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Abstract: Background/Objectives: This research investigates brain connectivity patterns in
reaction to social and non-social stimuli within a virtual reality environment, emphasizing
their impact on cognitive functions, specifically working memory. Methods: Employing the
LEiDA framework with EEG data from 47 participants, I examined dynamic brain network
states elicited by social avatars compared to non-social stick cues during a VR memory
task. Through the integration of LEiDA with deep learning and graph theory analyses,
unique connectivity patterns associated with cue type were discerned, underscoring the
substantial influence of social cues on cognitive processes. LEiDA, conventionally utilized
with fMRI, was creatively employed in EEG to detect swift alterations in brain network
states, offering insights into cognitive processing dynamics. Results: The findings indicate
distinct neural states for social and non-social cues; notably, social cues correlated with
a unique brain state characterized by increased connectivity within self-referential and
memory-processing networks, implying greater cognitive engagement. Moreover, deep
learning attained approximately 99% accuracy in differentiating cue contexts, highlighting
the efficacy of prominent eigenvectors from LEiDA in EEG analysis. Analysis of graph
theory also uncovered structural network disparities, signifying enhanced integration in
contexts involving social cues. Conclusions: This multi-method approach elucidates the
dynamic influence of social cues on brain connectivity and cognition, establishing a basis
for VR-based cognitive rehabilitation and immersive learning, wherein social signals may
significantly enhance cognitive function.

Keywords: dynamic brain connectivity; EEG; LEiDA; social cues; virtual reality; deep
learning

1. Introduction

In recent years, the combination of neuroimaging and virtual reality (VR) has provided
new opportunities for studying the brain dynamics of cognitive processes [1]. Working
memory, an essential cognitive function in daily tasks, has been widely examined using
conventional methods [2]. However, the emergence of VR technology offers a distinct
opportunity to replicate real-life situations that involve both social and non-social cognitive
processes [3]. Using electroencephalography (EEG) to measure neural activity during these
tasks provides detailed and precise information regarding the brain states involved in these
cognitive processes [4].

Research on the neural correlates of social and non-social cues has uncovered di-
vergent patterns of cerebral activity. One study [5] investigates the impact of repetitive
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transcranial magnetic stimulation on functional connectivity in methamphetamine use dis-
order, offering insights into neural adaptations. The neural mechanisms underlying social
contextual influences on adolescent risk-taking behavior have been examined, enhancing
our comprehension of how intricate social environments affect neural responses. This is
detailed in a study presented by [6].

VR is an appropriate platform for studying complicated cognitive tasks because it
incorporates real-world features and allows for controlled modification of environmental
stimuli [7]. The distinction between social and non-social cueing in VR can provide insight
into how human cognition adjusts in various social situations, an area that has received less
attention in traditional cognitive neuroscience [8]. Research has demonstrated that social
interactions in VR can have a notable impact on cognitive load and the corresponding
brain reactions [9]. This reveals the existence of separate neural networks that are activated
during social activities compared with non-social tasks [10,11].

Studies have shown that VR interventions can improve social skills and emotional
recognition in children and adolescents, including those with neurological disorders. One
study [12] demonstrates the efficacy of VR in enhancing social and emotional learning. The
influence of haptic feedback on social interactions in VR has been investigated, demonstrat-
ing its effect on user experience and the genuineness of social touch. Ref. [13] elucidates
the influence of tactile feedback on social dynamics in virtual environments. The impor-
tance of social cues in mediated, bidirectional, multiparty interactions has been examined,
highlighting their function in enhancing interpersonal communication. A study published
in 2021 [14] examines the significance of different social cues in immersive environments.

VR has become a revolutionary instrument in multiple domains, offering immersive
and interactive settings that replicate real-world situations. One of its most significant
applications is in the medical field, where avatars in VR environments are employed for
therapeutic and training objectives. VR interventions have demonstrated efficacy in treating
mental health disorders, including social anxiety, post-traumatic stress disorder (PTSD),
and depression, by enabling patients to interact with regulated virtual environments [15,16].
Moreover, avatars in VR are extensively utilized for cognitive rehabilitation, aiding patients
in the re-acquisition of motor and cognitive skills after neurological injuries [17]. This
research utilizes the distinctive features of VR to examine dynamic brain network states
during interactions with social avatars.

Connectivity analysis grounded in graph theory provides critical insights into the
structural organization and complexity of brain networks by depicting brain regions as
nodes and significant functional connections as edges. This method is especially beneficial
for examining dynamic brain states, as it facilitates the analysis of network characteristics,
including the clustering coefficient and path length, which enhance comprehension of the
neural mechanisms that underpin cognitive functions. Utilizing graph theory on EEG-
derived coherence matrices allows for the examination of connectivity patterns across
various cognitive states, especially in VR environments where social and non-social stimuli
may elicit distinct network configurations [18-20].

