavioral differences exist 
between rats and mice [69], as well as within rat [70] and mouse strains [71], a possibility for this 
inconsistency is that animal species interact with exercise such that mice are less susceptible than rats 
to anxiety in a novel, open environment.  

In addition to the open field test, anxiety in non-human animal models may be assessed by 
measuring their response to the presentation of unexpected and sudden stimuli. Under normal 
conditions, such stimuli elicit a startle response characterized by an intense behavioral response 
(startle), followed by a period of apparent immobility (freezing). Both the amplitude of the startle 
response and proportion of time spent freezing are positively related to anxiety. In two separate 
studies, mice were acclimated to a sound attenuating chamber for one day after two weeks of free 
access to a running wheel. Following the acclimation period, several bursts of white noise were 
presented in a pseudo-random fashion and the startle amplitude was recorded. The results indicated 
that the mean startle amplitude was significantly lower in the mice that had exercised compared to 
sedentary controls [67,72]. Bursts of intense visual stimuli have also been shown to produce startle in 
rodents, which is attenuated by acute physical activity [67].  

Taken together the current literature suggests that short-term exercise regimens help protect against 
anxiety produced by unfamiliar contexts and environmental stimuli. This benefit appears to be 
achieved by exercise in general rather than exercise of a particular nature (i.e., voluntary, forced). That 
said, physical activity might be explored as a method used to jump-start the treatment of pathological 
fear in humans. More research in this area is certainly needed, however, to determine whether such an 
option is viable.  

2.1.1.2. Depression 

Like anxiety, the ways in which depressive symptomology manifest in non-human animals is very 
similar to humans. For example, both models tend to exhibit anhedonia, which is characterized by  
a profound decrease in typically pleasurable activities, as well as learned helplessness. A search of the 
literature revealed that there has been no examination of the relationship between acute (less than three 
weeks) physical activity and depression in non-human animal models. This lack of information 
requires immediate attention.  
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2.1.2. Cognition: Learning and Memory 

The ability to acquire new information and store it long term has been studied extensively. A vast 
body of literature supports the idea that memory is generally divided into two forms. Explicit, or 
declarative memory, refers to one’s memory for factual information such as who is the current 
president of the United States and what one ate for breakfast. In contrast, implicit, or non-declarative 
memory, describes one’s knowledge of things not so easily described such as how one achieves 
balance when riding a bike. While the ability to “declare” knowledge suggests it requires language, 
measuring declarative learning and memory can be achieved through simple behavioral observation. 
The measurement of implicit information can also be quantified behaviorally. Using non-human 
animal models to examine the extent to which both explicit or implicit learning and memory occurs is 
therefore relatively simple. The following discussion will illustrate how learning and memory is 
measured by animals’ performance on mazes and other classic paradigms, and how each process is 
mediated by physical activity.  

Classical conditioning is a form of associative learning and memory that occurs when a neutral 
conditioned stimulus (CS; e.g., tone or light) is repeatedly presented with an unconditioned stimulus 
(UCS, e.g., foot shock or food) such that after repeated pairings, the organism anticipates the UCS 
whenever presented with the CS. There are a number of ways to measure the strength of the 
associative relationship between CS and UCS in non-human animals. During auditory-cued fear 
conditioning, an animal is placed in a sound-attenuating chamber where it is presented several trials 
consisting of a tone CS followed by a mild footshock UCS. A test trial is administered after this 
acquisition phase in which the tone CS is presented in the absence of the footshock UCS. The amount 
of freezing is measured and provides an index of learning and memory. Not surprisingly, under normal 
conditions, the percent of time freezing is much greater during the test phase than during the initial 
trials of the acquisition phase. A number of factors, including acute physical activity, have been shown 
to affect the acquisition and retention of auditory-cued fear conditioning [73]. In addition to learning 
that the tone predicts shock, the environment (context) in which the shock is delivered also leads to a 
conditioned fear response. Indeed, two weeks of free access to a running wheel enhances contextual 
fear conditioning in rats, with the most notable difference between exercised and sedentary animals 
occurring during the early portions of the acquisition phase [68]. Acute voluntary wheel running has 
most recently been shown to enhance eyeblink conditioning in rats. Compared to sedentary controls, 
rats permitted free access to a running wheel for 17 days exhibited a shorter response latency to a tone 
CS that preceded an ocular airpuff UCS [74].  

In addition to classical conditioning, learning and memory in non-human animal models has been 
assessed using a variety of mazes, one of which is the Morris water maze [75]. The Morris water maze 
(MWM) assesses spatial learning and memory through the observation of behavior exhibited by 
animals that have been placed into a pool that contains an escape platform. Because the platform is 
hidden by opaque water, animals must rely solely on extra-maze cues to find its location and escape 
the water. Acute physical activity is shown to improve MWM performance in rodents. Ten days of 
voluntary exercise enhanced both acquisition and retention of the hidden platform in the MWM [76] 
and Vaynman and colleagues [77] observed improved MWM performance in animals that had 
exercised only five days before training. Furthermore, in another test of spatial memory, the Y-maze, 
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animals provided comparable levels of physical activity demonstrated enhanced acquisition and 
memory retention of the task [78].  

While there is evidence that short-term exercise programs improve learning and memory in  
non-human animals, it should be noted that not all studies of acute exercise yield positive results. 
O’Callaghan and colleagues [79] report that seven days of forced exercise are sufficient to improve 
object recognition performance. However, O’Callaghan and colleagues did not observe improved 
MWM performance following seven days of exercise. Similarly, Mello and colleagues [66] found that 
sedentary controls took about the same time to find the platform in the MWM as animals that had 
voluntarily exercised for two weeks. There are several explanations for the inconsistent findings 
regarding voluntary exercise and cognitive performance. For instance, particularly in MWM testing, 
there are a variety of protocols used to assess learning performance and some of these protocols may 
be more sensitive than others in detecting cognitive facilitation [80]. It is also possible that some of 
these findings are due to inherent differences in voluntary and forced exercise paradigms and may 
reflect the effects of stress on learning and memory performance. Forced exercise is a stressful 
manipulation that increases anxiety-like behaviors in rodents as measured in the open field [81]  
and is associated with symptoms commonly observed with chronic activation of the  
hypothalamic-pituitary-axis (HPA) including adrenal hypertrophy, thymic involution and suppressed 
lymphocyte proliferation, indicating that there may be negative effects of forced treadmill  
running [82]. These effects of forced exercise may limit its ability to improve learning and memory 
function in some assessment paradigms. 

2.2. Chronic Exercise  

2.2.1. Affect 

2.2.1.1. Anxiety 

Whereas acute exercise tends to reduce anxiety in non-human animal models, the relationship 
between chronic physical activity and anxiety is less clear. For instance, whereas one study found that 
rats forced to exercise for eight weeks did not differ from sedentary controls with regard to locomotion 
in an open field test [66] another reported that eight weeks of forced exercise significantly increased 
anxiety using the same measure [81]. Contradictory evidence also exists when chronic exercise is 
voluntary in nature. Whereas three or four weeks of free access to a running wheel significantly 
reduced anxiety in mice on the open field test [83–85], more prolonged voluntary exercise regimens 
produced an increase in anxiety on the elevated plus maze [86].  

Together this body of literature suggests that the relationship between chronic exercise and anxiety 
in non-human animals is ambiguous, most likely because of the inconsistency in how exercise is 
operationalized. However, based upon what is currently known, it appears that in order to protect 
against anxiety, exercise should be voluntary in nature and performed over a relatively short period of time.  

2.2.1.2. Depression 

In contrast to the lack of information with regard to whether acute exercise affects depressive 
symptomology in non-human animal models, a wide body of literature suggests that chronic physical 



Brain Sci. 2012, 2 720 

activity has a positive effect on affect. Pharmacologically-induced depression was prevented in 
animals forced to swim daily for three weeks. Compared to their sedentary cohorts, swimmers also 
consumed more sucrose-flavored water and exhibited a greater degree of mobility in the pool [87] both 
of which are indices of normal affect. The consumption of sucrose-flavored water was also measured 
in rats exposed to four weeks of unpredictable stress concomitant with free access to running wheels. 
The results indicated that compared to non-stressed cohorts, rats that received chronic stress consumed 
significantly less of the flavored water. When rats were provided with free access to running wheels 
during the stress paradigm, anhedonia was significantly attenuated suggesting that at least four weeks 
of voluntary physical activity is sufficient to positively affect mood, even in the presence of  
less-than-optimal environmental conditions.  

In addition to anhedonia, chronic inescapable stress also produces learned helplessness in  
non-human animal models. In rats, the latency to attempt to escape electric shock in a shuttle box is an 
index of learned helplessness. Twenty-four hours after receiving four to twelve weeks of voluntary 
exercise, rats were placed in a shuttle box and escape latency was measured. The results clearly 
demonstrate that animals permitted physical activity make an immediate attempt to escape shock 
compared to their sedentary cohorts [88,89]. 

2.2.2. Cognition: Learning and Memory 

It is well established that chronic exercise also improves learning and memory in non-human 
animal models. Rats exposed to stress that were also provided free access to running wheels for  
four weeks exhibited enhanced learning of the MWM. Compared to un-exercised cohorts, stressed rats 
that exercised had a significantly shorter swim latency to platform. The benefit of exercise on learning 
is strengthened by the observation that stressed-exercise rats performed comparably to exercise-only 
rats, and better than unexercised-nonstressed rats [85]. In addition to stress, age affects spatial learning 
such that older animals perform poorly on the MWM relative to young animals [90]. In mice, the 
negative effect of ageing on spatial learning was blocked by four weeks of chronic voluntary exercise 
such that the mean swim latency to platform was equivocal in aged runners and young runners [90]. 
Some studies suggest that physical activity does not affect spatial learning, however. Rhodes et al. [91] 
reported that active and inactive mice performed comparably on the MWM. It is important to note, 
however, that the mice used in this study were specifically bred for increased running making it 
possible that the genetic manipulations may have contributed to the null result. Overall, the research 
indicates that in normal animals, physical activity is beneficial to spatial learning. 

There is some evidence to suggest that the nature of exercise does not affect the degree to which 
learning and memory occur in the MWM. Rats forced to exercise (FX) on a treadmill, as well as rats 
allowed to exercise voluntarily on wheels (VX), for four weeks exhibited more rapid learning and 
greater memory retention of the hidden platform when compared to sedentary controls [92]. Leasure 
and Jones [81] also found that FX and VX rats were equal in terms of MWM escape latency and time 
spent in the correct quadrant. However, when the VX and FX rats were trained on a one-trial passive 
avoidance test, only the FX rats performed better relative to controls [92].  
  



Brain Sci. 2012, 2 721 

3. Cellular Mechanism of Action  

The mechanisms by which experience (including exercise, enriched environments, and motor skill 
learning) facilitates learning and memory in non-human animals are not fully understood. However, 
there are certain physiological effects associated with general experience that have been shown to 
contribute to enhanced cognitive performance, including structural changes such as synaptogenesis 
(the development of new synapses), angiogenesis, and neurogenesis [90,93–100]. Experience also 
results in molecular processes such as the upregulation of specific growth factors associated with these 
structural changes, including IGF-1, BDNF, and VEGF [101–109]. For the purpose of this review, we 
will focus on aerobic exercise as a particular experience that is most associated with angiogenesis and 
neurogenesis as well as various growth factors associated with each of these processes. 

3.1. Neurogenesis 

One type of experience-induced plasticity following exercise involves the development of new 
neurons, a process known as neurogenesis. Originally believed to be exclusive to development, 
neurogenesis has been detected in adult mammals including rodents, non-human primates [110–114], 
and humans [115]. This process is regionally specific and occurs in the subventricular and subgranular 
zones of the dentate gyrus of the hippocampus as well as in the olfactory bulb [110,113,116]. Some of 
the new neurons in the hippocampus and olfactory bulb replace dead or dying neurons in the system, 
while others appear to support new learning functions [117,118]. 

