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Abstract

Background: Autism spectrum disorder (ASD) is a neurodevelopmental condition charac-
terized by significant neurological plasticity in early childhood, where timely interventions
like behavioral therapy, language training, and social skills development can mitigate
symptoms. Contributions: We introduce a novel Multi-Atlas Guided Multi-View Contrast
Learning (MAMVCL) framework for ASD classification, leveraging functional connectivity
(FC) matrices from multiple brain atlases to enhance diagnostic accuracy. Methodology:
The MAMVCL framework integrates imaging and phenotypic data through a population
graph, where node features derive from imaging data, edge indices are based on similarity
scoring matrices, and edge weights reflect phenotypic similarities. Graph convolution
extracts global field-of-view features. Concurrently, a Target-aware attention aggregator
processes FC matrices to capture high-order brain region dependencies, yielding local
field-of-view features. To ensure consistency in subject characteristics, we employ a graph
contrastive learning strategy that aligns global and local feature representations. Results:
Experimental results on the ABIDE-I dataset demonstrate that our model achieves an
accuracy of 85.71%, outperforming most existing methods and confirming its effectiveness.
Implications: The proposed model demonstrates superior performance in ASD classifi-
cation, highlighting the potential of multi-atlas and multi-view learning for improving
diagnostic precision and supporting early intervention strategies.

Keywords: autism spectrum disorder (ASD); population graph; graph contrastive learning;
classification

1. Introduction
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by

social communication disorders, interest limitations, and repetitive behaviors. According to
the latest estimates, one in every 150 children has ASD, and the global prevalence continues
to rise [1]. The heterogeneity of ASD, along with its early onset and persistent impact, poses
significant challenges for diagnosis and intervention. Early identification and intervention
are of vital importance because the nervous system shows a high degree of plasticity in early
childhood. Timely behavioral therapy, language training, and social skills development
have been proven to alleviate symptoms, promote cognitive development, and improve
long-term outcomes.
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Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive
approach to studying the functional organization of the brain, providing crucial insights
into the altered connection patterns that play a key role in diagnosing ASD [2]. By capturing
spontaneous brain activity at rest, rs-fMRI enables researchers to identify subtle differences
in neural networks that typically indicate autism-related abnormalities, thereby supporting
more accurate and early diagnostic evaluations. In addition to its diagnostic value, it is
equally important to consider the clinical perspectives associated with biomedical appli-
cations. From a safety monitoring standpoint, non-invasive imaging techniques such as
rs-fMRI minimize potential risks compared with more invasive diagnostic approaches,
thereby ensuring patient safety—a critical factor in clinical settings, especially for pediatric
populations. Furthermore, understanding the interaction between imaging signals and
biological tissues is essential for interpreting the resulting data accurately. The blood-
oxygen-level-dependent (BOLD) signals captured in rs-fMRI, for instance, reflect complex
neurovascular coupling mechanisms, which can vary across individuals and developmen-
tal stages. Accounting for these physiological interactions not only enhances diagnostic
reliability but also helps bridge the gap between neuroimaging biomarkers and clinical
decision-making in ASD detection.

Recently, there have been many applications that utilize resting-state functional mag-
netic resonance imaging data to support ASD classification tasks [3,4]. Almuqhim et al.
proposed a model called the ASD-SAENet model and designed and implemented a sparse
autoencoder to optimize the extraction of classification features [5]. Kan et al. proposed
a low-level functional module based on self-supervised soft clustering and orthogonal
clustering readout operations to determine the similar behaviors between ROI groups [6].
Wang et al. proposed a model called RGTNet. Specifically, a graph encoder was designed to
extract time-dependent features with remote dependencies and a new graph sparse fitting
weighted aggregation method was employed to alleviate the problem of dimensionality
explosion [7]. However, most existing methods rely on a single brain map to define regions,
which may limit the generalization and robustness of learning representations. To address
such issues, Wen et al. proposed a multi-view convolutional neural network based on
prior brain structure learning, which combines graph structure learning with multi-task
graph embedding learning to enhance classification performance and identify potential
functional subnetworks [8]. Zhu et al. developed a novel multi-view GNN for multimodal
brain networks. They treated each modal as a view of the brain network and used con-
trastive learning for multi-modal fusion [9]. Song et al. used a multi-view attention fusion
module to enhance the spectral convolutional network to extract useful information [10].
Although they all extract features from data based on different views, the performance
of these models is poor, which is due to the inherent heterogeneity of the ABIDE dataset,
while population graphs have a natural advantage in handling multi-site data. In the
population graph, edge weights can be determined based on the phenotypic characteristics
of the subjects (such as collection location, age, and gender), further weakening the impact
of differences in different sites, age groups, and gender on the data.

In terms of the application of population graphs, Cao et al. constructed a deep ASD
diagnosis framework based on 16-layer GCN. Integrating ResNet cells and DropEdge
policies into this framework avoids problems such as vanishing gradients, overfitting,
and oversmoothing [11]. Tian et al. proposed an extensible hierarchical graph convolutional
network. Firstly, they constructed GCN based on brain regions of interest to extract
structural and functional connection features between different ROIs, and combined them
with scale information to build a population-based GCN model [12]. Although these
methods can alleviate the impact of data heterogeneity, they lack feature representations of
different views.
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The research deficiencies of the specific existing methods are shown in Table 1. To ad-
dress these deficiencies and integrate the advantages of these methods, we propose a
multi-atlas guided multi-view contrast learning (MAMVCL) for ASD classification. Our
main contributions are as follows:

(1) Our method constructs functional connectivity matrices based on three distinct brain
atlases, capturing diverse perspectives of brain functional organization.

(2) The interaction between the brain regions of the subjects was conducted through the
Target-aware attention aggregator layer to obtain the local features of all subjects.
By constructing population graphs among different subjects and performing graph
convolution operations, the global features of all subjects are obtained for message
passing among similar subjects to obtain global features.

(3) We adopt graph contrastive learning to align global and local feature representations,
and use consistency loss to constrain different brain atlas feature representations of
the same encoder.

(4) Extensive experiments on the Autism Brain Imaging Data Exchange (ABIDE-I) dataset
demonstrate that our model achieves an accuracy of 85.71%, outperforming existing
state-of-the-art approaches.

Table 1. The flaws of the existing methods.