Dynamic functional connectivity (DFC) refers to temporary and state-specific changes
in connections between different brain networks [21]. It is considered an important factor in
cognitive function. The high temporal resolution (TR) of EEG is particularly suitable for this
type of analysis [22,23]. Some common DFC methods used with EEG are time—frequency
resolution coherence analysis, phase synchronization analysis, sliding-window correlation
analysis, graph-theory-based methods, and wavelet coherence. Time—frequency analysis
was used to analyze the power and coherence of the EEG signals in different frequency
bands. This method makes it possible to monitor coherence changes in signals over time
and determine how synchronization between brain regions changes during specific tasks or



Brain Sci. 2025, 15, 4

30f23

sensory stimulation [24]. Phase synchronization analysis measures the extent to which the
phases of EEG signals from different brain regions are in harmony. Phase synchronization
is used to examine temporal connections and collaborations between neural networks [25].
The phase locking value (PLV) is a measure used to quantify the consistency of phase
differences between signals over time [26]. Sliding-window correlation analysis contin-
uously calculates the correlations between EEG signals using a specified window size.
The window is shifted across the signal, revealing connectivity structures that change
over time. This method is particularly suitable for tracking short-term changes in brain
dynamics [27]. Moreover, EEG data can be analyzed using graph theory, in which brain
regions are represented as nodes and the connectivity between them as edges. This ap-
proach helps us to understand the structural and functional properties of brain networks by
evaluating their topological properties (e.g., the clustering coefficient and path length) [28].
Wavelet coherence measures the coherence between two signals at different time points
and in different frequency bands, thereby enabling a more detailed dynamic connectivity
analysis [29]. Progress in EEG data analysis has yielded novel techniques for evaluating
functional connectivity [30]. A thorough review [31] examines contemporary methods for
EEG seizure detection, emphasizing the challenges and prospective advancements in the
domain. Furthermore, the amalgamation of EEG and ensemble learning has been suggested
for precise grading and staging of diseases, highlighting the essential significance of time
window length in assessing model stability and efficacy. This methodology is elucidated
in a study [32]. The utilization of graph convolutional networks (GCNs) for processing
graph-structured EEG data has demonstrated potential in patient-independent epileptic
seizure detection, as outlined in [33].

Recent progress in DFC analysis approaches provides an exceptional opportunity to
investigate these dynamics with very detailed spatial and temporal resolutions. The recently
established Leading Eigenvector Dynamics Analysis (LEiDA) method has played a crucial
role in capturing these changes by examining the patterns of leading eigenvectors derived
from connectivity matrices [34]. This method offers a new way to observe changes [20] in
neural network states linked to various cognitive demands.

The LEiDA method was developed to monitor the functional connectivity changes in
the brain over time. This method is used specifically with functional magnetic resonance
imaging (fMRI) data because fMRI measures changes in cerebral blood flow to visualize
brain activity, which can reflect dynamic connectivity changes in the brain over long-term
periods [35-37]. LEiDA analyzes the dynamics of leading eigenvectors in time-series data
obtained from fMRI. These eigenvectors represent the strongest connectivity patterns in the
brain at a given time point and show how these connections change over time. This method
is particularly useful for understanding how brain networks organize and reorganize
during complex cognitive processes [38,39].

The use of LEiDA with EEG is a newer field of research. EEG records brain waves with
a high TR at the millisecond level, which provides the opportunity to observe much faster
brain dynamics [40]. However, EEG has a lower spatial resolution than fMRI, which may
limit some types of analysis [41]. The use of methods such as LEiDA combined with EEG
data offers the potential to examine time-varying brain network dynamics in more detail. In
particular, the high TR of EEG, when combined with the LEiDA method, can capture rapid
changes in brain networks and allow more sensitive examination of cognitive processes.
Additionally, Zhou et al. stated in their study that LEiDA has a superior TR compared to
other DFC analysis methods, such as the sliding-window method [42]. Therefore, although
the LEiDA method is mostly used with fMRI data, it can also be used with EEG data, and
this combination can open new doors for a more comprehensive understanding of brain
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dynamics. Such an approach could provide great advantages, especially in studies on
rapidly changing cognitive states and responses.