The survival of new neurons may contribute to learning and memory changes following  
exercise. It has been consistently shown that both enriched environments and exercise  
(voluntary and forced) promote neurogenesis in the adult hippocampus, specifically in the dentate 
gyrus [90,96,98,99,119–123]. Kim et al. [119] report increased Bromodeoxyuridine (a mitotic cell 
marker; BrdU) labeling following as little as 30 minutes of forced exercise for seven consecutive days. 
Exercise-induced neurogenesis occurs even in aged animals. Increased neuronal labeling has been 
observed in exercised mice that are as old as 24 months of age at the cessation of the running  
regimen [124]. The onset of exercise-induced neurogenesis is rapid, and is detectable after only  
12 h of voluntary exercise in rats and persists for at least one week into the exercise regimen [125]. 
The means by which exercise increases neuronal labeling appears to be related to elevated levels of 
cellular proliferation [121]. Research has shown that exercise is associated with the upregulation of 
growth factors including IGF-1, FGF-2, and BDNF, which may be responsible for increased cellular 
proliferation in exercising animals and will be discussed further elsewhere in this review. Additionally, 
blood flow (and consequently metabolic support) is increased with exercise, which also may contribute 
to enhanced cellular proliferation in exercising animals [121,126,127].  

Exercise-induced neurogenesis has frequently been correlated with improved learning and memory 
performance. Following eight weeks of forced treadmill running, young male rats (22 days of age at 
the beginning of the exercise regimen) exhibited increased numbers of hippocampal CA1 and CA3 
neurons in addition to an increased number of dentate gyrus neurons as well as superior MWM 
performance [121]. These findings indicate that exercise promoted neurogenesis and neuronal survival 
in the hippocampus that was correlated with facilitated learning and memory performance. Similar 
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results have been reported in aged mice (19 months at exercise onset), with exercised mice expressing 
levels of neurogenesis and cognitive performance similar to those in young exercised animals [91].  

While there is an association between neurogenesis and enhanced cognitive performance following 
exercise, the necessity of neurogenesis to cognitive facilitation has not been fully explored and 
currently there is somewhat contradictory evidence regarding this issue. It has been reported that 
neurogenesis is not required for the enhancing effects of enriched environment housing on MWM 
performance [128]. Mice received focal X-irradiation of the hippocampus, which selectively prevents 
hippocampal neurogenesis [129], prior to a six-week exposure to an enriched environment that 
included free access to running wheels. Meshi and colleagues [127] found that all enriched animals, 
regardless of X-irradiation treatment, exhibited improved performance in the MWM evidenced by 
decreased total distance traveled, decreased latency to find the hidden platform, and increased 
proportion of trial time spent in the target quadrant. Additionally, X-irradiation had no effect on 
anxiolytic behavior following enriched environment exposure. These results indicate that neurogenesis 
is not a critical factor in the cognitive benefits of an enriched environment. 

Clark and colleagues [129] reported that intact neurogenesis is required for some, but not all, of the 
cognitive benefits of voluntary exercise. Mice were permitted to voluntarily exercise on running 
wheels for a period of 54 days following X-irradiation of the hippocampus. Histological analysis 
confirmed that exercise increased neurogenesis approximately fourfold, while radiation reduced 
neurogenesis by 50%. Exercise improved MWM performance only in sham-irradiated mice.  
X-irradiated mice exhibited no cognitive benefit of exercise in the MWM. However, X-irradiation did 
not affect all cognitive facilitation as both sham- and X-irradiated animals exhibited similar increases 
in freezing in a contextual fear conditioning paradigm compared to inactive controls.  

Differences between Meshi et al. [127] and Clark et al.’s [129] findings may be due to inherent 
differences in enriched environments and voluntary exercise. As reviewed by Olson and  
colleagues [120] the two paradigms promote neurogenesis through dissociable pathways, with 
exposure to enriched environments preferentially affecting neuronal survivability and voluntary 
exercise promoting cellular proliferation. Therefore, improved cellular survivability in the  
Meshi et al. [127] study may account for facilitated MWM performance. It should be noted that mice 
in the Meshi et al. [127] study did have access to running wheels, although the extent to which animals 
engaged in voluntary running was not quantified. It is also possible that differences in methodology 
account for the detection of cognitive facilitation in one study but not the other. Some MWM protocols 
may better detect subtle differences in hippocampal function than others. The inconsistent data indicate 
that these processes have not been fully explored and further research regarding the mechanisms 
underlying experience-induced cognitive facilitation is necessary. 

There are also some contradictory reports regarding the functional significance of adult 
neurogenesis that are not easily explained. Shors and colleagues [130] report that treatment with the 
antimitotic agent, methylazoxymethanol acetate (MAM), resulted in decreased neurogenesis without 
affecting MWM latency performance. MAM treatment did not affect contextual fear conditioning, 
another task commonly believed to require intact hippocampal circuitry. However, neurogenesis was 
found to be required for some learning paradigms that preferentially engage the hippocampus, 
specifically trace fear conditioning [130,131]. Shors and colleagues suggest that perhaps spatial 
learning does not require new neurons to facilitate task performance. It is also possible that MAM 
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treatment may affect additional physiological processes that impact some but not all  
hippocampally-engaged memories.  

Results from experiments involving MAM inhibition of neurogenesis certainly suggest that adult 
neurogenesis serves an important role in some types of learning and memory. However, these results 
are somewhat complicated. Recent evidence indicates that while MAM is effective in blocking  
adult-onset neurogenesis, it has rather nonspecific effects. MAM also reduces exercise-induced 
angiogenesis [132], indicating that MAM may adversely affect cellular mitosis in general and lack the 
specificity to preferentially eliminate neurogenesis.  

The contribution of neurogenesis to learning and memory function is further complicated by recent 
evidence suggesting that newly proliferated neurons are not immediately and functionally incorporated 
into existing learning networks. While it is clear that some new neurons do become functionally 
integrated into the existing circuitry eventually, several reports indicate that this integration is a 
somewhat delayed process taking between three and four weeks to complete [133–136]. These new 
neurons are preferentially integrated into these circuits when they are between four to eight weeks of 
age [133]. Further, new neurons are as much as twice as likely to be recruited into spatial memory 
networks six to eight weeks following proliferation. These data are supported by behavioral studies 
indicating that impaired neurogenesis does not affect visual spatial memory in the MWM immediately 
following treatment but impairs performance when memory is tested 28 days later [136]. Anatomical 
data regarding neuronal development and synapse formation in the hippocampus support these 
findings. Hastings and Gould [137] found that while immature granule cells began to extend axons into 
CA3 between four and ten days following mitosis, these cells did not express a mature neuronal 
phenotype until approximately three weeks after BrdU labeling. Additionally, newly generated cells 
did not express dendritic spines until several weeks (15–17 days) following mitosis. Peak spine growth 
has been detected around three to four weeks after generation [138], indicating that these cells do not 
make significant synaptic connections until this time. 

3.2. Angiogenesis 

Angiogenesis (the sprouting of new blood vessels from pre-existing capillaries) is an important 
physiological process in development as well as in pathological conditions such as tumor  
growth [139–145]. Although initially believed to be an exclusively developmental phenomenon,  
non-pathological angiogenesis is now understood to occur in adult animals in response to experience, 
including both exercise and exposure to enriched environments [95,97,100,146–148].  

Swain and colleagues [100] found that thirty days of exposure to running wheels resulted in 
increased cerebral blood volume accompanied by increased capillary volume in the motor cortex and 
increased immunolabeling of the αvβ3 (CD61) integrin, which is expressed predominately on 
developing capillaries. Increased blood vessel density has been shown to occur in the absence of 
alterations in cortical movement representations in the motor cortex [147].  

Similar results have also been reported in the cerebellum, with a peak in exercise-induced 
angiogenesis observed within three days of exercise onset [124,149]. Kerr and Swain [124] found that 
levels of the αvβ3 integrin in the cerebellum increased within the first twenty-four hours of voluntary 
exercise and remain elevated for at least one week. Angiogenesis in the adult cerebellum has also been 
reported with 30 days of repetitive exercise. Quantified as diffusion distance from blood vessels in the 
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molecular layer of the cerebellar paramedian lobule, angiogenesis is increased in forced exercise and 
voluntary exercise relative to both inactive controls and animals exposed to the acrobat task [97]. 

Exercise also increases blood flow, vascular density, and angiogenesis in the  
hippocampus [124,132,150]. Much like in the cerebellum, levels of angiogenesis (measured via levels 
of CD61) increase rapidly in the hippocampus (within two days of exercise onset) and remain elevated 
for about one week [124]. In addition, these increased levels of vascular labeling can be detected  
one month after exercise onset [132], indicating that early angiogenesis following exercise onset 
results in a relatively permanent increase in vascular flow in the motor cortex, cerebellum and 
hippocampus (at least as long as the aerobic activity continues). Therefore, aerobic exercise results in 
global angiogenesis that occurs rapidly following exercise onset; a plastic change that alters blood flow 
and metabolic support to surrounding tissues for the long-term. 

Kerr and colleagues [126] found that angiogenesis, and not neurogenesis is required for improved 
MWM performance following exercise. Using the neurogenesis inhibitor AZT (100 mg/kg) and the 
angiogenesis inhibitor SU5416, researchers were able to selectively inhibit either neurogenesis or 
angiogenesis in animals that received free wheel access for 7 days prior to MWM training. Rats that 
received SU5416 exhibited the poorest MWM performance, while animals that received AZT 
displayed improved MWM performance compared to SU5416-treated and control animals. The 
findings of this study indicate that angiogenesis is a critical component of exercise-induced cognitive 
facilitation. Further, because new neurons are not functionally integrated into visual spatial networks 
following only seven days, these results also suggest that the rapid onset of neurogenesis following 
exercise may result in competition between new and existing neurons that somewhat complicates 
learning and memory performance, resulting in a baseline performance that is somewhat worse than in 
animals without neurogenesis. 

It appears as though the connection between neurogenesis and angiogenesis may be a functional 
relationship whereby neurogenesis requires angiogenesis. Data suggest that long-term inhibition of 
angiogenesis prevents exercise-induced neurogenesis. Daily administration of the polyunsaturated fatty 
acid, Conjugated Linoleic Acid (CLA) resulted in decreased BrdU labeling in the hippocampus of 
exercised animals. Interestingly, CLA administration resulted in similar levels of BrdU labeling as 
MAM administration, a drug previously shown to inhibit neurogenesis. Both CLA- and MAM-treated 
rats expressed BrdU labeling similar to inactive controls [132]. Further, the time course of 
angiogenesis and neurogenesis following exercise onset is somewhat related. As explained previously, 
increased levels of neurogenesis in the hippocampus can be detected almost immediately (within 12 h) 
following exercise onset. Levels of angiogenesis peak within 48 h of exercise onset and persist as long 
as levels of neurogenesis remain elevated [124]. This time course suggests that angiogenesis may 
occur in response to increased neurogenesis in an effort to provide appropriate levels of metabolic 
support for newly established neurons to differentiate, survive, and integrate into the existent neural 
circuitry.  

3.3. Apoptosis 

An interesting consequence of acute aerobic exercise is apoptosis, or programmed cell death. While 
levels of apoptosis are not found to be elevated after long-term exercise regimens [121,151], Kerr and 
Swain [124] report that, in the very short term, exercise is associated with central nervous system 
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apoptosis, measured by levels of cleaved caspase-3 in both the hippocampus and cerebellum. Elevated 
levels of caspase-3 can be detected in both structures within 12 h of exercise onset, peaking after  
24 h of exercise, and declining steadily over time. In fact, increased levels of caspase-3 are resolved by 
48 h following exercise onset, which is the same time at which levels of angiogenesis increase. The 
timing of these processes suggests that apoptosis may promote the plastic changes commonly reported 
to occur with extended periods of exercise.  