Category Defect

Single-view model The model limits the generalization and robustness of
learning representations

Multi-view model The performance of the model is poor and the heterogeneity
of the data has not been alleviated

Population graph model The model lacks feature representations of different views

The structure of this paper is organized as follows: Section 2 details the proposed
model, including its methodologies and the loss functions employed. Section 3 presents
the experimental setup, featuring comparative experiments, ablation studies, and more.
Section 4 discusses key aspects such as hyperparameters, interpretable analysis, and more.
Section 5 concludes the paper and outlines directions for future research.

2. Materials and Methods
The overall framework of the model proposed in this paper is shown in Figure 1.

The model integrates the feature representations of three different brain atlas visuals.
In each brain atlas framework, the imaging features extracted from the brain atlas and
the phenotypic features of the subjects are used to construct their respective population
graph. Then, on the constructed population graph, the graph convolution operation is
applied to obtain the global features of the subjects. Meanwhile, the Target-aware attention
aggregator layer (Figure 2) was used to interact between the brain regions of the subjects
and extract local features. Then, graph contrastive learning is conducted on the global and
local features to ensure the consistency of the feature representation of the subjects [13].
Finally, the improved features are applied to the classification task.
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Figure 1. Overview of the proposed graph learning framework based on multi-atlas integration.
This model integrates the feature representations derived from three different brain atlas views.
Within each atlas framework, both the imaging features extracted from the brain atlas and the
phenotypic information of the subjects are utilized to construct their respective population graphs.
A GCN is then applied to these graphs to capture global representations. Meanwhile, subject-
specific local features are extracted through a Target-aware attention aggregator layer. Finally, graph
contrastive learning is performed between the global and local features to enhance representation
robustness and discriminative ability.
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Figure 2. Structure of the Target-aware attention aggregator layer. This figure illustrates the detailed
architecture of the Target-aware attention aggregator layer, highlighting how the self-attention
mechanism interacts with various regions of interest (ROIs). Through this mechanism, the model
adaptively emphasizes task-relevant regions while capturing their relational dependencies, thereby
enhancing the extraction of subject-specific local features.

2.1. Target-Aware Attention Aggregator

The multi-head self-attention (MSA) mechanism is designed to capture semantic
correlations between input tokens [14]. We added the MSA mechanism at the beginning of
the Target-aware attention aggregator module.

To effectively capture interaction patterns between brain regions, we have designed
a Node-Centric Attention Aggregation (NCAA) module. Given the brain network rep-
resentation Xmsa ∈ RB×seq×D, where B denotes the batch size, seq represents the number
of brain regions, and D indicates the feature dimension, the NCAA module centers on
each brain region to aggregate information from the remaining regions, thereby enhancing
node representations.

Specifically, for the i-th brain region, we begin by concatenating its feature vector hi

with the feature vectors of its neighboring nodes {hj | j ̸= i}. This concatenated input is
then fed into an attention mapping function Attni(·), which generates the attention weight
distribution for the neighboring nodes.

αij = Softmax
(
Attni

(
[ hi ∥ hj ]

))
, j ̸= i (1)
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Subsequently, we apply these weights to perform a weighted aggregation of the neighbor
features, which is then combined with the center node’s own features to derive the updated
node representation.

h̃i = hi + ∑
j ̸=i

αijhj (2)

Ultimately , the enhanced representations of all nodes are concatenated to form an updated
brain network representation.

Xte = [ h̃1, h̃2, . . . , h̃seq ] ∈ RB×seq×d (3)

In this manner, the NCAA module dynamically models the dependencies of each brain
region with the rest of the brain, centering on individual regions to highlight task-relevant
interaction patterns while suppressing irrelevant or noisy connections.

2.2. Population Graph Construction
2.2.1. The Nodes of the Population Graph

We calculate the average time series of each brain region in the rs-fMRI image data
and obtain the functional connectivity matrix X f c using the Pearson correlation coefficient.
The elements of the upper triangular matrix are chosen as the node initial features Xutof
the population graph. The total number of subjects across all sites is N.

2.2.2. The Edges of the Population Graph

In a population graph, edges signify the similarity between pairs of samples. To form
these edges, we combine imaging data with phenotypic information, including site and
age, within a scoring mechanism to refine the population graph. For the retained edges,
the cosine similarity between the phenotypic features of the paired subjects is computed to
establish the final edge weights [15].

To construct a sparse population graph with enhanced connections among similar
subjects, we implement a scoring mechanism to filter edges, yielding a binarized matrix F,
calculated as detailed in Equation (4):

Fij =

0, i f Aij < θ1

1, i f Aij ≥ θ1
(4)

where A ∈ RN×N represents the score matrix of each edge in the fully connected popula-
tion graph, and θ1 is a hyperparameter that adjusts the sparsity of the population graph.
The matrix A is calculated as shown in Equation (5)

Aij = Xut
ij ·

Nm

∑
m=1

φ(Pim, Pjm) (5)

where Xut
ij represents the similarity of the imaging data between the i-th and j-th subjects.

φ(·) represents the function for calculating the similarity between the feature tables of
two subjects. Nm represents the number of phenotypic data, and Pim indicates the m-th
phenotypic feature of the i-th sample.

For categorical information such as site information, the calculation method of φ(·) is
shown in Equation (6):

φ
(

Pim, Pjm
)
=

{
0, i f Pim ̸= Pjm

1, i f Pim = Pjm
. (6)
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For quantifiable data such as age, the calculation method of φ(·) is shown in
Equation (7) :

φ
(

Pim, Pjm
)
=

1, i f |Pim − Pjm| < θ2

0, i f |Pim − Pjm| ≥ θ2
(7)

where θ2 is a hyperparameter, which is a manually adjusted threshold.
To uncover hidden relationships among subject characteristics, we utilize an attention

mechanism to augment the dimensionality of their phenotypic features P. The cosine
similarity between these enhanced features is then computed to establish the edge weights.
Leveraging the previously derived binarized matrix F, we filter the edges of the population
graph. The weighted adjacency matrix W of the population graph is calculated as follows:

Wij =


Cos(Pi ,Pj)+1

2 , i f Fij = 1

0, i f Fij = 0
(8)

where Cos(·) represents the cosine similarity calculation.
It is worth noting that similar principles of feature enhancement and signal integration

are widely explored in other biomedical domains, particularly at the hardware and interface
level. For example, the design of electronic interfaces for single-photon avalanche diodes
(SPADs) has been shown to significantly improve the sensitivity and temporal resolution of
biomedical imaging systems by optimizing signal acquisition and noise suppression [16,17].
Such interface-level innovations share conceptual similarities with our approach: both aim
to maximize the extraction of meaningful information from complex, heterogeneous data
sources — whether through physical electronic circuitry or through graph-based modeling
of subject relationships. Integrating these perspectives provides a broader context for
understanding how the proposed population graph serves as an “interface” between raw
imaging data, phenotypic characteristics, and downstream analytical tasks.