The term ‘states’ specifically denotes dynamic brain network states identified via LEiDA.
These states signify persistent patterns of phase synchronization among various brain regions,
as calculated from the dynamic phase-locking matrices (d) obtained from EEG data. Each state
represents a distinct configuration of functional connectivity, reflecting the temporal dynamics
of brain network organization throughout the task [34]. The identification of these states
enables an examination of how the brain transitions between various connectivity patterns
during interactions with social and non-social cues. In this study, the term PL states is used to
refer to the states identified by LEiDA.

This research examines a significant deficiency in comprehending the dynamic neural
mechanisms that underpin social cognition, especially during real-time interactions. Conven-
tional investigations of brain connectivity typically depend on static analyses that average
connectivity patterns over time, thereby neglecting the transient and rapidly changing states
of brain networks during social interactions. This constraint is particularly problematic when
examining intricate cognitive processes such as social cueing, which necessitate temporal
precision to comprehend how the brain shifts between various functional states. This research
employs the LEIDA method to address these challenges by providing a high-resolution,
temporally sensitive framework for examining brain network dynamics.

This study incorporates an additional innovative element through the utilization
of VR. In contrast to traditional experimental configurations, VR offers an immersive
and ecologically valid environment for simulating authentic social interactions. This
enables the examination of neural responses in an environment that closely mirrors natural
social contexts, providing enhanced understanding of the mechanisms underlying social
cognition. The utilization of VR to examine dynamic network states in reaction to social
and non-social stimuli is both timely and innovative, as it connects laboratory research
with the intricacies of real-world interactions.

LEiDA is particularly adept for this function as it directly examines the temporal dy-
namics of phase-locking matrices, discerning recurrent connectivity patterns with elevated
temporal resolution. In contrast to sliding-window correlation (SWC), which is constrained
by arbitrary window size and diminished sensitivity to swift transitions, LEiDA effectively
captures nuanced, instantaneous alterations in brain connectivity. Likewise, although graph
theory offers significant structural insights into brain networks, its metrics are frequently
based on static representations and are incapable of analyzing temporal transitions. By
integrating LEiDA with VR, I seek to offer a sophisticated comprehension of the brain’s
dynamic processing of social information in real time.

A primary impetus for this research is the opportunity to create targeted therapeutic in-
terventions for disorders marked by impairments in social cognition, including autism spec-
trum disorder, schizophrenia, and social anxiety. Contemporary therapeutic approaches
frequently neglect the dynamic characteristics of social interactions, prioritizing static or
excessively simplistic models instead. By pinpointing particular brain network states linked
to social and non-social interactions, my results may guide the development of VR-based
interventions aimed at enhancing individuals’ social functioning within a controlled yet
realistic setting.

This research incorporates sophisticated analytical techniques, such as deep learning
and graph theory, to enhance the LEiDA methodology. Deep learning facilitates the
identification of complex patterns in high-resolution EEG data, revealing nuanced dynamics
that conventional methods may overlook. Graph theory provides a structural perspective,
illustrating how network attributes such as clustering coefficients and path lengths vary
with different cognitive tasks. The amalgamation of these methodologies offers a thorough
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framework for comprehending the temporal and structural dimensions of brain network
dynamics, facilitating a comprehensive exploration of cognitive processes.

This study enhances our comprehension of social cognition at the neural level by ex-
amining the transitions between dynamic brain network states during social and non-social
cueing in VR. It also tackles the overarching challenge in neuroscience of examining brain
networks in genuine, ecologically valid environments. This research addresses a significant
gap in the literature and establishes a foundation for novel therapeutic strategies designed
for practical social deficits, providing valuable applications for clinical populations [34,43].

2. Materials and Methods

In this study, three main themes were examined, namely LEiDA, graph theory, and
deep learning. LEiDA analysis (Section 2.2) was performed to obtain PL states in the brain.
In the graph theory part (Section 2.3), graph-based analysis was performed using different
graphs. In the deep learning section (Section 2.4), classification results were evaluated
using raw EEG, PLVs, and Eigenvectors. The methods applied are visualized in Figure 1.
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Figure 1. Applied methods (LEiDA, graph theory, and deep learning classification).

2.1. Dataset
2.1.1. Participant Demographics

This study utilized a dataset originally published by [44] comprising EEG recordings
obtained during a VR working memory task involving the presentation of social and non-
social cues to participants. The dataset was released to the public to facilitate research on
cognitive processes within VR environments.

This research included 47 participants (25 females and 22 males) from a university
community, all with normal or corrected-to-normal vision and no history of neurological or
psychiatric disorders. Their average age was 24.3 years (SD = 4.7). Informed consent was
obtained from all participants, and the study was approved by the institutional review board.