The most parsimonious explanation for the increased cell death observed by Kerr and Swain [124] 
is that exercise increases the metabolic demand (resulting in improper metabolic supply) on these 
structures and the nervous system simply cannot accommodate the increased demand adequately. 
Increased cellular activity is associated with increased energy metabolism in the brain [152], and 
voluntary wheel running has been found to increase activity in the hippocampus [153]. Previous 
research indicates that exercise may result in changes in the brain that are consistent with a response to 
oxidative stress, including the generation of reactive oxygen species and consequent  
antioxidants [154–157]. It is possible that exercise induces mild hypoxia in the CNS, which results in 
elevated cell death. This hypothesis is supported by the fact that caspase-3 activity has been implicated 
as a potential mechanism of hypoxia-induced apoptosis [158]. As such, it can be hypothesized that 
increased demand for glucose and oxygen that occurs with exercise onset results in this apoptosis, as 
exercise is known to impact glucose transport in the cerebellum [159] and tissue oxygenation in 
skeletal muscle [160–162]. Therefore, when the animal is exposed to aerobic activity, those cells that 
have insufficient resources (because they require additional metabolic availability) to support the 
increased activity associated with exercise, undergo apoptosis. 

4. Molecular Mechanisms  

As previously described, exercise results in significant changes in brain anatomy and morphology. 
Specifically, exercise has been consistently shown to induce angiogenesis and neurogenesis in the 
brain, and can even regulate normal processes of programmed cell death [119,121,124,151,163]. 
Angiogenesis, neurogenesis, and apoptosis are all processes that are known to be controlled by several 
different molecules, some of which change in expression patterns in response to exercise. Most of 
these exercise-affected molecules fall into the category of neurotrophic factors [164], which are 
substances that promote the growth or survival of neurons by binding to their appropriate receptors on 
target cells and cell populations [164,165]. Some growth factors and receptors that are altered in 
response to exercise include vascular endothelial growth factor (VEGF) [166–169], brain-derived 
neurotrophic factor (BDNF) [141,170–172], nerve growth factor (NGF) [104,107], and  
insulin-like growth factor 1 (IGF-1) [173]. Several of these molecules have also been implicated in 
exercise-induced improvements of cognitive function [68,170,171]. 

4.1. Vascular Endothelial Growth Factor (VEGF) 

VEGF is a growth factor that causes angiogenesis in both normal physiological conditions, such as 
the development of the corpus luteum during menstruation [174–176], and in pathological conditions 
such as exposure to hypoxia, or conditions of low oxygen tension [177], wound healing [178,179], and 
tumor growth and survival [145,180,181]. Furthermore, application of VEGF to brain slices in vitro or 
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infusion of VEGF intravenously in an in vivo model results in significant increases in the vascularity of 
the brain [182].  

Exercise itself has also been shown to upregulate VEGF expression and plays a vital role in 
exercise-induced angiogenesis [166–169]. Several studies show that both VEGF mRNA and VEGF 
protein are upregulated in various brain regions of animals exposed to exercise, and this increase in 
VEGF expression is often accompanied by an increase in blood vessel density in the brains of 
exercising animals [166,167,169]. Tang and colleagues [169] identified increases in VEGF mRNA and 
protein in the hippocampi of mice following one hour of intense treadmill exercise. In addition, longer 
term exercise resulted in significant increases in blood vessel density in the striatum and a trend toward 
increased blood vessel density in the cortex of animals that had exercised on a treadmill for three 
weeks [104]. In a later study, these authors also found increases in both VEGF mRNA and protein, 
along with significant increases in blood vessel density in both the cortex and striatum of aged animals 
exposed to exercise [166]. These findings indicate that VEGF is involved in exercise-induced 
angiogenesis, and additional research has gone further and investigated the impact of exercise on other 
proteins that are also involved in exercise-induced increases of VEGF expression. 

Along with increases in VEGF activity it would follow that the expression of receptors for VEGF 
would also be increased; without successful binding to its receptors, VEGF would fail to have a 
significant effect on blood vessel density in response to exercise. The two high-affinity VEGF 
receptors, flk-1 and flt-1, have somewhat different functions. The flk-1 receptor has been shown to be 
vital in the formation of the vasculature during embryogenesis, as mice lacking this receptor die  
in utero due to a failure to form an adequate vascular supply system [183,184]. In mature animals 
under normal conditions, flk-1 receptor expression is significantly downregulated compared to its 
expression in developing embryos [185]. Contrastingly, the flt-1 receptor is not necessarily responsible 
for the formation of vasculature but rather in the organization of the vasculature [186]. Like the flk-1 
receptor, the flt-1 receptor is present during embryogenesis but unlike flk-1 it is present in large 
quantities in adult tissues [187], indicating that flt-1 may act to continuously maintain vascular 
organization [141]. It has been suggested that flt-1 serves as a “stop signal” for angiogenesis during 
embryonic development, which prevents the vasculature from overgrowth and organizes the 
successfully formed blood vessels into a cohesive network [184,186]. Overall, all of these findings 
suggest that whereas flk-1 is more involved in the actual process of the formation of blood vessels,  
flt-1 is more important for the organization of the newly formed network of vasculature. As such, 
along with increased expression of VEGF, increased expression of both flk-1 and flt-1 would be 
expected in response to exercise—flk-1 to be involved in the formation of new capillaries and flt-1 to 
successfully organize the newly formed vasculature.  

Specific research regarding the effect of exercise on the expression of the VEGF receptors has been 
conducted and has identified significant increases in these receptors [159,188]. Just as VEGF is 
expressed in both the periphery and the brain in response to exercise, the high-affinity VEGF receptors 
are significantly upregulated in response to exercise training in both peripheral [189–192] and nervous 
tissues [159,188]. Lloyd et al. [190] found significant increases in both muscle capillarity and in the 
expression of VEGF mRNA in skeletal muscles of rats soon after the commencement of a treadmill 
exercise training regimen. In addition to these findings, they also assessed the expression of flk-1 and 
flt-1 in the muscles and the timelines along which their expressions increased. Their data showed 
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significant increases in both flt-1 and flk-1 following just one day of training and declining to near 
baseline levels around day nine; interestingly, both receptors were upregulated and returned to baseline 
levels at approximately the same time. These upregulations in VEGF receptors coincided partially with 
increases in VEGF mRNA (VEGF mRNA remained elevated until day 12), and preceded significant 
changes in capillary density, which makes sense as the signaling mechanisms needed to be in place 
before morphological changes to the vasculature could be observed [190].  

In a recapitulation of the findings regarding the activity of the VEGF receptors in response to 
exercise in the periphery, studies have identified similar changes with regard to VEGF receptor 
expression in the brains of exercising animals. Thompson and colleagues [159] allowed animals free 
access to a running wheel for 0, 2, 4, 10, or 30 days and found significantly increased expression of 
flk-1 receptors in the cerebellum (paramedian lobule; representing the rat forelimb) of animals that had 
exercised for just two days. However, flk-1 expression was not significantly different than controls at 
any other time point. More interestingly is the additional finding that flt-1 labeling was significantly 
decreased at the two-day time point. These findings further highlight the significant differences 
between the two high-affinity VEGF receptors, and support previous research that show that whereas 
flk-1 is important for neovascularization, flt-1 is involved in the organizational functionality of newly 
formed capillaries from a preexisting network. Furthermore, the time at which flk-1 expression  
was increased coincides with the increase in exercise-induced angiogenesis described by Kerr and 
Swain [124].  

In addition to the cerebellum, increased flk-1 expression has also been identified in the motor cortex 
of exercising animals, but this increase is delayed relative to the increase of flk-1 labeling in the 
cerebellum [188] as a significant increase was not observed until animals had exercised for 10 days. It 
is unclear why the exercise-induced alteration of VEGF receptor expression is delayed in the motor 
cortex compared to the cerebellum, but it may suggest a recapitulation of developmental processes in 
which more posterior brain structures develop first. Although VEGF and its high-affinity  
receptors are most often discussed with regard to their relation to exercise-induced angiogenesis, some 
research indicates that VEGF and the VEGF receptors contribute to other exercise-induced changes to 
brain anatomy. 

Activity-induced neurogenesis also appears to require the activity of VEGF. Fabel and  
colleagues [105] found that blocking peripherally produced VEGF by way of an adenovirus targeting 
one of the high-affinity VEGF receptors (flt-1), totally abolished exercise-induced cell proliferation in 
animals allowed access to running wheels for seven days. Interestingly, they also noted that running 
did not significantly increase VEGF in the hippocampus itself. The authors argue that the absence of 
changes in hippocampally produced VEGF suggests that either hippocampal VEGF fluctuations are 
too small to detect, or that it is only the VEGF that is produced in the periphery that is responsible for 
exercise-induced neurogenesis. Their findings seem to support the latter argument, which further 
implies that even molecular pathways located outside of the brain contribute to significant neural 
changes in response to exercise. Indeed, several of the same mechanisms that lead to angiogenesis and 
increased blood flow in the brain in response to exercise have also been identified in the periphery, 
particularly in skeletal muscle, where VEGF protein, VEGF mRNA, and capillary density have been 
found to be significantly increased in response to exercise [192,193]. 
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4.2. Brain Derived Neurotrophic Factor (BDNF) 

Another notable growth factor that has been consistently shown to increase in the brain in response 
to exercise is brain derived neurotrophic factor (BDNF) [107,170,172,194–196]. In general, BDNF 
promotes the survival of central nervous system neurons [197] and also affects the outgrowth of 
neurons in vitro [198]. BDNF is abundantly expressed in the hippocampus, and although research has 
found that it is not highly expressed during developmental processes, it is expressed in large amounts 
in mature neurons [199], highlighting its role in neuronal survival. Therefore, it is not surprising that 
BDNF has become a molecule of interest in the exercise research literature.  

Neeper and colleagues [107] allowed rats access to a running wheel for two, four, or seven nights 
and found significant increases in BDNF mRNA in several regions of the brain compared to control 
animals. More specifically by region, animals training for two, four, or seven days had significantly 
greater levels of BDNF mRNA in both the hippocampus and caudal cortex compared to sedentary 
controls; BDNF mRNA levels were significantly higher in cerebellum following four and seven days 
of running; the frontal cortex BDNF mRNA expression was increased following two days  
of voluntary exercise. To determine the timeline of BDNF mRNA expression following exercise,  
Rasmussen et al. [195] exposed mice to an acute bout of treadmill exercise and found significant 
increases in hippocampal and cortical BDNF mRNA levels, with levels peaking at 2 h post-exercise 
and returning to baseline levels by 24 h after exercise cessation.  

Long-term exercise paradigms also induce significant changes in BDNF expression. In another 
study, BDNF protein measurements were made rather than mRNA measurements, and significant 
increases in protein were not identified until day 28 of voluntary exercise [200]. These findings are 
consistent with additional BDNF protein findings by Berchtold and colleagues [170], who found 
significant increases in the hippocampus of mice allowed running wheel access for three weeks. 
Therefore, it appears that changes in BDNF mRNA may occur much more rapidly following exposure 
to exercise compared to BDNF protein changes. Furthermore, and in contrast to BDNF mRNA 
expression which returns to baseline levels just 24 h after exercise cessation [195], increases in BDNF 
protein levels were found to persist up to two weeks after exercise cessation [170]. However, more 
prolonged periods of inactivity ultimately result in a decrease of BDNF protein to baseline levels, as 
noted by Radak et al. [172] who identified increases in BDNF protein following eight weeks of 
swimming training, but these changes in neurotrophin levels were no longer present after eight weeks 
of detraining (being sedentary). These findings indicate that while BDNF increases may persist for 
some time after exercise cessation, prolonged periods of inactivity still result in decreases back to 
baseline. Overall, findings of increased BDNF mRNA and protein in the brains of exercising animals, 
and the timelines of expression increases and decreases suggests that maintenance of an exercise 
regimen could result in prolonged upregulation of BDNF which could result in significant changes to 
the structure of the brain and brain function.  