2.3. Graph Convolutional Network

The model proposed in this paper utilizes a multi-layer GCN, with its hierarchical
propagation rule defined as follows:

H(l+1) = Relu(D̃−1/2 ÃD̃−1/2H(l)W(l)) (9)

where Ã = A + IN is the adjacency matrix of an undirected graph, augmented with the
identity matrix IN to include self-loops, D̃ is the degree matrix of Ã, W(l) is the trainable
weight matrix for layer l, and H(l) is the activation matrix at layer l, with H(0) = Xut

serving as the initial input feature matrix.
Prior to GCN convolution, a DropEdge strategy is implemented, which randomly re-

moves a subset of edges from the input graph during each training iteration [18]. However,
no edges are removed during testing to preserve the graph’s integrity. This approach helps
address overfitting. Additionally, residual connections are introduced in each convolutional
layer to retain complete feature information, enhancing the model’s robustness [19].

2.4. Perturbation-Driven Explainable Framework

The core idea of this model is to use the complementarity of different brain atlases
in brain region division to improve the classification performance. However, due to
the complexity of multi-atlas models and other factors, the use of a model based on
a single brain atlas for analysis is more convincing in terms of medical interpretation.
First, we trained the model based on a single brain atlas to obtain the corresponding best
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classification accuracy Acc∗, which was used as a reference benchmark for subsequent
interpretability experiments

To quantitatively assess the importance of various brain regions in the classification
task, we developed perturbation-based experimental methods. Specifically, for a subject
under a given brain atlas, we consider two inputs: the functional connectivity matrix
S ∈ RM×M and its upper triangular feature U ∈ Rd, where M represents the number of
brain regions defined by the atlas, and d = M × (M − 1)/2 denotes the dimension of the
upper triangular feature. Then we set the index of the brain region with experiment as i,
and we removed the features related to i on S and U, respectively:

S̃ = Mask1(S), Ũ = Mask2(U) (10)

Here, the mask functions Mask1(·) and Mask2(·) denote zeroing or removing the
features associated with index i in S and U, respectively. Subsequently, the perturbed
features S̃ and Ũ are input into the trained model to obtain the corresponding classification
accuracy Ãcc.

By comparing Ãcc with the best benchmark accuracy Acc∗, we defined the importance
index of brain regions as:

∆Acc = Acc∗ − Ãcc (11)

Among them, a larger ∆Acc indicates that the masked brain region i is more important
in the classification task. This analysis can be combined with different brain atlas perspec-
tives to reveal the potential biological significance of brain regions in disease classification.

2.5. Loss Function
2.5.1. Muti-Altas Consistency Loss Function

As our model integrates multiple brain atlases, which represent distinct perspectives of
the same brain network, they should exhibit consistency in the final analysis. To achieve this,
we introduce consistency constraints to optimize the similarity across different views [20],
regularized as follows:

Lvc = − ∑
(i,j)∈V ,i ̸=j

log σ
(

Gi
(
Gj

)⊤
+ Ti

(
Tj
)⊤) (12)

where Gi represents the membership vector of the i-th view following graph convolution
learning, Ti denotes the membership vector of the i-th view after Target-aware attention
aggregator layer learning, and V constitutes the set of distinct views within our model.
Incorporating this loss function encourages convergence between the model outputs for
the i-th and j-th views.

2.5.2. Muti-View Contrastive Loss Function

To enhance the consistency of representations across different perspectives, we have
designed a contrastive loss function [13]. Let the representations output by two distinct
models or branches be zlv and zgv. These are first mapped to a shared latent space using a
common non-linear projection head:

ϕlv = Proj(zlv), ϕgv = Proj(zgv) (13)

The projection function consists of two linear transformations combined with a non-
linear activation (ELU), employing Xavier initialization to ensure numerical stability.
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Subsequently, we define the similarity between the two representations as follows:

sim(ϕi, ϕj) = exp
(
∥ϕi∥ · ∥ϕj∥ · τ ϕ⊤

i ϕj

)
(14)

where τ serves as a temperature parameter, used to adjust the smoothness of the distribu-
tion. Based on this similarity, we construct normalized similarity matrices from ϕlv to ϕgv

and from ϕgv to ϕlv. These are then utilized, along with a given positive sample mask Mp,
to compute the contrastive loss:

Llv = − 1
N

N

∑
i=1

log
∑j sim

(
ϕlv

i , ϕ
gv
j

)
· Mp

ij

∑j sim
(

ϕlv
i , ϕ

gv
j

) (15)

Lgv = − 1
N

N

∑
i=1

log
∑j sim

(
ϕ

gv
i , ϕlv

j

)
· Mp

ij

∑j sim
(

ϕ
gv
i , ϕlv

j

) (16)

The final total loss is a weighted combination of the two:

Lcl = γLlv + (1 − γ)Lgv (17)

where γ acts as a balancing coefficient.
This loss function explicitly aligns the representation spaces of the two distinct model

outputs, enhancing the consistency and discriminability of representations across perspectives.

2.5.3. Cross-Entropy Loss Function

This paper focuses on a binary classification task, utilizing the cross-entropy loss as
the primary predictive loss function [21], defined as follows:

Lce = − 1
N

N

∑
n=1

[yn log(ŷn) + (1 − yn) log(1 − ŷn)] (18)

Here, yn ∈ {0, 1} denotes the true label of subject n, and ŷn ∈ (0, 1) represents the
predicted probability of the positive class.

Combining the above components, the final loss function is:

L = Lce + αLvc + βLcl (19)

Here, α and β are hyperparameters that balance the contributions of each loss term.