Although a formal power analysis to justify the sample size of 47 participants could
not be performed due to time constraints, this limitation is addressed by referencing similar
studies in the field that utilized a comparable number of participants. These references
provide context and support for the adequacy of the sample size in this research [12,32].
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2.1.2. VR Working Memory Task

Participants were immersed in a VR environment using a head-mounted display. The
task assessed working memory through memorization of the location and characteristics of
the objects displayed on a virtual table. Two types of attentional cues were utilized: social
avatars (e.g., a virtual character making eye contact and pointing) and non-social stick cues
(e.g., a stick arrow pointing). The task structure included multiple trials, each with cueing,
memorization, and recall phases. The object details, participant responses, and reaction
times were recorded for each trial. The criteria used to select the VR working memory task
and its psychometric properties are detailed in reference [44]. This process is summarized
in Figure 2 for this study.

Task Selection:

Developed to assess memory

encoding, maintenance, and
retrieval in a VR environment
using social and non-social
cues.

*Virtual Environment Design
Unity: Immersive
environment and stimuli
presentation.

Oculus Rift S: 3D spatial
memory assessment.

*Cue Design

Social Cues: Human avatars
with gaze behaviors.
Non-Social Cues: Stick
mimicking avatar movements

Psychometric Characteristics:

*Realism and
Anthropomorphism:
Evaluated through Godspeed
and facial trait questionnaires
to confirm their humanlike
appearance and neutral
expression.

eLegitimacy: The task was
optimized for precise
measurement of memory and
attention by counterbalancing
conditions and implementing
breaks to mitigate fatigue-
related biases.

*Dependability: Multiple
trials for consistent results

Significance:

*Investigate neural correlates
in realistic environments

*Evaluate attention-memory
interplay.

eFacilitate EEG-based neural
correlate examination.

Figure 2. VR working memory task: selection and design schema.

2.1.3. Experiment Procedure

Using a head-mounted display, 3D avatars engaged participants by making eye contact
before looking towards the intended object location, mimicking real eye movement behav-
iors. Target items—Xkitchen utensils such as bowls, plates, cups, and teapots—appeared on
either side of a table, facilitating the study of cue influence in a realistic setting. Participants
memorized multidimensional information about items, such as location and status, during
the cue shift, encoding, and retrieval phases. A dynamic 3D stick served as a non-social
control cue, paralleling the movement of social avatars (Figure 3).
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Figure 3. Depiction of the trial process (checkered pattern inspired by [45]). Utilizing the parameters
of the conventional central cueing paradigm, the cue persisted on the screen for the duration of the
trial (e.g., [46,47]). Panel (A) shows the social avatar cue, and Panel (B) shows the non-social stick
cue. Timings, as depicted in the figure, were synchronized across cue types. The inter-trial interval
was 1000 ms, during which a fixation cross was displayed. The experiment was a free-viewing
study, allowing participants to move their eyes freely. Panel (C) shows the six possible left and right
locations for the four encoding targets.

2.1.4. Apparatus and EEG Acquisition

The experiment was programmed in Unity and was conducted using a Lenovo Le-
gion Y540-17IRH laptop (Beijing, China) with an Oculus Rift S PC-Powered VR Gam-
ing Head-Mounted Display. EEG data were captured using a 64-channel ANT Neuro
eego™ (Hengelo, The Netherlands) sports mobile EEG system following the international
10-20 electrode placement system. The data sampling rate was 500 Hz with online filtering
between 0.1 and 100 Hz. Eye movements and blinks were monitored using additional
electrodes. The preprocessing steps included band-pass filtering (1-40 Hz), artifact rejection,
and independent component analysis (ICA) for correction of eye movement and muscle
artifacts [44].

2.2. LEiDA Analysis

LEiDA, or Leading Eigenvector Dynamics Analysis [34], is a method used to detect
phase-locked oscillatory patterns in large systems of coupled dynamical units, particularly
in the context of brain activity recorded using fMRI. These patterns indicate meaningful
functional subsystems related to cognitive and emotional processing. The analysis sug-
gests that the macroscopic functional networks observed in resting brain activity reflect a
repertoire of phase-locked solutions shaping hemodynamic fluctuations over ultra-slow
timescales. In this study, it was applied to the EEG dataset. Figure 4 illustrates the method-
ological framework underlying the LEiDA technique.

At each time point, the principal eigenvector of dPL was calculated to identify the
predominant connectivity pattern. The principal eigenvector, linked to the maximum
eigenvalue, signifies the predominant direction of phase synchronization among brain
regions at that particular moment. To discern recurring connectivity states, the leading
eigenvectors were subsequently categorized using the k-means clustering algorithm, which
classified them into discrete dynamic states based on their similarity.