Given that exercise increases BDNF activity and causes angiogenesis, and in considering evidence 
that BDNF serves as an angiogenic factor in some cancers [201], it is reasonable to hypothesize that 
BDNF may also be involved in exercise-induced angiogenesis. Ding and colleagues [104] reported that 
after three weeks of treadmill exercise, rats had significantly greater expression of BDNF in the cortex 
and striatum compared to sedentary animals. Furthermore, significant increases in blood vessel density 
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were also found in the striatum, with a trend toward significantly increased blood vessel density in the 
cortex. The concomitant increases in both BDNF expression and angiogenesis suggest that BDNF may 
play a role in exercise-induced angiogenesis; however few studies have examined the direct 
relationship between this neurotrophic factor and angiogenesis.  

The relationship among exercise, BDNF expression, and neurogenesis has also been investigated. 
For example, Farmer and colleagues [202] identified significant increases in the number of neurons 
and in BDNF mRNA in the dentate gyrus of animals allowed access to a running wheel. Additionally, 
Kim and colleagues [151] exposed both young and aged rats to treadmill exercise and found that after 
six weeks of training, both young and old animals had significantly greater volumes of proliferating 
neurons in the dentate gyrus of the hippocampus compared to age-matched sedentary animals. 
Furthermore, exercising animals from both age groups had significantly higher levels of BDNF protein 
in the dentate gyrus compared to control rats. Therefore, as with the findings of exercise-induced 
increases in angiogenesis occurring alongside increases in BDNF, the fact that neurogenesis increases 
as BDNF also increases following exercise, suggests that the process somehow involves the actions of 
BDNF. As mentioned previously, BDNF is known most prominently for its role in neural survival. 
Therefore, even if BDNF is not directly involved in the actual birth of new neurons, it is involved in 
the survival of those neurons as demonstrated by increased numbers of proliferating cells.  

4.3. Nerve Growth Factor (NGF)  

Nerve growth factor (NGF) was the first neurotrophic factor to be identified by Levi-Montalcini 
and Cohen [203], who found that addition of a substance, later isolated and defined as NGF, to the 
ganglia of chick embryos caused dramatic growth of nerve fibers from the ganglia. In addition to the 
effects of NGF on neurogenesis, other studies have noted that administration of NGF can also 
significantly increase capillary density. For example, Romon et al. [204] found that endogenous NGF 
in immunocompromised mice caused significant angiogenesis in implanted breast cancer cells. 
Additionally, administration of NGF caused angiogenesis in the chick embryo [205], in ischemic 
hindlimbs of mice [206], and in rat corneas [207].  

Research has also found increases in NGF in several areas of the brain in response to  
exercise [104,107,196]. Zhu et al. [196] found that socially housed animals that were allowed 24-h 
access to a running wheel on alternating days for six weeks had significantly greater NGF protein 
levels in the hippocampus and frontal cortex compared to animals exposed only to social housing. 
Similarly, in another study, increases in NGF mRNA were observed in the hippocampus after two days 
of wheel running, and in the caudal cortex at two, four, and seven days of wheel running [107]. 
Finally, Ding and colleagues [104] found significantly increased levels of NGF protein in the striatum 
and cortex of animals exposed to treadmill exercise, a finding that coincided with significant increases 
in blood vessel density in the striatum. Although NGF is most notably important for neurogenesis, the 
findings that NGF is activated in response to exercise and that its increased expression coincides with 
significant angiogenesis, suggest that neurogenesis and angiogenesis are overlapping processes and 
that in addition to VEGF and BDNF, NGF may also be involved in exercise-induced angiogenesis. 

Using a slightly different exercise training paradigm, Radak et al. [172] exposed rats to prolonged 
periods of swimming exercise (60–120 min) for eight weeks, and some animals were then “detrained” 
for another eight weeks during which they did not exercise. They found a trend toward significant 
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increases in hippocampal NGF in the swimming animals compared to sedentary control rats, but this 
increase was abolished after eight weeks of detraining, when levels of NGF decreased to below  
control levels.  

4.4. Insulin-Like Growth Factor 1 (IGF-1) 

IGF-1 is a growth factor that is involved in several processes in during development and in adult 
organisms [208]. For example, IGF-1 is known to be activated during central nervous system 
development in such processes as cell proliferation and differentiation [209]. In adult animals, IGF-1  
is involved in similar processes that are important for the formation and persistence of new  
neurons [208]. There is also evidence that IGF-1 is neuroprotective following brain injuries such as 
stroke and in neurodegenerative diseases [103,210]. Other research has also identified several ways in 
which IGF-1 is involved in the brain’s response to exercise. 

To show that IGF-1 is involved in adult hippocampal neurogenesis, Trejo, Carro, and  
Torres-Aleman [211] injected normal (non-exercising) rats with both BrdU to mark actively dividing 
neurons, and an infusion of either an IGF-1 antagonist or saline. They found that animals infused with 
IGF-1 had significantly greater BrdU-positive neurons compared to animals infused with saline. To 
further investigate the effects of IGF-1 on hippocampal neurogenesis, and to determine the molecule’s 
role in exercise-induced neural plasticity, these authors also exercised animals on a treadmill for one 
hour per day for two weeks, during which they blocked the activity of IGF-1 by way of an infusion of 
IGF-1 antiserum. Results showed that exercising animals that received the infusion of IGF-1 antiserum 
had significantly fewer BrdU-labeled cells in the hippocampus compared to exercising animals that 
had received a control infusion. In other words, blocking IGF-1 activity abrogated any increases in 
hippocampal neurogenesis as a result of exercise, thus suggesting that IGF-1 is required for normal 
activity-induced increases in neuron number. 

Another study reported similar findings to those of Trejo et al. [211] in exercising mice in regard to 
hippocampal neurogenesis and IGF-1 blockade [212]. Specifically, mice were exposed to two weeks 
(40 min per day) of treadmill exercise and treated with either an IGF-1 antagonist or with a control 
infusion. Exercising animals treated with the IGF-1 antagonist had significantly fewer BrdU-positive 
cells in the hippocampus compared to exercising animals treated with a control infusion. In addition, 
they found that exercise significantly increased the density of dendritic spines in both the dentate gyrus 
and in area CA1 (on basal dendrites only), but had no effect on spines in area CA3. However, 
treatment with the IGF-1 blocking infusion did not abolish the exercise-induced increases in spine 
density in these areas. These findings suggest that whereas exercise-induced neurogenesis is dependent 
upon the activity of IGF-1, exercise-induced alterations in spine density in select areas of the 
hippocampus does not appear to require the activity of IGF-1 [212].   

The relationship between IGF-1 and other exercise-induced changes in brain anatomy and 
physiology have also been investigated. Some research has shown that IGF-1 is needed for  
exercise-induced angiogenesis [173]. Specifically, mutant mice that produced very low levels of IGF-1 
failed to undergo significant changes in blood vessel density in response to exercise. Normal animals 
that exercised, on the other hand, had significantly greater blood vessel density in both the cerebellum 
and hippocampus compared to normal sedentary animals and mutant exercising animals. These authors 
also found that if injected with IGF-1, the exercising mutant mice did show significant increases in 
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blood vessel density to a similar degree as normal exercising animals, which further supports the 
hypothesis that IGF-1 is required for the growth of blood vessels in the brain following exercise [173].  

Overall, research regarding the morphological changes to the brain and their relationship to the 
activity of IGF-1 indicate that this growth factor is vital to supporting exercise-induced brain plasticity. 
Both activity-induced neurogenesis [211,212] and activity-induced angiogenesis [173] have been 
shown to be negatively affected when the actions of IGF-1 are blocked or reduced. Along with several 
other growth factors that play prominent roles in exercise-induced brain plasticity, IGF-1 is another 
growth factor that functions to change the brain in positive ways in physically active organisms. 

5. Conclusions  

Exercise affects both humans and non-human animals in a variety of ways. In addition to improving 
depression, anxiety and self-esteem in both children and young adults, physically active older adults 
appear to have increased protection against cognitive decline. While the exact contribution of exercise 
to mental health and cognitive function is unknown, a number of candidate cellular mechanisms, 
including neurogenesis, angiogenesis and apoptosis appear to be involved. There are also several 
molecular mediators of the effects of exercise on the makeup of the brain. Specifically, the expression 
patterns of growth factors are significantly altered in response to physical activity and exert significant 
downstream effects on brain physiology and anatomy. Furthermore, these exercise-induced molecular 
pathways have been implicated in behavioral changes, most notably increased performance on 
cognitive tasks. The fact that exercise-induced changes in brain anatomy or physiology are 
accompanied by changes in behavioral performance highlights the importance of continued research 
regarding the ways in which physical activity can benefit various populations of human and  
non-human animals. From young organisms to those of advanced age, and from neurologically healthy 
individuals to those that have suffered any variety of neural insults, exercise has the potential to 
provide significant improvements in cognitive functioning and furthermore, quality of life. It is 
imperative that neuroscientists continue to examine the molecular, structural, and anatomical correlates 
of exercise and behavior. 

Conflict of Interest 

The authors declare no conflict of interest. 

References 

1. Kramer, A.F.; Hahn, S.; McAuley, E. Influence of aerobic fitness on the neurocognitive function 
of older adults. J. Aging Phys. Act. 2000, 8, 379–385. 

2. Parfitt, G.; Eston, R.G. The relationship between children’s habitual activity level and 
psychological well-being. Acta Paediatr. 2005, 94, 1791–1797. 

3. Brosnahan, J.; Steffen, L.M.; Lytle, L.; Patterson, J.; Boostrom, A. The relation between physical 
activity and mental health among Hispanic and non-Hispanic white adolescents. Arch. Pediatr. 
Adolesc. Med. 2004, 158, 818–823. 

  



Brain Sci. 2012, 2 732 

4. Dishman, R.K.; Hales, D.P.; Pfeiffer, K.A.; Felton, G.; Saunders, R.; Ward, D.; Dowda, M.;  
Pate, R.R. Physical self-concept and self-esteem mediate cross-sectional relations of physical 
activity and sport participation with depression symptoms among adolescent girls. Health 
Psychol. 2006, 25, 396–407. 

5. Jerstad, S.J.; Boutelle, K.N.; Ness, K.K.; Stice, E. Prospective reciprocal relations between 
physical activity and depression in female adolescents. J. Consult. Clin. Psychol. 2010, 72,  
268–272. 

6. Nabkasorn, C.; Miyai, N.; Sootmongkol, A.; Junprasert, S.; Yamamoto, H.; Arita, M.;  
Miyashita, K. Effects of physical exercise on depression, neuroendocrine stress hormones and 
physiological fitness in adolescent females with depressive symptoms. Eur. J. Public Health 
2005, 16, 179–184. 

7. Castelli, D.M.; Hillman, C.H.; Buck, S.M.; Erwin, H.E. Physical fitness and academic 
achievement in third- and fifth-grade students. J. Sport Exerc. Psychol. 2007, 29, 239–252. 

8. Coe, D.P.; Pivarnik, J.M.; Womack, C.J.; Reeves, M.J.; Malina, R.M. Effect of physical 
education and activity levels on academic achievement in children. Med. Sci. Sport Exerc. 2006, 
38, 1515–1519. 