3. Results
3.1. Data Acquisition and Pre-Processing

The experimental data for this study were derived from rs-fMRI data within the initial
phase of the ABIDE-I database, a publicly accessible multi-site repository containing data
from 1112 individuals across 17 sites. We employed the Configurable Pipeline for the
Analysis of Connectomes (CPAC) [22] for image preprocessing, encompassing slice-timing
correction, motion correction, skull stripping, and voxel intensity normalization. This
study generated 875 high-quality MRI images, comprising 405 individuals with ASD and
470 typically developing controls (TC). Detailed demographic data are provided in the
accompanying Table 2.

Subsequently, using the Harvard–Oxford (HO) [23], Automated Anatomical Labeling
(AAL) [24], and Craddock 200 (CC200) brain atlases [25], respectively, the preprocessed
data were mapped onto various regional levels. The Pearson correlation coefficient was
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then computed between the average time series of all regions of interest (ROIs) across these
different brain atlases to construct the functional connectivity matrices of brain networks
from multiple perspectives.

Table 2. Summary of demographics for ASD and TC groups across different sites.

Site
ASD TC

Age Male/Female Age Male/Female

NYU 14.9 ± 7.0 64/9 15.7 ± 6.2 72/26
UM 13.8 ± 2.3 39/9 15.0 ± 3.7 48/16
UCLA 13.3 ± 2.6 34/2 13.2 ± 1.8 33/5
USM 24.6 ± 8.5 38/0 22.3 ± 7.7 23/0
LEUVEN 18.0 ± 5.0 25/2 18.2 ± 5.0 29/5
PITT 19.4 ± 7.3 18/4 19.1 ± 6.2 20/3
TRINITY 17.0 ± 3.0 21/0 17.5 ± 3.6 23/0
YALE 13.0 ± 2.8 12/7 12.9 ± 2.8 18/7
MAX_MUN 30.4 ± 13.6 15/3 25.9 ± 8.1 23/1
KKI 9.6 ± 1.3 9/3 10.1 ± 1.1 19/7
CALTECH 27.4 ± 10.0 15/4 28.5 ± 10.7 13/4
STANFORD 10.2 ± 1.6 13/4 9.9 ± 1.6 15/4
SDSU 15.1 ± 1.6 12/0 14.3 ± 1.8 15/6
OLIN 16.8 ± 3.6 11/3 17.5 ± 3.0 9/2
SBL 35.3 ± 10.4 14/0 35.2 ± 5.4 11/0
OHSU 11.4 ± 2.1 12/0 10.4 ± 1.0 11/0
CMU 30.3 ± 6.9 3/0 25.5 ± 4.5 1/1

Total 17.7 ± 8.9 355/50 16.8 ± 7.4 383/87

3.2. Experimental Setup
3.2.1. Experimental Parameter

The edge filtering threshold is set to θ1 = 0.61, the quantifiable data scoring mechanism
parameter to θ2 = 2, and the loss function parameters to α = 0.1 and β = 0.01. For a fair
comparison, the source codes of all competing methods were run in the same environment,
with hyperparameters configured according to the optimal settings recommended in their
respective papers. Detailed equipment and model parameters are presented in the Table 3 .

Table 3. Device parameters and model parameters.

Name Detail

Development system Ubuntu 18.04
RAM 755 GB
CPU 14 vCPU Intel(R) Gold 6348
GPU A800-80GB
learning rate 0.0001
Epochs 200
Weight decay 5 × 10−5

Dropout 0.2
Edge dropout 0.3
Early stopping epoch 50
Early stopping patience 30
Chebyshev convolution layers 2
hidden layers 32
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3.2.2. Performance Evaluation

We implemented a 10-fold cross-validation approach to evaluate the efficacy of our
algorithm. For performance assessment, we adopted accuracy (ACC), precision (PRE),
recall (RECALL), F1 score (F1), and area under the curve (AUC) as primary metrics. The cal-
culation methods for these performance metrics are detailed as follows:

ACC =
TP + TN

TP + TN + FP + FN
(20)

PRE =
TP

TP + FP
(21)

RECALL =
TP

TP + FN
(22)

F1 =
2 × PRE × RECALL

PRE + RECALL
(23)

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false
negatives, respectively.

3.3. Competing Methods

Among the comparative methods, we chose two prominent baseline techniques:
Support Vector Machine (SVM) and Random Forest (RF). Additionally, we assessed
several cutting-edge deep learning networks, including ASD-DiagNet, ASD-SADnet,
BrainGNN, DeepGCN, BNT, FBNetGen, MVS-GCN, GCN-MDD, TP-MIDA, deepMan-
Reg, DG-DMSGCN, RGTNet, GBT, and CcSi-MHAHGEL. A concise overview of these
16 methods is provided below.

(1) Random Forest and SVM: The upper triangular vector of the functional connectivity
matrix serves as the feature set, with classifiers implemented using Random Forest
and Support Vector Machine techniques.

(2) ASD-DiagNet [26]: The ASD-DiagNet model employs a joint learning approach,
integrating autoencoders with single-layer perceptrons to improve the quality of
extracted features and enhance classification performance.

(3) ASD-SAENet [5]: The ASD-SAENet model is designed to classify patients with ASD
from typical control subjects using fMRI data, integrating a sparse autoencoder (SAE)
to optimize feature extraction, which is then fed into a deep neural network (DNN) to
enable enhanced classification of ASD-prone fMRI brain scans.

(4) BrainGNN [27]: The BrainGNN model based on graph neural networks facilitates
ASD prediction by utilizing two types of Brain Functional Networks (BFNs) as adja-
cency matrices.

(5) Deep-GCN [11]: The Deep-GCN model develops a comprehensive ASD diagnostic
framework utilizing a 16-layer population GCN.

(6) Brain network transformer (BNT) [6]: The BNT model integrates a self-attention
mechanism and introduces an orthogonal clustering readout operator, utilizing self-
supervised soft clustering and orthogonal projection methods.

(7) FBNetGen [28]: The FBNetGen model focuses on the learnable generation of brain
networks while exploring the interpretability of these generated networks for down-
stream applications.

(8) MVS-GCN [8]: The MVS-GCN model employs threshold-based measures to partition
an adjacency matrix into three matrices with varying sparsity levels, thereby improving
the comprehensiveness of the derived features.