Occupancy denotes the duration or proportion of time a brain network remains in a
particular state during the VR task. This research quantifies the duration for which each par-
ticipant’s brain networks sustained specific dynamic connectivity states, identified through
the LEiDA method, throughout the task. This indicates the involvement or predominance
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Figure 4. Extraction of EEG signal PL states. (A) For a given region, the EEG signal is first prepro-
cessed. (B) Hilbert transformation is applied in order to acquire an analytic signal, whose phase
can be represented over time and each TR (temporal resolution), which refers to the time inter-
val between consecutive data samples, utilized for monitoring dynamic connectivity alterations.
(C) The dPL(t) matrix quantifies the degree of phase synchronization between each pair of areas.
The dominant eigenvector of the dPL(t) matrix, denoted as V(t), represents the primary direction of
all phases. Each element in V(t) corresponds to the projection of the phase of each region onto V(t)
(right). (D) The eigenvectors V(t) from all participants are combined and inputted into a k-means
clustering algorithm, which separates the data points into a predetermined number of groups, k
(E) Every cluster centroid symbolizes a recurring PL state. dPL refers to dynamic phase-locking
(Enhancing Clarity: Process Summary {1. Preprocessing —2. Hilbert Transformation —3. Dynamic
Phase-Locking Matrix (dPL) —4. Leading Eigenvector Calculation —5. K-means Clustering —6.
Identification of Recurrent Phase-Locking (PL) States}).

2.2.1. Functional Connectivity Matrix Calculation

For each time point or segment of EEG data, a functional connectivity matrix was
calculated using PLV between all pairs of EEG channels. This results in a series of ma-
trices that represent the connectivity patterns between brain regions over time. Initially,
a comprehensive EEG matrix was acquired at each time point by computing dPL. This
matrix gauges the alignment of phases between every pair of brain regions, with values
ranging from 1 to —1 denoting signals changing in the same or opposite directions, respec-
tively. Hilbert transformation was used to estimate the analytic phase of the averaged EEG
signals. The Hilbert transform expresses any signal in polar coordinates, represented as
x(t) = A(t)cos(6(t)), where A(t) represents the instantaneous amplitude or envelope and
0(t) represents the instantaneous phase or phase angle. As shown in Figure 4A, the cosine
of the phase angle effectively captured the fluctuations in the EEG signal. Given the phases
of the EEG signals, the phase alignment, denoted as dPL (n, p, t), where ‘n” and “p” identify
different brain regions and ‘t’ represents the time point, is calculated using the cosine
function as follows:

dPL(n.p.t) = cos(0(n,t) —6(p,t)) 1)

The dPL matrix has dimensions N x N x T, where N denotes the brain regions and
T denotes the recording frames per scan or time samples of the time series. Aligned EEG
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signals yield a PL value near 1 (cos (0°) = 1), whereas orthogonal signals yield a PL value
of 0 (cos (90°) = 0).

2.2.2. Leading Eigenvector Extraction

The leading eigenvector represents the pattern of connectivity that accounts for the
greatest variance in the data at that time point, effectively capturing the dominant state of
the brain network connectivity. The next step involved computing the leading eigenvector
of the EEG-dPL matrix. This eigenvector, denoted as V1(t), captures the primary alignment
of EEG phases across brain regions. By focusing solely on the eigenvector associated
with the largest-magnitude eigenvalue, data dimensionality is significantly reduced. The
magnitude of the eigenvector elements reflects the strength of the association between the
brain regions and their respective communities.

2.2.3. Clustering of Eigenvectors

A clustering algorithm was applied, namely k-means, to the collection of leading
eigenvectors obtained from all time points. This step grouped similar eigenvectors together,
identifying recurring patterns of connectivity or network states that emerge during a task.

2.2.4. Identification of Dynamic Network States and Statistical Analysis

Each cluster of the leading eigenvectors represents a distinct network state. By ex-
amining which time points are associated with which cluster, one can infer the temporal
dynamics of brain connectivity, such as the frequency and order in which different network
states occur.

Statistical analyses were performed to compare the prevalence and transition patterns
of the identified network states across different conditions (e.g., social vs. non-social
cueing), revealing insights into the neural mechanisms underlying cognitive processes.

Non-parametric permutation tests were utilized to compare the LEiDA-derived net-
work states under social and non-social cueing conditions. In particular:

o  Test procedure: For each LEiDA-derived dynamic phase-locking (dPL) state, the
occupancy (percentage of time allocated to a specific state) was computed, and a
two-sample t-test was conducted to compare the social and non-social conditions.

e  Permutation framework: A permutation test with 10,000 iterations was conducted
to assess statistical significance. In each iteration, the condition labels (social or
non-social) were randomly shuffled, and the t-statistic was recalibrated to produce a
null distribution.

e  p-value calculation: The observed t-statistic was evaluated against the null distribution
to ascertain the p-value, indicating the fraction of permuted test statistics that were as
extreme or more extreme than the observed value.

e  Tomitigate the potential inflation of Type I errors resulting from multiple comparisons
across the network states, FDR correction is implemented to obtain more robust
significant p-values.