9. Taras, H. Physical activity and student performance at school. J. School Health 2005, 75,  
214–218. 

10. Taras, H.; Potts-Datema, W. Obesity and student performance at school. J. School Health 2005, 
75, 291–295. 

11. Sibley, B.A.; Etnier, J.L. The relationship between physical activity and cognition in children:  
A meta-analysis. Pediatr. Exerc. Sci. 2007, 15, 243–256. 

12. Colcombe, S.; Kramer, A.F. Fitness effects on the cognitive function of older adults:  
A meta-analytic study. Psychol. Sci. 2003, 14, 125–130. 

13. Hillman, C.H.; Buck, S.M.; Themanson, J.R.; Pontifex, M.B.; Castelli, D.M. Aerobic fitness and 
cognitive development: Event-related brain potential and task performance indices of executive 
control in preadolescent children. Dev. Psychol. 2009, 45, 114–129. 

14. Kamijo, K.; Nishihira, Y.; Higashiura, T.; Kuroiwa, K. The interactive effect of exercise 
intensity and task difficulty on human cognitive processing. Int. J. Psychophysiol. 2007, 65,  
114–121. 

15. Buck, S.M.; Hillman, C.H.; Castelli, D.M. The relation of aerobic fitness to stroop task 
performance in preadolescent children. Med. Sci. Sport Exerc. 2008, 40, 166–172. 

16. Hillman, C.H.; Castelli, D.M.; Buck, S.M. Aerobic fitness and neurocognitive function in healthy 
preadolescent children. Med. Sci. Sport Exerc. 2005, 37, 1967–1974. 

17. Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Naglieri, J.A. 
Exercise improves executive function and achievement and alters brain activation in overweight 
children: A randomized, controlled trial. Health Psychol. 2011, 30, 91–98. 

18. Davis, C.L.; Tomporowski, P.D.; Boyle, C.A.; Waller, J.L.; Miller, P.H.; Naglieri, J.A.; 
Gregoski, M. Effects of aerobic exercise on overweight children’s cognitive functioning:  
A randomized controlled trial. Res. Q. Exerc. Sport 2007, 78, 510–519.  

19. Chaddock, L.; Hillman, C.H.; Buck, S.M.; Cohen, N.J. Aerobic fitness and executive control of 
relational memory in preadolescent children. Med. Sci. Sport Exerc. 2011, 43, 344–349. 



Brain Sci. 2012, 2 733 

20. Chaddock, L.; Erickson, K.I.; Prakash, R.S.; Kim, J.S.; Voss, M.W.; Kramer, A.F.  
A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, 
and memory performance in preadolescent children. Brain Res. 2010, 1358, 172–183. 

21. Chaddock, L.; Erickson, K.I.; Prakash, R.S.; VanPatter, M.; Voss, M.W.; Kramer, A.F. Basal 
ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 2010, 
32, 249–256. 

22. Nithianantharajah, J.; Hannan, A.J. The neurobiology of brain and cognitive reserve: Mental and 
physical activity as modulators of brain disorders. Prog. Neurobiol. 2009, 89, 369–382. 

23. Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on 
brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. 

24. Franz, S.I.; Hamilton, G.V. The effects of exercise upon retardation in conditions of depression. 
Am. J. Psychiatry 1905, 62, 239–256. 

25. Martinsen, E.W.; Medhus, A.; Sandvik, L. Effects of aerobic exercise on depression:  
A controlled study. BMJ 1985, 291, 109. 

26. Vaux, C.L. A discussion of physical exercise and recreation. Am. J. Phys. Med. 1926, 6,  
303–333. 

27. Farmer, M.E.; Locke, B.Z.; Moscicki, E.K.; Dannenberg, A.L.; Larson, D.B.; Radloff, L.S. 
Physical activity and depressive symptoms: The NHANES I epidemiologic follow-up study. Am. 
J. Epidemiol. 1988, 128, 1340–1351. 

28. Weyer, S. Physical inactivity and depression in the community. Int. J. Sports Med. 1992, 13, 
492–496. 

29. De Moor, M.H.; Been, A.L.; Stubbe, J.H.; Boomsma, D.I.; Geus, E.J. Regular exercise, anxiety, 
depression, and personality: A population-based study. Prev. Med. 2006, 42, 273–279. 

30. Ströhle, A. Physical activity, exercise, depression, and anxiety disorder. J. Neural Transm. 2006, 
116, 777–784. 

31. North, T.C.; McCullagh, P.; Tran, Z.V. Effects of exercise on depression. Exerc. Sport Sci. Rev. 
1990, 18, 379–415. 

32. Craft, L.L.; Landers, D.M. The effects of exercise on clinical depression resulting from mental 
illness: A meta-analysis. J. Sport Exerc. Psychol. 1998, 20, 339–357. 

33. Lawlor, D.A.; Hopker, S.W. The effectiveness of exercise as an intervention in the management 
of depression: Systematic review and meta-regression analysis of randomised controlled trials. 
BMJ 2001, 322, 1–8. 

34. Blumenthal, J.A.; Babyak, M.A.; Forman, L.M.; Moore, K.A.; Craighead, W.E.; Krishnan, K.R. 
Effects of exercise training on older patients with major depression. Arch. Intern. Med. 1999, 
159, 2349–2356. 

35. Blumenthal, J.A.; Babyak, M.A.; Doraiswamy, M.; Watkins, L.; Hoffman, B.M.; Sherwood, A. 
Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom. Med. 
2007, 69, 587–596. 

36. Dimeo, F.; Bauer, M.; Varahram, I.; Proest, G.; Halter, U. Benefits from aerobic exercise in 
patients with major depression: A pilot study. Br. J. Sports Med. 2001, 35, 114–117. 

37. Dunn, A.L.; Trivedi, M.H.; Kampert, J.B.; Clark, C.G.; Chambliss, H.O. Exercise treatment for 
depression efficacy and dose response. Am. J. Prev. Med. 2005, 28, 1–8. 



Brain Sci. 2012, 2 734 

38. Doyne, E.J.; Ossip-Klein, D.J.; Bowman, E.D.; Osborn, K.M.; McDougall-Wilson, I.B.;  
Neimeyer, R.A. Running versus weight lifting in the treatment of depression. J. Consult. Clin. 
Psychol. 1987, 55, 748–754. 

39. Knubben, K.; Reischies, F.M.; Adli, M.; Schlattmann, P.; Bauer, M.; Dimeo, F. A randomised, 
controlled study on the effects of a short-term endurance training programme in patients with 
major depression. Br. J. Sports Med. 2006, 41, 29–33. 

40. Jorm, A.F.; Christensen, H.; Griffiths, K.M.; Rodgers, B. Effectiveness of complementary and 
self-help treatments for depression. Med. J. Aust. 2002, 176, S84–S96. 

41. Carek, P.J.; Laibstain, S.E.; Carek, S.M. Exercise for the treatment of depression and anxiety. 
Int. J. Psychiatry Med. 2002, 41, 15–28. 

42. Broman-Fulks, J.J.; Storey, K.M. Evaluation of a brief aerobic exercise intervention for high 
anxiety sensitivity. Anxiety Stress Coping 2008, 21, 117–128. 

43. McEntee, R.J.; Haglin, R.P. Cognitive group therapy and aerobic exercise in the treatment of 
anxiety. J. Coll. Stud. Psychother. 1999, 13, 37–55. 

44. Barnes, D.E.; Yaffe, K.; Satariano, W.A.; Tager, I.B. A longitudinal study of cardiorespiratory 
fitness and cognitive function in healthy older adults. J. Am. Geriatr. Soc. 2003, 51, 549–465. 

45. Weuve, J.; Kang, J.H.; Manson, J.E.; Breteler, M.M.; Ware, J.H.; Grodstein, F. Physical activity, 
including walking, and cognitive function in older women. JAMA 2004, 292, 1454–1461. 

46. Geda, Y.E.; Roberts, R.O.; Knopman, D.S.; Christianson, T.J.; Pankratz, V.S.; Rocca, W.A. 
Physical exercise, aging, and mild cognitive impairment. Arch. Neurol. 2010, 67, 80–86. 

47. Middleton, L.E.; Barnes, D.E.; Lui, L.; Yaffe, K. Physical activity over the life course and its 
association with cognitive performance and impairment in old age. J. Am. Geriatr. Soc. 2010, 58, 
1322–1326. 

48. Etgen, T.; Sander, D.; Huntgeburth, U.; Poppert, H.; Förstl, H.; Bickel, H. Physical activity and 
incident cognitive impairment in elderly persons: The INVADE study. Arch. Intern. Med. 2010, 
170, 186–193. 

49. Colcombe, S.J.; Erickson, K.I.; Raz, N.; Webb, A.G.; Cohen, N.J.; McAuley, E.; Kramer, A.F. 
Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. 2003, 58, 176–180. 

50. Kramer, A.F.; Hahn, S.; Cohen, N.J.; Banich, M.T.; McAuley, E.; Colcombe, A. Aging, fitness, 
and neurocognitive function. Nature 1999, 400, 418–419. 

51. Colcombe, S.J.; Kramer, A.F.; Erickson, K.I.; Scalf, P.; McAuley, E.; Cohen, N.J.; Webb, A.; 
Jerome, G.J.; Marquez, D.X.; Elavsky, S. Cardiovascular fitness, cortical plasticity, and aging. 
Proc. Natl. Acad. Sci. USA 2004, 101, 3316–3321. 

52. Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; Kramer, A.F. Aerobic 
exercise training increases brain volume in aging humans. J. Gerontol. 2006, 61, 1166–1170.  

53. Burns, J.M.; Cronk, B.B.; Anderson, H.S.; Donnelly, J.E.; Thomas, G.P.; Swerdlow, R.H. 
Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology 2008, 71, 
210–216. 

54. Heyn, P.; Abreu, B.C.; Ottenbacher, K.J. The effects of exercise training on elderly persons with 
cognitive impairment and dementia: A meta-analysis. Arch. Phys. Med. Rehabil. 2004, 85,  
1694–1704. 



Brain Sci. 2012, 2 735 

55. Abbott, R.D.; White, L.R.; Ross, G.W.; Masaki, K.H.; Curb, J.D.; Petrovitch, H. Walking and 
dementia in physically capable elderly men. J. Am. Med. Assoc. 2004, 292, 1447–1453.  

56. Larson, E.B.; Wang, L.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Crane, P.; Kukull, W. 
Exercise is associated with reduced risk for incident dementia among persons 65 years of age and 
older. Ann. Intern. Med. 2006, 144, 73–81. 

57. Laurin, D.; Verreault, R.; Lindsay, J.; MacPherson, K.; Rockwood, K. Physical activity and risk 
of cognitive impairment and dementia in elderly persons. Arch. Neurol. 2001, 58, 498–504. 

58. Hoffmann, M. Higher cortical function deficits after stroke: An analysis of 1000 patients from  
a dedicated cognitive stroke registry. Neurorehabil. Neural Repair 2001, 15, 113–127. 

59. Kluding, P.M.; Tseng, B.Y.; Billinger, S.A. Exercise and executive function in individuals with 
chronic stroke: A pilot study. J. Neurol. Phys. Ther. 2011, 35, 11–17. 

60. Quaney, B.M.; Boyd, L.A.; McDowd, J.M.; Zahner, L.H.; He, J.; Mayo, M.S.;  
Macko, R.F. Aerobic exercise improves cognition and motor function poststroke. Neurorehabil. 
Neural Repair 2009, 23, 879–885. 

61. Lin, M.R.; Chiu, W.T.; Chen, Y.J.; Yu, W.Y.; Huang, S.J.; Tsai, M.D. Longitudinal changes in 
the health-related quality of life during the first year after traumatic brain injury. Arch. Phys. 
Med. Rehabil. 2010, 91, 474–478. 