(9) GCN-MDD [29]: Integrates the k-Nearest Neighbors (kNN) algorithm to construct
graphs and employs a GCN model for disease prediction.
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(10) TP-MIDA [30]: The TP-MIDA model leverages the Tangent Pearson embedding
method to extract features and applies domain adaptation techniques to reduce the
site-specific dependence of functional connectivity features.

(11) deepManReg [31]: The deepManReg model employs multiple deep neural networks
tailored to different modalities, jointly training them to align multimodal features into
a shared latent space, and subsequently utilizes cross-modal manifolds to regularize
the classification network, enhancing phenotype prediction accuracy.

(12) DG-DMSGCN [32]: The DG-DMSGCN model incorporates a sliding window dual-
GCN to extract features while capturing the spatiotemporal characteristics of fMRI
data across varying sequence lengths. Subsequently, a novel dynamic multi-site GCN
is employed to aggregate features derived from multiple medical sites.

(13) RGTNet [7]: The RGTNet model develops a graph encoder to extract time-dependent
features with long-range dependencies and introduces a novel sparse graph fitting
weighted clustering method to mitigate the dimensionality explosion challenge.

(14) GBT [33]: The GBT model introduces a Transformer module that selectively elim-
inates small singular values from the attention weight matrix to capture the most
relevant graph representations. Additionally, it incorporates a geometry-oriented rep-
resentation learning module, which enforces low-order intra-class compactness and
high-order inter-class diversity constraints on the learned representations to enhance
their discriminability.

(15) CcSi-MHAHGEL [34]: The CcSi-MHAHGEL model introduces a Class-Consistency
and Site-Independence Multiview Hyperedge-Aware HyperGraph Embedding Learn-
ing framework, designed to integrate Functional Connectivity Networks (FCNs) con-
structed from multiple brain atlases within a multi-site fMRI study.

3.4. Results of Comparison Methods

Table 4 presents the quantitative results for each key performance metric: ACC, Pre,
Recall, F1, and AUC. All values are reported as mean ± standard deviation (SD), providing
a robust measure of the model’s stability across 10 cross-validation folds.

The proposed MAMVCL model demonstrated the highest performance across all
metrics, achieving an ACC of 85.71%. This represents a substantial improvement over
baseline methods, such as Random Forest and SVM, underscoring the limitations of tradi-
tional machine learning approaches in effectively handling the inherent complexity and
heterogeneity of neuroimaging data. Compared to state-of-the-art deep learning mod-
els, MAMVCL outperformed graph-based methods including BrainGNN, Deep-GCN,
and CcSi-MHAHGEL, as well as attention- and transformer-oriented models such as BNT,
GBT, and RGTNet. These results indicate enhanced discriminability and robustness of
MAMVCL, particularly against class imbalance.

The superior performance of MAMVCL highlights its ability to effectively integrate
multi-atlas features, extract the global features of the subjects by using the convolution of
the population graph, extract the local features of the subjects by using the Target-aware
attention aggregator layer, and constrain the consistency of the feature representation of
the subjects by using graph contrastive learning. This combination enables the model to
mitigate the impact of noise in the data, address the variability of specific sites, and capture
complex brain connection patterns, which are crucial for accurate ASD classification.
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Table 4. Compare the classification performance of the methods.

Method ACC (%) PRE (%) RECALL (%) F1 (%) AUC (%)

Random Forest 57.98 ± 1.02 59.49 ± 1.11 76.80 ± 2.76 67.02 ± 1.05 55.60 ± 1.11
SVM 62.32 ± 2.84 65.60 ± 2.84 68.15 ± 2.07 66.83 ± 2.12 61.59 ± 3.04
ASD-DiagNet 60.55 ± 2.51 64.39 ± 2.03 57.74 ± 2.45 42.26 ± 3.27 64.28 ± 1.15
ASD-SAENet 64.67 ± 7.44 60.49± 10.09 63.60 ± 14.33 62.00 ± 8.63 72.01 ± 7.89
BrainGNN 60.41 ± 2.61 55.61 ± 2.19 71.38 ± 1.82 62.59 ± 1.09 63.19 ± 1.42
Deep-GCN 72.40 ± 2.83 73.05 ± 3.44 80.63 ± 3.12 75.97 ± 1.79 79.76 ± 3.40
BNT 66.80 ± 3.54 66.97 ± 3.46 66.47 ± 3.50 66.44 ± 3.35 71.69 ± 3.77
FBNetGen 64.92 ± 6.36 66.46 ± 6.66 76.68 ± 8.74 71.90 ± 8.27 63.89 ± 4.13
MVS-GCN 67.13 ± 4.21 65.96 ± 2.47 78.15 ± 2.80 71.70 ± 2.47 63.23 ± 3.17
GCN-MDD 68.16 ± 1.75 72.35 ± 1.38 79.85 ± 1.99 73.06 ± 1.59 75.48 ± 1.82
TP-MIDA 70.49 ± 1.09 64.72 ± 1.45 68.44 ± 0.94 66.53 ± 0.94 75.62 ± 0.85
deepManReg 69.22 ± 6.25 67.65 ± 7.21 64.25 ± 11.06 65.90 ± 8.15 77.97 ± 5.42
DG-DMSGCN 72.00 ± 6.85 74.56± 10.29 71.22 ± 9.75 70.11 ± 8.55 72.84 ± 8.24
RGTNet 71.98 ± 2.11 72.99 ± 1.70 72.05 ± 1.56 70.59 ± 1.92 70.86 ± 1.50
GBT 68.16 ± 2.02 68.83 ± 2.05 68.33 ± 1.40 67.19 ± 1.82 76.25 ± 1.34
CcSi-MHAHGEL 78.54 ± 2.71 82.08 ± 4.02 74.27 ± 1.55 77.03 ± 2.34 87.12 ± 2.92
MAMVCL 85.71 ± 0.43 86.24 ± 1.27 87.67 ± 2.33 86.84 ± 0.59 92.93 ± 0.13

3.5. Ablation Experiment

To assess the effectiveness of the Target-aware attention aggregator (TAA) and graph
contrast learning (GCL) modules within our proposed model, we conducted experiments
on four distinct variants. These variants are defined as follows:

(1) Variant I: Employs only the GCN module utilizing population graphs.
(2) Variant II: Relies solely on the Target-aware attention aggregator module.
(3) Variant III: Combines the Target-aware attention aggregator module with the GCN

module for population graphs, but omits graph contrast learning to align the outputs
of the same subjects.