2.3. Graph-Theory-Based Connectivity Analysis

The graph-theory-based connectivity analysis involved constructing and analyzing
functional brain networks derived from coherence matrices of EEG data. By thresholding
coherence values and creating adjacency matrices, undirected weighted graphs repre-
senting significant connections between brain regions were built. The analysis of graph
properties, such as degree distribution, clustering coefficient, and path length, provided
insights into the functional organization of the brain networks and revealed differences in
connectivity patterns between the two groups. This approach highlights the value of graph
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theory in understanding the complex dynamics of brain connectivity in cognitive neuro-
science research. Utilizing graph theory metrics like centrality, modularity, and clustering
coefficients enables the quantification of the structural and functional organization of brain
networks. These metrics elucidate the dynamic interactions among neural regions over
time, revealing the fundamental mechanisms of cognitive processes including memory,
attention, and decision-making.

The steps involved in this method are detailed below:

e  The raw EEG data from all subjects and channels underwent preprocessing, including
band-pass filtering to remove noise and artifacts, followed by segmentation into
task-specific epochs. This is the standard first process, which was explained in more
detail in [44].

e  For each subject and epoch, coherence matrices were computed to measure the syn-
chronization between EEG signals across different brain regions.

e A threshold was then applied to these coherence matrices, retaining only significant
coherence values (above a 0.2 threshold) to create adjacency matrices that represent
connections between regions as undirected, weighted graphs.

e  Using the network library in MATLAB 2023b, graphs were constructed with nodes
as EEG channels and edges denoting meaningful coherence-based connections. This
thresholding process focused the analysis on impactful relationships, reducing noise
and allowing for the examination of robust connectivity patterns that reflect significant
network structure.

The threshold value of 0.2 was selected based on empirical testing and the existing
literature. This value is frequently employed in dynamic functional connectivity studies to
optimize the inclusion of significant connections while reducing noise [48]. A threshold
of 0.2 guarantees the retention of only the most robust and dependable PLV, which has
demonstrated a stable representation of functional connectivity patterns.

Graph-theory-based connectivity analysis was conducted to examine the structure and
organization of functional brain networks derived from EEG coherence matrices. Key graph
properties were computed and compared between social and non-social cue conditions.
This analysis provided insights into the organizational structure of brain networks and
highlighted connectivity patterns that varied between the two conditions, allowing for a
deeper understanding of functional brain network differences.

Graph Theory Metrics

To assess brain network organization under social and non-social cueing conditions,
the following graph theory metrics are computed:

The clustering coefficient measures the tendency of nodes to create closely connected
clusters, indicating local connectivity within the network. This metric was chosen to evaluate
the local integration of cerebral regions. Increased clustering coefficients in the social cue
condition may indicate enhanced local integration and more effective information processing.

Path length: The path length represents the average minimum distance between all
pairs of nodes within the network, functioning as a measure of overall network efficiency.
The diminished path lengths in the social cue condition indicate a more efficient network
architecture, promoting rapid communication between brain regions.

Degree distribution: Degree distribution indicates the quantity of connections (edges)
linked to each node. This metric was examined to ascertain if social cues affected the overall
connectivity of brain networks. A higher average degree in the social cue condition may
indicate improved overall integration among brain regions.
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Modularity measures the degree to which a network can be divided into separate
communities or modules, reflecting functional specialization. This metric would indicate
whether social cues facilitate modular organization within brain networks.

Thresholding and analysis: Connectivity matrices were subjected to thresholding to
preserve the top 20% of the most robust connections, as indicated by the existing literature.
This facilitated the retention of critical edges while diminishing noise. Metrics of graph
theory were computed for both social and non-social conditions to investigate alterations
in brain network organization according to cue type.

2.4. Deep-Learning-Based Connectivity Analysis

To analyze the EEG data (using deep learning) from the VR working memory tasks,
three types of input data were utilized: raw EEG data, phase-locking matrices, and leading
eigenvectors derived from LEiDA. Each type of data was processed and classified using
deep learning techniques to determine the efficacy of different feature sets in distinguishing
between social and non-social cueing conditions.