62. Devine, J.M.; Zafonte, R.D. Physical exercise and cognitive recovery in acquired brain injury:  
A review of the literature. PMR 2009, 1, 560–575. 

63. Gordon, W.A.; Sliwinski, M.; Echo, J.; McLoughlin, M.; Sheerer, M.S.; Meili, T.E. The benefits 
of exercise in individuals with traumatic brain injury: A retrospective study. J. Head Trauma 
Rehabil. 1998, 13, 58–67.  

64. Grealy, M.A.; Johnson, D.A.; Rushton, S.K. Improving cognitive function after brain injury: The 
use of exercise and virtual reality. Arch. Phys. Med. Rehabil. 1999, 80, 661–667. 

65. Hall, C.S. Emotional behavior in the rat: Defecation and urination as measures of individual 
differences in emotionality. J. Comp. Psychol. 1934, 18, 385–403. 

66. Mello, P.B.; Benetti, F.; Cammorota, M.; Izquierdo, I. Effects of acute and chronic physical 
exercise and stress on different types of memory in rats. An. Acad. Bras. Cienc. 2008, 80,  
301–309. 

67. Salam, J.N.; Fox, J.H.; DeTroy, E.M.; Guignon, M.H.; Wohl, D.F.; Falls, W.A. Voluntary 
exercise in C57 mice in anxiolytic across several measures of anxiety. Behav. Brain Res. 2009, 
197, 31–40. 

68. Hopkins, M.E.; Bucci, D.J. BDNF expression in the perirhinal cortex is associated with  
exercise-induced improvement in object recognition memory. Neurobiol. Learn. Mem. 2010, 94, 
278–284. 

69. Grant, E.C.; Mackintosh, J.H. A comparison of the social postures of some common laboratory 
rodents. Behaviour 1963, 21, 246–259. 

70. Ramos, A.; Berton, O.; Mormede, P.; Chaouloff, F. A multiple-test study of anxiety-related 
behaviours in six inbred rat strains. Behav. Brain Res. 1997, 85, 57–69. 

71. Belzung, C.; Griebel, G. Measuring normal and pathological anxiety-like behavior in mice:  
A review. Behav. Brain Res. 2001, 125, 141–149. 



Brain Sci. 2012, 2 736 

72. Fox, J.H.; Hammack, S.E.; Falls, W.A. Exercise is associated with reduction in the anxiogenic 
effect of mCPP on acoustic startle. Behav. Neurosci. 2008, 122, 943–948. 

73. Falls, W.A.; Fox, J.H.; MacAnlay, C.M. Voluntary exercise improves both learning and 
consolidation of cued conditioned fear in C57 mice. Behav. Brain Res. 2010, 207, 321–331. 

74. Green, J.T.; Chess, A.C.; Burns, M.; Schachinger, K.M.; Thanello, A. The effects of two forms 
of physical activity on eyeblink classical conditioning. Behav. Brain Res. 2011, 219, 165–174. 

75. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat.  
J. Neurosci. Methods 1981, 11, 47–60. 

76. Hajisoltani, R.; Rashidy-Pour, A.; Vafaei, A.A.; Ghaderdoost, B.; Bandegi, A.; Motamedi, F. 
The glucocorticoid system is required for the voluntary exercise-induced enhancement of 
learning and memory in rats. Behav. Brain Res. 2011, 219, 75–81. 

77. Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF mediates the efficacy of exercise 
on synaptic plasticity and cognition. Eur. J. Neurosci. 2004, 20, 2580–2590.  

78. Van der Borght, K.; Ferrari, F.; Klauke, K.; Roman, V.; Havekes, R.; Sgoifo, A.; Merlo, P. 
Hippocampal cell proliferation across the day: Increase by running wheel activity, but no effect 
of sleep and wakefulness. Behav. Brain Res. 2006, 167, 36–41. 

79. O’Callaghan, R.M.; Ohle, R.; Kelly, A.M. The effects of forced exercise on hippocampal 
plasticity in the rat: A comparison of LTP, spatial- and non-spatial learning. Behav. Brain Res. 
2007, 176, 362–366.  

80. Van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running enhances neurogenesis, 
learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13427–13431.  

81. Leasure, J.L.; Jones, M. Forced and voluntary exercise differentially affect brain and behavior. 
Neuroscience 1998, 156, 456–465.  

82. Moraska, A.; Deak, T.; Spencer, R.L.; Roth, D.; Fleshner, M. Treadmill running produces both 
positive and negative physiological adaptations in Sprague-Dawley rats. Am. J. Physiol. Regul. 
Integr. Comp. Physiol. 2000, 279, R1321–R1329.  

83. Duman, C.H.; Schlesinger, L.; Kodama, M.; Russell, D.S.; Duman, D.S. A role for MAP kinase 
signaling in behavioral models of depression and antidepressant treatment. Biol. Psychiatry 2007, 
61, 661–670. 

84. Duman, C.H.; Schlesinger, L.; Russell, D.S.; Duman, D.S. Voluntary exercise produces 
antidepressant and anxiolytic behavioral effects in mice. Brain Res. 2008, 1199, 148–158. 

85. Zheng, H.; Liu, Y.; Li, W.; Yang, B.; Chen, D.; Wang, X.; Jiang, Z.; Wang, H.; Wang, Z.; 
Cornellison, G.; Halberg, F. Beneficial effects of exercise and its molecular mechanisms on 
depression in rats. Behav. Brain Res. 2006, 168, 1, 47–55. 

86. Burghardt, P.R.; Fulk, L.; Hand, G.; Wilson, M.A. The effects of chronic treadmill and wheel 
running on behavior in rats. Brain Res. 2004, 1019, 84–96. 

87. Sigwalt, A.R.; Budde, H.; Helmich, I.; Glaser, V.; Ghisoni, K.; Lanza, S.; Cadore, E.L.;  
Lhullier, F.L.R. Molecular aspects involved in swimming exercise training reducing anhedonia 
in a rat model of depression. Neuroscience 2011, 192, 661–674. 

88. Greenwood, B.N.; Foley, T.E.; Day, H.E.; Campisi, J.; Hammack, S.H.; Campeau, S.;  
Maier, S.F.; Fleshner, M. Freewheel running prevents learned helplessness/behavioral 
depression: Role of dorsal raphe serotonergic neurons. J. Neurosci. 2003, 23, 2889–2898. 



Brain Sci. 2012, 2 737 

89. Dishman, R.K.; Renner, K.J.; Youngstedt, S.D.; Reigle, T.G.; Bunnell, B.N.; Burke, K.A.;  
Yoo, H.S.; Mougey, E.H.; Meyerhoff, J.L. Activity wheel running reduces escape latency and 
alters brain monoamine levels after footshock. Brain Res. Bull. 1997, 42, 399–406. 

90. Van Praag, H.; Shubert, T.; Zhao, C.; Gage, F.H. Exercise enhances learning and hippocampal 
neurogenesis in aged mice. J. Neurosci. 2005, 25, 8680–8685.  

91. Rhodes, J.S.; van Praag, H.; Jeffrey, S.; Girard, I.; Mitchell, G.S.; Garland, T.; Gage, F.H. 
Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning 
in mice bred for increased voluntary wheel running. Behav. Neurosci. 2003, 117, 1006–1016.  

92. Liu, Y.; Chen, H.; Wu, C.; Kuo, Y.; Yu, L.; Huang, A.; Wu, F.; Chaung, J.; Jen, C. Differential 
effects of treadmill running and wheel running spatial or aversive learning and memory: Roles of 
amygdalar brain-derived neurotrophic factor and synaptotagmin I. J. Physiol. 2009, 587,  
3221–3231. 

93. Anderson, B.J.; Alcantara, A.A.; Greenough, W.T. Motor-skill learning: Changes in synaptic 
organization of the rat cerebellar cortex. Neurobiol. Learn. Mem. 1996, 66, 221–229. 

94. Black, J.E.; Issacs, K.R.; Anderson, B.J.; Alcantara, A.A.; Greenough, W.T. Learning causes 
synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. 
Proc. Natl. Acad. Sci. USA 1990, 87, 5568–5572. 

95. Black, J.E.; Sirevaag, A.M.; Greenough, W.T. Complex experience promotes capillary formation 
in young rat visual cortex. Neurosci. Lett. 1987, 83, 351–355. 

96. Christie, B.R.; Eadie, B.D.; Kannangara, T.S.; Robillard, J.M.; Shin, J.; Titterness, A.K. 
Exercising our brains: How physical activity impacts synaptic plasticity in the dentate gyrus. 
Neuromolecular Med. 1988, 10, 47–58.  

97. Issacs, K.R.; Anderson, B.J.; Alcantara, A.A.; Black, J.E.; Greenough, W.T. Exercise and the 
brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill 
learning. J. Cereb. Blood Flow Metab. 1992, 12, 110–119. 

98. Kempermann, G.; Kuhn, H.G.; Gage, F.H. More hippocampal neurons in adult mice living in  
an enriched environment. Nature 1997, 386, 493–495. 

99. Kempermann, G.; Kuhn, H.G.; Gage, F.H. Experience-induced neurogenesis in the senescent 
dentate gyrus. J. Neurosci. 1998, 18, 3206–3212. 

100. Swain, R.A.; Harris, A.B.; Wiener, E.C.; Dutka, M.V.; Morris, H.D.; Theien, B.E.;  
Greenough, W.T. Prolonged exercise induced angiogenesis and increases cerebral blood volume 
in primary motor cortex of the rat. Neuroscience 2003, 117, 1037–1046.  

101. Cao, L.; Jiao, X.; Zuzga, D.S.; Liu, Y.; Fong, D.M.; Young, D.; During, M.J. VEGF links 
hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 2004, 36, 827–835.  

102. Carro, E.; Nuñez, A.; Busiguina, S.; Torres-Aleman, I. Circulating insulin-like growth factor 1 
mediates effects of exercise on the brain. J. Neurosci. 2000, 20, 2926–2933.  

103. Carro, E.; Trejo, J.L.; Busiguina, S.; Torres-Aleman, I. Circulating insulin-like growth factor I 
mediates the protective effects of physical exercise against brain insults of different etiology and 
anatomy. J. Neurosci. 2001, 21, 5678–5684. 

104. Ding, Y.; Li, J.; Luan, X.; Ding, Y.H.; Lai, Q.; Rafols, J.A.; Diaz, F.G. Exercise  
pre-conditioning reduces brain damage in ischemic rats that may be associated with regional 
angiogenesis and cellular overexpression of neurotrophin. Neuroscience 2004, 124, 583–591.  



Brain Sci. 2012, 2 738 

105. Fabel, K.; Fabel, K.; Tam, B.; Kaufer, D.; Baiker, A.; Simmons, N.; Palmer, T.D. VEGF is 
necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 2003, 18, 
2803–2812.  

106. Neeper, S.A.; Gomez-Pinilla, F.; Choi, J.; Cotman, C.W. Exercise and brain neurotrophins. 
Nature 1995, doi:10.1038/373109a0.  

107. Neeper, S.A.; Gomez-Pinilla, F.; Choi, J.; Cotman, C.W. Physical activity increases mRNA for 
brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1995, 726,  
49–56. 

108. Oliff, H.S.; Berchtold, N.C.; Isackson, P.; Cotman, C.W. Exercise-induced regulation of  
brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res. Mol. 
Brain Res. 1998, 61, 147–153.  