The experimental results for these variants are presented in Table 5. The data indicate
that our full model surpasses the performance of all variants, demonstrating that the
integration of the TAA and GCL modules significantly enhances the model’s effectiveness.
Specifically, the TAA module, grounded in individual brain networks, provides a localized
perspective, while the GCN module, applied to population graphs, captures implicit
relationships between subjects, offering a global viewpoint. Graph contrast learning
further refines the model by aligning the output features of these two modules, ensuring a
comprehensive and cohesive final output.

To quantitatively evaluate the superiority of the proposed model and the contributions
of each component, we conducted a paired t-test on the classification accuracy obtained
from 30 repeated cross-validation runs. Variant III (integrating TAA and GCN) performed
significantly better than Variant I (containing only TAA) (p = 4.1710−30) and Variant II
(containing only GCN) (p = 3.8710−19). Furthermore, the complete MAMVCL model con-
taining the GCL module has a much higher accuracy rate than Variant III (p = 5.4210−13).
These results confirm that each component makes a significant contribution to the over-
all performance, and the proposed model has higher classification accuracy statistically
compared with its dissolved variants.
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Table 5. The result of the ablation experiment.

Variants TAA GCN GCL ACC (%) PRE (%) RECALL (%) F1 (%) AUC (%)

Variant-I ✓ 68.21 ± 1.56 69.43 ± 1.29 76.33 ± 0.63 71.35 ± 1.15 75.23 ± 2.13
Variant-II ✓ 77.46 ± 1.50 79.39 ± 1.19 81.41 ± 1.63 80.00 ± 1.25 87.44 ± 1.40
Variant-III ✓ ✓ 83.48 ± 0.86 86.55 ± 1.24 82.12 ± 1.13 84.08 ± 0.95 91.02 ± 1.34
MAMVCL ✓ ✓ ✓ 85.71 ± 0.43 86.24 ± 1.27 87.67 ± 2.33 86.84 ± 0.59 92.93 ± 0.13

TAA: Target-aware attention aggregator module; GCN: Graph convolutional networks module; GCL: Graph
contrast learning module.

4. Discussion
4.1. Phenotypic Information Analysis

Table 6 summarizes the impact of various phenotypic feature combinations on model
performance. Among individual features, site (S) consistently delivered the highest results,
achieving an ACC of 84.28% and an AUC of 91.76%, markedly outperforming age (A) and
gender (G) [35]. This indicates that site information plays a predominant role in model
classification. When examining feature combinations, the S + A pairing yielded the best
performance (ACC = 85.71%, F1 = 86.84%, AUC = 92.93%), suggesting a complementary
effect between site and age that bolsters the model’s discriminative capability. In contrast,
the S + G combination resulted in reduced performance, while the A + G pair exhibited the
weakest outcome, highlighting the limited discriminative power of gender, either alone or in
combination. Incorporating additional phenotypic traits, such as eye status (E), handedness
(H), and IQ score (FVP) [36], did not lead to further improvements, with performance
stabilizing between 80% and 82%, falling short of the optimal S + A combination. This
implies that adding more phenotypic data may introduce redundancy or noise, thereby
diminishing overall effectiveness. Collectively, these findings emphasize that site is the
most informative feature, with age providing complementary benefits when paired with
site. The contributions of other features appear minimal or even detrimental.

Therefore, the S + A combination is recommended as the most effective set of phe-
notypic features for constructing a population graph model. This is also in line with the
research results of slopen [37].

Table 6. Effects of phenotypic information on model performance (%).

Phenotypic Information ACC (%) PRE (%) RECALL (%) F1 (%) AUC (%)

S 84.28 ± 0.30 84.71 ± 1.19 86.77 ± 1.12 85.58 ± 0.10 91.76 ± 0.43
A 69.23 ± 0.78 69.59 ± 1.13 78.36 ± 1.24 73.33 ± 1.05 74.27 ± 1.58
G 68.67 ± 1.62 71.91 ± 2.04 69.12 ± 2.44 70.22 ± 2.84 74.58 ± 2.33
S + A 85.71 ± 0.43 86.24 ± 1.27 87.67 ± 2.33 86.84 ± 0.59 92.93 ± 0.13
S + G 77.82 ± 1.35 78.00 ± 1.24 82.13 ± 1.54 79.91 ± 1.39 84.17 ± 1.46
A + G 68.82 ± 2.29 70.80 ± 0.53 74.78 ± 4.18 72.42 ± 2.12 75.64 ± 2.02
S + A + G 82.50 ± 1.39 83.08 ± 1.24 84.18 ± 0.74 83.55 ± 0.98 89.92 ± 1.12
S + A + G + E 80.68 ± 0.45 83.25 ± 1.03 78.34 ± 1.43 81.12 ± 1.09 87.43 ± 0.79
S + A + G + H 80.54 ± 0.52 82.97 ± 1.11 78.89 ± 1.36 81.35 ± 1.15 87.61 ± 0.83
S + A + G + E + H 79.02 ± 0.68 81.41 ± 1.59 78.12 ± 1.21 79.21 ± 1.02 86.28 ± 0.76
S + A + G + FVP 80.91 ± 1.24 83.12 ± 1.33 77.95 ± 1.41 80.86 ± 1.12 87.19 ± 0.81
S + A + G + E + H + FVP 80.85 ± 0.46 83.67 ± 1.05 78.41 ± 1.39 81.25 ± 1.07 87.55 ± 0.78

S: site; A: age; G: gender; E: eye state during resting-state scan; H: handedness; FVP: full-scale/verbal/performance IQ.



Brain Sci. 2025, 15, 1086 14 of 22

4.2. Interpretability Analysis

To clarify the proposed model, we employed perturbation experiments to identify
the most distinctive brain regions. These experiments were conducted on three different
brain atlases used in the research (Figure 3). Since the CC200 map was generated in our
analysis through monomeric BOLD time series clustering and lacked a predefined label for
each ROI, we aligned its 200 ROis with the AAL brain map based on their spatial positions
to enhance our understanding of the potential classification mechanism. The ten most
important features in each mind map are identified and highlighted. The interpretable
analyses of the HO, AAL, and CC200 brain atlases are respectively shown in Figure 4.