Techniques for Model Validation:

i The dataset was divided into an 80-20 training and testing set to assess model per-
formance on novel data. This division guarantees the segregation of data utilized for
model training and performance assessment.

ii ~ Cross-validation: Cross-validation was contemplated but ultimately disregarded
due to computational constraints and the substantial sample size, which facilitated
dependable generalization with the selected train—test methodology. To verify model
stability, several training iterations utilizing various random seeds, ensuring uniform
performance throughout these iterations, were conducted.

iii ~ Early stopping: An early stopping criterion was employed during training to avert
overfitting. The training process concluded when validation accuracy failed to enhance
for five successive epochs.

iv. Mitigation of Overfitting:

Regularization: Dropout layers with a rate of 0.5 were incorporated into the convo-
lutional neural network (CNN) architecture to randomly deactivate neurons during
training, thereby mitigating overfitting.

Batch normalization: Batch normalization layers were employed to enhance stability
and accelerate training by normalizing inputs for each mini-batch.

Performance metrics: The model’s efficacy was evaluated through metric of accuracy
to confirm that the elevated accuracy was not due to overfitting to particular data
patterns.

v Examination of Possible Overfitting:

The performance attained by the CNN model is recognized and has been underscored
in the Discussion section as warranting careful interpretation Additional validation
using independent datasets in subsequent studies is advocated to ascertain the model’s
generalizability.

The dataset comprised EEG-derived phase-locking matrices and leading eigenvectors
gathered across multiple time points, yielding an adequate number of samples for train-
ing. This sample size allowed the CNN to discern intricate connectivity patterns while
minimizing the risk of overfitting or underfitting.

Table 1 provides an overview of the CNN model architecture, detailing each
layer’s parameters, including the number of filters, kernel size, activation functions, and
dropout rates.
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Table 1. CNN model architecture and parameters.
Layer Type Number of Filters Kernel Size Activation Function Pool Size Dropout Rate
ConvlD Convolution 64 3 ReLU - -
MaxPooling1D Pooling - - - 2 -
Dropout Regularization - - - - 0.5
Flatten Reshape - - - - -
Dense Fully Connected 100 - ReLU - -
Output Fully Connected 1 - Sigmoid - -

2.4.1. Raw EEG

A 1D-CNN was employed to process the raw EEG signals. This decision was made
to leverage the temporal structure inherent in EEG time-series data. The input size for
raw EEG signals was [47 subject, 64 channels]. Raw EEG data underwent an inspection
to eliminate channels exhibiting excessive noise or consistently subpar signal quality. The
dataset preprocessing analysis was explained in more detail in [44].

Then, the data were divided into training and test sets, ensuring that the training set
contained 80% of the data and the test set contained the remaining 20%. The model was
compiled using the binary cross-entropy loss function, the Adam optimizer, and accuracy
as the performance metric. It was trained for 10 epochs with a batch size of 10 and a
validation split of 20%.

2.4.2. Phase-Locking Matrices

The PLV quantifies the synchronization of oscillatory activity between two brain re-
gions, serving as a measure of functional connectivity. DFC can be evaluated by calculating
PLV across consecutive time windows, thereby capturing the temporal progression of brain
network states [26].

The phase-locking matrices were computed from the preprocessed EEG data using
the Hilbert transform. The dPL matrices were then used as input for the deep learning
model, following the same preprocessing, splitting, reshaping, and training procedures as
described for the raw EEG data.

Despite being 2D connectivity matrices, 1D convolution was applied to each row
(or column) of the matrix. This choice was made to simplify computational requirements
while still capturing meaningful connectivity patterns. Each dPL was reshaped into a 1D
vector (flattened row by row) and fed into the network.

2.4.3. Leading Eigenvectors from LEIDA

LEiDA was applied to the dPL matrices to extract the leading eigenvectors, which
represent the most dominant patterns of connectivity in the brain at each time point. These
eigenvectors were then combined across all subjects and time points to form the input data
for the deep learning model.

As with the other data types, the eigenvectors were normalized, split into training and
test sets, reshaped, and used to train the CNN model.

A deep learning technique was utilized to analyze EEG data, employing a CNN to
classify data based on social and non-social cues. This method involved preprocessing EEG
data, extracting phase-locking matrices, and deriving leading eigenvectors through LEiDA.
The CNN model was trained to identify patterns associated with each cue type, providing
a robust classification framework.

The step where the leading eigenvectors are obtained from all subjects for each time
step produces a single dPL matrix, resulting in one leading eigenvector. Consequently, a
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total of #subjects x #samples 1D eigenvectors are generated. This output is then used as
input to the CNN from LEiDA.