109. Van Praag, H. Neurogenesis and exercise: Past and future directions. Neuromolecular Med. 
2008, 10, 128–140.  

110. Altman, J.; Das, G.D. Postnatal neurogenesis in the guinea-pig. Nature 1967, 214, 1098–1101.  
111. Cameron, H.A.; Gould, E. Adult neurogenesis is regulated by adrenal steroids in the dentate 

gyrus. Neuroscience 1994, 61, 203–209. 
112. Cameron, H.A.; Woolley, C.S.; McEwen, B.S.; Gould, E. Differentiation of newly born neurons 

and glia in the dentate gyrus of the adult rat. Neuroscience 2003, 56, 337–344. 
113. Gould, E.; Gross, C.G. Neurogenesis in adult mammals: Some progress and problems.  

J. Neurosci. 2002, 22, 619–623.  
114. Gould, E.; McEwen, B.S.; Tanapat, P.; Galea, L.A.; Fuchs, E. Neurogenesis in the dentate gyrus 

of the adult tree shrew is regulated by psychosocial stress and NDMA receptor activation.  
J. Neurosci. 1997, 17, 2492–2498.  

115. Eriksson, P.S.; Perfilieva, E.; Bjork-Eriksson, T.; Alborn, A.M.; Nordborg, C.; Peterson, D.A.; 
Gage, F.H. Neurogenesis in the adult human hippocampus. Nat. Med. 1998, 4, 1313–1317.  

116. Alvarez-Buylla, A.; Garcia-Verdugo, J.M. Neurogenesis in the adult subventricular zone.  
J. Neurosci. 2002, 22, 629–634.  

117. Nottebohm, F. Neuronal replacement in adult brain. Brain Res. Bull. 2002, 57, 737–749.  
118. Nottebohm, F. Why are some neurons replaced in adult brain? J. Neurosci. 2002, 22, 624–628.  
119. Kim, S.H.; Kim, H.B.; Jang, M.H.; Lim, B.V.; Kim, Y.J.; Kim, Y.P.; Kim, C.J. Treadmill 

exercise increases cell proliferation without altering of apoptosis in dentate gyrus of  
Sprague-Dawley rats. Life Sci. 2002, 71, 1331–1340.  

120. Olson, A.K.; Eadie, B.D.; Ernst, C.; Christie, B.R. Environmental enrichment and voluntary 
exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. 
Hippocampus 2006, 16, 250–260.  

121. Uysal, N.; Tugyan, K.; Kayatekin, B.M.; Acikgoz, O.; Bagriyanik, H.A.; Gonenc, S.; Semin, I. 
The effects of regular aerobic exercise in adolescent period on hippocampal neuron density, 
apoptosis, and spatial memory. Neurosci. Lett. 2005, 383, 241–245.  

122. Van der Borght, K.; Kobor-Nyakas, D.E.; Klauke, K.; Eggen, B.J.L.; Nyakas, C.;  
van der Zee, E.A.; Meerlo, P. Physical exercise leads to rapid adaptations in hippocampal 
vasculature: Temporal dynamics and relationship to cell proliferation and neurogenesis. 
Hippocampus 2009, 19, 928–936.  



Brain Sci. 2012, 2 739 

123. Kronenberg, G.; Bick-Sander, A.; Bunk, E.; Wolf, C.; Ehninger, D.; Kempermannn, G. Physical 
exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. 
Neurobiol. Aging 2006, 27, 1505–1513. 

124. Kerr, A.L.; Swain, R.A. Rapid cellular genesis and apoptosis: Effects of exercise in the adult rat. 
Behav. Neurosci. 2011, 125, 1–9.  

125. Anderson, B.J.; Greenwood, S.J.; McCloskey, D. Exercise as an intervention for the age-related 
decline in neural metabolic support. Front. Aging Neurosci. 2010, 2, 30. 

126. Kerr, A.L.; Steuer, E.L.; Pochtarev, V.; Swain, R.A. Angiogenesis but not neurogenesis is critical 
for normal learning and memory acquisition. Neuroscience 2010, 171, 214–226.  

127. Meshi, D.; Drew, M.R.; Saxe, M.; Ansorge, M.S.; David, D.; Santarelli, L.; Hen, R. 
Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. 
Nat. Neurosci. 2006, 9, 729–731.  

128. Santarelli, L.; Saxe, M.; Gross, C.; Surget, A.; Battaglia, F.; Dulawa, S.; Hen, R. Requirement of 
hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003, 301,  
803–809. 

129. Clark, P.J.; Brzezinska, W.J.; Thomas, M.W.; Ryzhenko, N.A.; Toshkov, S.A.; Rhodes, J.S. 
Intact neurogenesis is required for benefits of exercise on spatial memory but not motor 
performance or contextual fear conditioning in C57BL/6J mice. Neuroscience 2008, 155,  
1048–1058. 

130. Shors, T.J.; Townsend, D.A.; Zhao, M.; Kozorovitskiy, Y.; Gould, E. Neurogenesis may relate to 
some but not all types of hippocampal-dependent learning. Hippocampus 2002, 12, 578–584. 

131. Shors, T.J.; Miesegaes, G.; Beylin, A.; Zhao, M.; Rydel, T.A.; Gould, E. Neurogenesis in the 
adult is involved in the formation of trace memories. Nature 2001, 410, 372–376.  

132. Sikorski, A.M.; Swain, R.A. Angiogenesis Inhibition Impairs Spatial Learning in Adult Rats. 
Presented at the 36th Society of Neuroscience Annual Meeting, Atlanta, GA, USA,  
14–18 October 2006. 

133. Kee, N.; Teixeira, C.M.; Wang, A.H.; Frankland, P.W. Preferential incorporation of  
adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 
2007, 10, 355–362.  

134. Overstreet, L.S.; Hentges, S.T.; Bumaschny, V.F.; de Souza, F.S.; Smart, J.L.; Santangelo, A.M.; 
Rubinstein, A. A transgenic marker for newly born granule cells in dentate gyrus.  
J. Neurosci. 2004, 24, 3251–3259.  

135. Van Praag, H.; Schinder, A.F.; Christie, B.R.; Toni, N.; Palmer, T.D.; Gage, F.H. Functional 
neurogenesis in the adult hippocampus. Nature 2002, 415, 1030–1034.  

136. Hu, M.; Sun, Y.J.; Zhou, Q.G.; Chen, L.; Hu, Y.; Luo, C.X.; Zhu, D.Y. Negative regulation of 
neurogenesis and spatial memory by NR2B-containing NMDA receptors. J. Neurochem. 2008, 
106, 1900–1913.  

137. Hastings, N.B.; Gould, E. Rapid extension of axons into the CA3 region by adult-generated 
granule cells. J. Comp. Neurol. 1999, 413, 146–154.  

138. Zhao, C.; Teng, E.M.; Summers, R.G.; Ming, G.L.; Gage, F.H. Distinct morphological stages of 
dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 2006, 26, 3–11. 

139. Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257.  



Brain Sci. 2012, 2 740 

140. Ferrara, N. Molecular and biological properties of vascular endothelial growth factor. J. Mol. 
Med. 1999, 77, 527–543. 

141. Ferrara, N.; Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 
1997, 18, 4–25.  

142. Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med.1993, 9, 
669–676. 

143. Neufeld, G.; Tessler, S.; Gitay-Goren, H.; Cohen, T.; Levi, B. Vascular endothelial growth factor 
and its receptors. Prog. Growth Factor Res. 1994, 5, 89–97.  

144. Stacker, S.A.; Achen, M.G. The vascular endothelial growth factor family: Signaling for vascular 
development. Growth Factors 1999, 17, 1–11. 

145. Yancopoulos, G.D.; Davis, S.; Gale, N.W.; Rudge, J.S.; Wiegand, S.J.; Holash, J.  
Vascular-specific growth factors and blood vessel formation. Nature 2000, 407, 242–248.  

146. Black, J.E.; Zelazny, A.M.; Greenough, W.T. Capillary and mitochondrial support of neural 
plasticity in adult rat visual cortex. Exp. Neurol. 1991, 111, 204–209.  

147. Kleim, J.A.; Cooper, N.R.; VandenBerg, P.M. Exercise induces angiogenesis but does not alter 
movement representation within rat motor cortex. Brain Res. 2002, 934, 1–6. 

148. Sikorski, A.M.; Hebert, N.; Swain, R.A. Conjugated linoleic acid (CLA) inhibits new vessel 
growth in the mammalian brain. Brain Res. 2008, 1213, 35–40.  

149. Swain, R.A.; Thompson, K.J.; Kerr, A.L.; Bulinski, S.C.; Dutka, M.V.; Greenough, W.T. Rapid 
onset of cerebellar angiogenesis following exercise is preceded by Flk-1 upregulation. Behav. 
Neurosci. 2012, in press. 

150. Nishijima, T.; Soya, H. Evidence of functional hyperemia in the rat hippocampus during mild 
treadmill running. Neurosci. Res. 2006, 54, 186–191.  

151. Kim, S.E.; Ko, I.G.; Kim, B.K.; Shin, M.S.; Cho, S.; Kim, C.J.; Jee, Y.S. Treadmill exercise 
prevents aging-induced failure of memory through an increase in neurogenesis and suppression 
of apoptosis in rat hippocampus. Exp. Gerontol. 2010, 45, 357–365. 

152. Borowsky, I.W.; Collins, R.C. Histochemical changes in enzymes of energy metabolism in the 
dentate gyrus accompany deafferentation and synaptic reorganization. Neuroscience 1989, 33, 
253–262. 

153. Czurko, A.; Hirase, H.; Csicsvari, J.; Buzsaki, G. Sustained activation of hippocampal pyramidal 
cells by ‘space clamping’ in a running wheel. Eur. J. Neurosci. 1999, 11, 344–352. 

154. Liu, J.; Yeo, H.C.; Overvik-Douki, E.; Hagen, T.; Doniger, S.J.; Chu, D.W.; Ames, B.N. 
Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous 
antioxidants. J. Appl. Physiol. 2000, 89, 21–28. 

155. Radak, Z.; Chung, H.Y.; Goto, S. Systemic adaptation to oxidative challenge induced by regular 
exercise. Free Radic. Biol. Med. 2008, 44, 153–159. 

156. Radak, Z.; Taylor, A.W.; Ohno, H.; Goto, S. Adaptation to exercise-induced oxidative stress: 
From muscle to brain. Exerc. Immunol. Rev. 2001, 7, 90–107. 

157. Somani, S.M.; Ravi, R.; Rybak, L.P. Effect of exercise training on antioxidant system in brain 
regions of rat. Pharmacol. Biochem. Behav. 1995, 50, 635–639. 



Brain Sci. 2012, 2 741 

158. Araya, R.; Uehara, T.; Nomura, Y. Hypoxia induces apoptosis in human neuroblastoma  
SK-N-MC cells by caspase activation accompanying cytochrome c release from mitochondria. 
FEBS Lett. 1998, 439, 168–172.  

159. Thompson, K.J.; Bulinski, S.C.; Powell, S.K.; Sikorski, A.M.; Swain, R.A. Time-Dependent 
Expression of The Tyrosine Kinase Receptors Flk-1 and Flt-1 in the Cerebellum of the Exercised 
Rat. Presented at the 30th Society of Neuroscience Annual Meeting, New Orleans, LA, USA,  
4–9 November 2000. 

160. Hoppeler, H.; Billeter, R. Conditions for oxygen and substrate transport in muscles in exercising 
mammals. J. Exp. Biol. 1991, 160, 263–283. 

161. Swallow, J.G.; Garland, T., Jr.; Carter, P.A.; Zhan, W.Z.; Sieck, G.C. Effects of voluntary 
activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J. Appl. 
Physiol. 1998, 84, 69–76. 

162. Wardlaw, G.M.; Kaplan, M.L.; Lanza-Jacoby, S. Effect of treadmill training on muscle oxidative 
capacity and accretion in young male obese and nonobese Zucker rats. J. Nutr. 1986, 116,  
1841–1852. 

163. Chae, C.; Kim, H. Forced, moderate-intensity treadmill exercise suppresses apoptosis by 
increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the 
hippocampus of induced aging rats. Neurochem. Int. 2009, 55, 208–213.  

164. Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 4th ed.; McGraw-Hill: 
New York, NY, USA, 2000.  

165. Hamburger, V. The history of the discovery of the nerve growth factor. J. Neurobiol. 1993, 24, 
893–897.  

166. Ding, Y.H.; Li, J.; Zhou, Y.; Rafols, J.A.; Clark, J.C.; Ding, Y. Cerebral angiogenesis and 
expression of angiogenic factors in aging rats after exercise. Curr. Neurovasc. Res. 2006, 3,  
15–23.  

167. Ding, Y.H.; Luan, X.D.; Li, J.; Rafols, J.A.; Guthinkonda, M.; Diaz, F.G.; Ding, Y.  
Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion 
injury in stroke. Curr. Neurovasc. Res. 2004, 1, 411–420. 

168. Sun, Y.; Jin, K.; Xie, L.; Childs, J.; Mao, X.O.; Logvinova, A.; Greenberg, D.A. VEGF-induced 
neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 
2003, 111, 1843–1851.  

169. Tang, K.; Xia, F.C.; Wagner, P.D.; Breen, E.C. Exercise-induced VEGF transcriptional 
activation in brain, lung, and skeletal muscle. Respir. Physiol. Neurobiol. 2010, 170, 16–22. 

170. Berchtold, N.C.; Castello, N.; Cotman, C.W. Exercise and time-dependent benefits to learning 
and memory. Neuroscience 2010, 167, 588–597.  

171. Gomez-Pinilla, F.; Vaynman, S.; Ying, Z. Brain-derived neurotrophic factor functions as  
a metabotrophin to mediate the effects of exercise on cognition. Eur. J. Neurosci. 1008, 28, 
2278–2287.  

172. Radak, Z.; Toldy, A.; Szabo, Z.; Siamilis, S.; Nyakas, C.; Silye, G.; Goto, S. The effects of 
training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. 
Neurochem. Int. 2006, 49, 387–392.  



Brain Sci. 2012, 2 742 

173. Lopez-Lopez, C.; LeRoith, D.; Torres-Aleman, I. Insulin-like growth factor-I is required for 
vessel remodeling in the adult brain. Proc. Natl. Acad. Sci. USA 2004, 101, 9833–9838.  

174. Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev. 
2004, 25, 581–611.  

175. Ferrara, N.; Chen, H.; Davis-Smyth, T.; Gerber, H.; Nugyen, T.; Peers, D.; Schwall, R.H. 
Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 1998, 
4, 336. 

176. Fraser, H.M.; Dickson, S.E.; Lunn, S.F.; Wulff, C.; Morris, K.D.; Carroll, V.A.; Bicknell, R. 
Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial 
growth factor. Endocrinology 2000, 141, 995–1000.  

177. Levy, A.P.; Levy, N.S.; Wegner, S.; Goldberg, M.A. Transcriptional regulation of the rat 
vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 1995, 270, 13333–13340.  

178. Brown, L.F.; Yeo, K.; Berse, B.; Yeo, T.; Senger, D.R.; Dvorak, H.F.; van de Water, L. J. Exp. 
Med. 1992, 176, 1375–1379.  

179. Zhang, F.; Oswald, T.F.; Lin, L.; Wang, S.; Lin, S.; Lineaweaver, W.C. Improvement of  
full-thickness skin graft survival by application of vascular endothelial growth factor in rats. Ann. 
Plast. Surg. 2008, 60, 589–593. 

180. Folkman, J.; Watson, K.; Ingber, D.; Hanahan, D. Induction of angiogenesis during the transition 
from hyperplasia to neoplasia. Nature 1989, 339, 58–61. 

181. Plate, K.H.; Breier, G.; Weich, H.A.; Risau, W. Vascular endothelial growth factor is a potential 
tumour angiogenesis factor in human gliomas in vivo. Nature 1992, 359, 845–848.  

182. Rosenstein, J.M.; Mani, N.; Silverman, W.F.; Krum, J.M. Patterns of brain angiogenesis after 
vascular endothelial growth factor administration in vitro and in vivo. Proc. Natl. Acad. Sci. USA 
1998, 95, 7086–7091. 

183. Shalaby, F.; Rossant, J.; Yamaguchi, T.P.; Gertsenstein, M.; Wu, X.; Breitman, M.L.;  
Schuh, A.C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. 
Nature 1995, 376, 62–66.  

184. Shibuya, M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in 
angiogenesis. J. Biochem. Mol. Biol. 2006, 39, 469–478. 

185. Millauer, B.; Wizigmann-Voos, S.; Schnurch, H.; Martinez, R.; Moller, N.P. H.; Risau, W.; 
Ullrich, A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major 
regulator of vasculogenesis and angiogenesis. Cell 2003, 72, 835–846. 

186. Fong, G.; Rossant, J.; Gertsenstein, M.; Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase 
in regulating the assembly of the vascular endothelium. Nature 1995, 376, 66–70. 

187. Peters, K.G.; de Vries, C.; Williams, L.T. Vascular endothelial growth factor receptor expression 
during embyogenesis and tissue repair suggests a role in endothelial differentiation and blood 
vessel growth. Proc. Natl. Acad. Sci. USA 1993, 90, 8915–8919. 

188. Bulinski, S.C.; Thompson, K.J.; Powell, S.K.; Sikorski, A.M.; Swain, R.A. Increased 
Immunolabeling of Flk-1 Receptors in Primary Motor Cortex of the Adult Rat Following 
Exercise. Presented at the 30th Society of Neuroscience Annual Meeting, New Orleans, LA, 
USA, 4–9 November 2000. 



Brain Sci. 2012, 2 743 

189. Birot, O.J.G.; Koulmann, N.; Peinnequin, A.; Bigard, X.A. Exercise-induced expression of 
vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type.  
J. Physiol. 2003, 552, 213–221. 

190. Lloyd, P.G.; Prior, B.M.; Yang, H.T.; Terjung, R.L. Angiogenic growth factor expression in rat 
skeletal muscle in response to exercise training. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, 
H1668–H1678.  

191. Olfert, I.M.; Breen, E.C.; Matheiu-Costello, O.; Wagner, P.D. Skeletal muscle capillarity and 
angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. J. Appl. 
Physiol. 2001, 91, 1176–1184.  

192. Olfert, I.M.; Howlett, R.A.; Wagner, P.D.; Breen, E.C. Myocyte vascular endothelial growth 
factor is required for exercise-induced skeletal muscle angiogenesis. Am. J. Physiol. Regul. 
Integr. Comp. Physiol. 2010, 299, R1059–R1067.  

193. Gustafsson, T.; Puntschart, A.; Kaijser, L.; Jansson, E.; Sundberg, C.J. Exercise-induced 
expression of angiogenesis-related transcription and growth factors in human skeletal muscle. 
Am. J. Physiol. Heart Circ. Physiol. 1999, 276, H679–H685.  

194. Marais, L.; Stein, D.J.; Daniels, W.M.U. Exercise increases BDNF levels in the striatum and 
decreases depressive-like behavior in chronically stressed rats. Metab. Brain Dis. 2009, 24,  
587–597.  

195. Rasmussen, P.; Brassard, P.; Adser, H.; Pedersen, M.V.; Leick, L.; Hart, E.; Pilegaard, H. 
Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. 
Physiol. 2009, 94, 1062–1069.  

196. Zhu, S.; Pham, T.M.; Aberg, E.; Brene, S.; Winblad, B.; Mohammed, A.H.; Baumans, V. 
Neurotrophin levels and behaviour in BALB/c mice: Impact of intermittent exposure to 
individual housing and wheel running. Behav. Brain Res. 2006, 167, 1–8.  

197. De la Rosa, E.J.; Arribas, A.; Frade, J.M.; Rodriguez-Tebar, A. Role of neurotrophins in the 
control of neural development: Neurotrophin-3 promotes both neuron differentiation and survival 
of cultured chick retinal cells. Neuroscience 1993, 58, 347–352. 

198. Janiga, T.A.; Rind, H.B.; von Bartheld, C.S. Differential effects of the trophic factors BDNF, 
NT-4, GDNF, and IGF-1 on the isthmo-optic nucleus in chick embryos. J. Neurobiol. 2000, 43, 
289–303.  

199. Maisonpierre, P.C.; Belluscio, L.; Friedman, B.; Alderson, R.F.; Wiegard, S.J.; Furth, M.E.; 
Yancopoulos, G.D. NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as 
well as reciprocal patterns of expression. Neuron 1990, 5, 501–509.  

200. Adlard, P.A.; Perreau, V.M.; Engesser-Cesar, C.; Cotman, C.W. The timecourse of induction of 
brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary 
exercise. Neurosci. Lett. 2004, 363, 43–48.  

201. Hu, Y.; Wang, Y.; Guo, T.; Wei, W.; Sun, C.; Zhang, L.; Huang, J. Identification of  
brain-derived neurotrophic factor as a novel angiogenic protein in multiple myeloma. Cancer 
Genet. Cytogenet. 2007, 178, 1–10.  

202. Farmer, J.; Zhao, X.; van Praag, H.; Wodtke, K.; Gage, F.H.; Christie, B.R. Effects of voluntary 
exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male  
Sprague-Dawley rats in vivo. Neuroscience 2004, 124, 71–79.  



Brain Sci. 2012, 2 744 

203. Levi-Montalcini, R.; Cohen, S. In vitro and in vivo effects of a nerve-growth stimulating agent 
isolated from snake venom. Proc. Natl. Acad. Sci. USA 1956, 42, 571–574. 

204. Romon, R.; Adriaenssens, E.; Lagadec, C.; Germain, E.; Hondermarck, H.; le Bourhis, X. Nerve 
growth factor promotes breast cancer angiogenesis by activating multiple pathways. Mol. Cancer 
2010, 9, 157–170.  

205. Cantarella, G.; Lempereur, L.; Presta, M.; Ribatti, D.; Lombardo, G.; Lazarovici, P.;  
Bernardini, R. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vivo and 
in vitro. FASEB J. 2002, 16, 1307–1309. 

206. Emanueli, C.; Salis, M.B.; Pinna, A.; Graiani, G.; Manni, L.; Madeddu, P. Nerve growth factor 
promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 2002, 106,  
2257–2262.  

207. Seo, K.; Choi, J.; Park, M.; Rhee, C. Angiogenesis effects of nerve growth factor (NGF) on rat 
corneas. J. Vet. Sci. 2001, 2, 125–130.  

208. Russo, V.C.; Gluckman, P.D.; Feldman, E.L.; Werther, G.A. The insulin-like growth factor 
system and its pleiotropic functions in brain. Endocr. Rev. 2005, 26, 916–943.  

209. Aizenman, Y.; de Vellis, J. Brain neurons develop in a serum and glial free environment: Effects 
of transferrin, insulin, insulin-like growth factor-I and thyroid hormone on neuronal survival, 
growth and differentiation. Brain Res. 1987, 406, 32–42. 

210. Dore, S.; Kar, S.; Quirion, R. Insulin-like growth factor I protects and rescues hippocampal 
neurons against β-amyloid- and human amilyn-induced toxicity. Proc. Natl. Acad. Sci. USA 
1997, 94, 4772–4777.  

211. Trejo, J.L.; Carro, E.; Torres-Aleman, I. Circulating insulin-like growth factor-I mediates 
exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 
2001, 21, 1628–1634. 

212. Glasper, E.R.; Llorens-Martin, M.V.; Leuner, B.; Gould, E.; Trejo, J.L. Blockade of insulin-like 
growth factor-I has complex effects on structural plasticity in the hippocampus. Hippocampus 
2010, 20, 706–712.  

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 841.680]
>> setpagedevice