By observing the first and second images in Figure 4, it was found that the region
most relevant to ASD diagnosis is located at Right Supramarginal Gyrus. This finding
was supported by Wada et al., who demonstrated that this region is associated with the
maintenance of emotion recognition ability. The ability to recognize emotions is closely
related to ASD symptoms [38]. In the second images, the two most important features,
Frontal_Sup_L and Frontal_Sup_R, correspond to the dorsolateral frontal gyrus, a region
medically considered to play a key role in language understanding [39]. Combining the
first and third figures, we also found that the area around Cerebelum_6_L was identified as
the region most relevant to ASD classification. The researchers confirmed that this link was
previously shown to have a significant relationship with ASD pathology [40–42].

In addition, our population-level perturbation analysis shows conceptual parallels
with finite element modeling (FEM)-based approaches for population-specific brain model-
ing, such as the study by [43]. Both strategies aim to capture how localized structural or
functional perturbations propagate through the broader system to affect global behavior.
In FEM-based population models, the spatial distribution of stress or strain fields is used to
infer regions most responsible for functional deviations. Similarly, our multi-atlas perturba-
tion framework identifies brain regions whose alterations most significantly influence ASD
classification outcomes. This analogy underscores that both methods—despite differing
in implementation—share a common objective: revealing region-specific contributions
to system-level properties in a non-invasive and interpretable manner. Integrating such
perspectives enriches the interpretability of our model and highlights its potential relevance
for broader biomedical modeling applications.

Figure 3. Visualization of the most important brain regions across different atlases. The ten most
important brain regions identified from the HO, AAL, and CC200 atlases are visualized, with node
size indicating their contribution strength to the model. The full names and abbreviations of these
regions are listed in descending order of importance, providing an interpretable view of feature
relevance under different parcellation schemes.
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4.3. Different Brain Atlas Combinations on the Model

Figure 4 illustrates the classification performance across various brain atlas config-
urations. Models trained on a single atlas, such as HO, AAL, or CC200, exhibit ACC
values ranging from 81% to 83%. In contrast, integrating multiple atlases consistently
enhances performance, with the combination of all three atlases (HO + AAL + CC200)
yielding the best results, achieving an ACC of approximately 85.7%. These findings in-
dicate that the complementary information from diverse brain regions strengthens the
robustness of feature representations and enhances the model’s generalization capability.
Moreover, the low standard deviations observed in most cases reflect stable performance,
while the three-atlas configuration delivers the highest average performance with relatively
manageable variability.

Figure 4. Comparison of model performance across different brain atlas combinations. Variations in
performance metrics under different atlas configurations illustrate how parcellation choice influences
classification accuracy and predictive effectiveness.

4.4. Hyperparametric Analysis
4.4.1. The Influence of the Loss Function

To investigate the influence of hyperparameters in Equation (19), we analyzed the
effects of view consistency loss (α) and contrast loss (β) on model performance. Employing
a grid search approach, we evaluated various combinations of these coefficients with values
[0, 0.001, 0.01, 0.1, 1]. The resulting ACC and AUC values are presented in Figure 5.

As illustrated in Figure 5, the optimal ACC and AUC values are achieved when
α = 0.001 and β = 0.01. This suggests that an excessively small α value may prevent the
outputs of different brain atlases for the same subject from aligning closely, whereas an
overly large α could alter the effective feature values used for classification across different
views. Similarly, a β value that is too small may lead to significant disparities between the
global and local features of the same subject, while an excessively large β might enforce
excessive consistency between global and local feature regions.

In this study, hyperparameter optimisation was conducted using a grid search ap-
proach, which exhaustively explores the parameter space and is commonly used in machine
learning tasks due to its simplicity and interpretability. Alternative approaches such as
Taguchi design or ANOVA-based optimisation could potentially improve efficiency by
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reducing the search space and considering factor interactions. However, since our model
involves a relatively small set of hyperparameters, grid search was sufficient and computa-
tionally manageable.

(a) (b)

Figure 5. Impact of hyperparameter settings on model performance. Comparison of performance
metrics under different hyperparameter configurations reveals the model’s sensitivity to key parame-
ters and highlights optimal settings for improved predictive accuracy. (a) ACC; (b) AUC.

4.4.2. The Influence of Constructing the Edges of the Population Graph

The hyperparameters θ1 and θ2 play a critical role in shaping the structure of the
population graph by determining how edges are formed between subjects. Specifically, θ1

controls the similarity threshold for connecting nodes based on their feature representations,
while θ2 regulates the influence of age proximity during the construction of graph edges. To
determine an appropriate range for θ1, we first conducted a preliminary sensitivity analysis
by varying its value within the range of 0.3 to 0.7. The results revealed that the model
exhibited consistently better classification performance when θ1 was set between 0.60 and
0.65. Based on this observation, we subsequently adopted this narrower interval as the
search space for grid-based hyperparameter tuning, allowing a more precise exploration of
the optimal threshold.

As shown in Figures 6, the model achieves optimal classification performance when
θ1 = 0.61 and θ2 = 2, indicating a delicate balance between connectivity and noise. If θ1

is set too low, the resulting graph becomes overly dense, introducing numerous spurious
edges that degrade the discriminative capacity of the learned representations. Conversely,
an excessively high θ1 leads to a sparse graph, which restricts information flow among
similar subjects during message passing. A similar trade-off is observed for θ2: smaller
values hinder effective communication among nodes with similar age characteristics, while
larger values introduce irrelevant age-related connections that may obscure the underlying
patterns. These observations underscore the importance of jointly tuning θ1 and θ2 to
achieve a graph topology that both preserves meaningful relationships and suppresses
noise, ultimately enhancing the quality of representation learning.
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(a) (b)

Figure 6. Impact of θ1 (a) and θ2 (b) on model performance. Variation of θ1 affects the construction
of the population graph and alters message passing dynamics, leading to changes in classification
performance. Variation of θ2 affects message propagation based on age similarity, thereby influencing
classification outcomes.

4.4.3. The Influence of Parameters in Graph Contrast Learning

The hyperparameter γ directly affects the optimization objective in the contrastive
learning stage by balancing the alignment between local and global representations. As de-
picted in Figure 7, the model exhibits its best performance when γ = 0.4. This result
suggests that an appropriate weighting of the two alignment objectives is essential for
effective representation learning. When γ is too small, the contribution of local information
is underemphasized, potentially leading to insufficient capture of fine-grained structural
patterns. Conversely, an excessively large γ can overemphasize local alignment at the
expense of global semantic consistency, resulting in suboptimal generalization. The op-
timal value reflects a scenario in which global context plays a more dominant role than
local details, highlighting the significance of integrating broader structural information in
the contrastive framework. This balance allows the model to learn robust, semantically
meaningful representations that improve downstream classification performance.

Figure 7. Impact of γ on representation alignment. The balancing coefficient γ regulates the alignment
between local and global representations in the contrastive learning framework.
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4.4.4. The Attention Layers in Target-Aware Attention Aggregator Layer

The results presented in Figure 8 illustrate the impact of varying the number of
attention layers on the model’s performance. Notably, the configuration with three attention
layers achieved the highest overall performance, including the best ACC, suggesting that
this structure provides sufficient representational capacity without leading to overfitting.
When the number of layers falls below three, the model exhibits clear signs of underfitting,
failing to adequately capture local features. Conversely, increasing the number of layers
beyond three results in a slight decline or fluctuation in performance, indicating that
deeper attention stacking does not consistently enhance generalization and may introduce
redundancy or noise. Therefore, these findings suggest that three attention layers strike an
optimal balance between model complexity and generalization capability.

Figure 8. Impact of attention layer configurations on model performance. Different attention layer
designs lead to variations in classification metrics, highlighting how attention mechanisms influence
overall model effectiveness.

4.5. Limitations and Future Work

Although our model demonstrates good performance, there are still several limita-
tions. First, the construction of the population graph requires knowledge of the entire
dataset, which means that incorporating new subjects necessitates retraining the mode—a
limitation that affects scalability in real-world scenarios. Second, the use of multiple atlases,
while improving feature diversity, increases the computational cost and training complex-
ity. Finally, the current framework relies solely on resting-state functional connectivity,
and does not yet leverage complementary information from other imaging modalities
such as structural MRI or diffusion imaging. To further evaluate the reliability of our
framework, it is essential to consider perspectives inspired by stress analysis, particularly
in terms of uncertainty management and feature robustness. In real-world scenarios, data
are often affected by noise, variability, and acquisition inconsistencies, which may influence
model performance. Our approach demonstrates stable classification results even under
moderate perturbations, indicating a certain degree of robustness. Nevertheless, incorpo-
rating uncertainty-aware strategies—such as Bayesian modeling, dropout-based inference,
or sensitivity analysis—could further enhance the model’s reliability.

Future research will aim to address these limitations in several ways. One direction is
to explore incremental or fine-tuning strategies to enable efficient model adaptation to new



Brain Sci. 2025, 15, 1086 19 of 22

samples without the need for full retraining. Specifically, this could involve transfer learn-
ing techniques to reuse and adapt pre-trained model weights for new data distributions,
incremental learning approaches that progressively update the model as new samples
become available, or online learning frameworks capable of continuously integrating
streaming data. Such strategies would significantly enhance the scalability and clinical ap-
plicability of the framework. Another promising direction involves integrating multimodal
neuroimaging data (e.g., structural and diffusion MRI) to provide a more comprehensive
representation of brain structure and function, which could further improve diagnostic
performance. Additionally, evaluating the model on larger and more diverse cohorts will
be crucial for validating its generalization ability and robustness across different popula-
tions and acquisition sites. Future work could investigate the contribution and stability
of individual features through robustness tests or perturbation-based analyses, providing
deeper insight into the interpretability and generalizability of the proposed method.

5. Conclusions
In summary, this work presents a novel multi-atlas guided multi-view contrast learn-

ing for ASD classification that effectively captures both local and global subject features
while mitigating the effects of data heterogeneity. By leveraging contrastive alignment
and consistency constraints, the proposed framework achieves improved performance
and interpretability compared to existing methods. Although several challenges remain,
the insights and methodologies developed here lay a solid foundation for future research
on robust and scalable brain network analysis in neurodevelopmental disorder diagnosis.
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Abbreviations
The following abbreviations are used in this manuscript:

Xmsa Brain network representation after multi-head self-attention (MSA)
Xte Brain network representation after the NCAA module
X f c Functional connectivity matrix computed from rs-fMRI data using Pearson correlation
Xut Node initial features extracted from the upper triangular elements of X f c

N Total number of subjects across all sites
F Binarized adjacency matrix indicating whether an edge exists between two subjects

Fij
Element of F representing the presence (1) or absence (0) of an edge between subjects
i and j

A Edge score matrix of the fully connected population graph

https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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Aij Edge score between subject i and subject j
θ1 Hyperparameter controlling the sparsity of the population graph

θ2
Hyperparameter threshold controlling the similarity criterion for continuous
phenotypic features

Nm Number of phenotypic features used in similarity computation
P Matrix of phenotypic features of all subjects
Pim m-th phenotypic feature of subject i
φ(·) Similarity function between two phenotypic features
W Weighted adjacency matrix of the population graph after cosine similarity computation
Wij Weighted edge strength between subject i and subject j
Cos(·) Cosine similarity function used to compute similarity between feature vectors
Gi Membership vector of the i-th view after graph convolution learning
Ti Membership vector of the i-th view after Target-aware attention aggregator layer
V Set of all distinct views in the model
Lvc View-consistency loss function
zlv Representation vector output from the local-view branch
zgv Representation vector output from the global-view branch
ϕlv Projected representation of zlv in the shared latent space
ϕgv Projected representation of zgv in the shared latent space
Proj(·) Non-linear projection head mapping representations into a shared space
sim(ϕi, ϕj) Similarity score between two projected representations ϕi and ϕj

τ Temperature parameter controlling the smoothness of similarity distribution
Mp Positive sample mask used to indicate matching pairs in contrastive learning
Llv Contrastive loss from local-view to global-view representation
Lgv Contrastive loss from global-view to local-view representation
Lcl Final total contrastive loss combining Llv and Lgv

γ Balancing coefficient between the two contrastive losses
σ(·) Sigmoid activation function
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