2.4.4. Managing Multiple Comparisons

To mitigate the probability of Type I errors resulting from multiple analyses
(e.g., LEiDA, graph theory, and deep learning), suitable correction methods have been
employed. In particular:

e LEIDA Evaluation:

FDR correction was utilized to adjust p-values for multiple comparisons in the statistical
analysis of occupancy across dynamic brain states under social and non-social conditions.

The revised p-values are now clearly presented in the Results section for each network
state derived from LEiDA.

e  Analysis of Graph Theory:

In graph metrics (e.g., clustering coefficient, path length, and degree distribution),
where multiple metrics were evaluated, Bonferroni correction was utilized to adjust for
the quantity of metrics examined. This conservative methodology guarantees that only
markedly significant differences are disclosed.

e  Analysis of Deep Learning:

In deep learning analysis, assessing model performance, such as classification accuracy,
renders adjustments for multiple comparisons unnecessary.

3. Results

3.1. Leida Analysis Results
Connectivity Matrix Heat Maps

See Figure 5 for connectivity matrix heat maps illustrating brain network synchro-
nization patterns. Elevated PLVs in specific regions indicate that social cues may enhance
neural coherence, activating brain regions associated with social cognition and memory
processing. This observation corresponds with the current literature indicating that social
stimuli augment functional connectivity within networks dedicated to social processing.

The exploration of dFC in a VR setting illuminated distinct behavioral responses
in working memory when influenced by social versus non-social cues. By analyzing
brain network interactions over time, significant variability and temporal characteristics in
functional connectivity were identified, as depicted in Figure 5. The key findings of the
presented analysis are as follows.

1.  Consistency across models: The results consistently demonstrated specific brain
states that distinguish responses to social cues from non-social cues across various
partitioning schemes. This observation highlights the reliability of certain dynamic
brain states in reflecting differences in cognitive processing related to cue type.

2. Identified states: A particular dynamic state was identified, the seventh, which
showed significantly increased engagement in individuals exposed to social cues.
This state is characterized by enhanced connectivity within networks that are typically
involved in self-referential and memory-processing functions. The significance of this
state is further elaborated in Figure 5, which shows the associated statistical results.

3. Role of specific regions: The analysis identified the precuneus as a crucial node across
different dynamic states, underscoring its versatile role in facilitating connections and
transitions between networks. Its varied involvement across states emphasizes its
potential impact on how social and non-social cues are processed in working memory
within a VR context (Figure 6).
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Figure 5. Repertoire of functional network states assessed with LEiDA and association to working
memory. For a clustering solution of k = 8, PL State #7 is significantly correlated with enhanced
working memory scores (p = 0.0156, (* refers to the significant p-value)), highlighted in a red color
in the row of probabilities. The error bars represent the standard error of the mean across all
47 participants. These results underscore the role of DFC when clustered into 8 states in understand-
ing the neural underpinnings of working memory, because the states and their connectivity after
clustering results are the representation of dynamic function connectivity during the working mem-
ory tasks. Heat maps of the connectivity matrix display phase-locking values (PLVs) between EEG
channels under social and non-social cue conditions. Warmer hues signify elevated PLVs, denoting
enhanced functional connectivity among brain regions. Examining the variations in connectivity
patterns between the two conditions may elucidate areas of increased synchronization in reaction to
social cues, thereby corroborating the hypothesis of cue-specific brain network activation (the nodes
represent the electrode locations).
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Figure 6. PL state 7 significantly differs for social compared to non-social working memory dynamic
response. (Top) PL state is represented in the cortical space, where functionally connected brain
regions (represented as spheres) are colored in blue. (Middle) PL states are also represented as
the outer product of V¢, which is a 64 x 64 matrix representing the number of electrode regions.
(Bottom) Significant (p-FDR < 0.05) differences in the percentage of occurrence between social
compared to non-social working memory dynamic response. Dots represent individual data points;
dark bars indicate the standard error of the mean. Analysis via non-parametric permutation-based
t-test (N = 47 participants) (* refers to the significant p-value).

Although State 7 exhibited a statistically significant disparity in standard error across
conditions, this result possesses limited predictive efficacy owing to the model’s moderate
classification accuracy. This outcome indicates that although variability in connectivity
patterns is present, the observed difference may not entirely represent distinct brain states
for social compared to non-social cues.

3.2. Graph Theory Analysis Results
Graph Representations

Graph representations of connectivity networks exhibit notable differences in cluster-
ing and degree distribution across conditions. The elevated clustering coefficient noted
under social cues suggests a more cohesive network architecture, likely enhancing effective
neural communication. This structural variation substantiates the hypothesis that social
cues may influence brain connectivity, fostering a network architecture favorable to intricate
social and cognitive processing. The results are presented in Figure 7.

Table 2 delineates the principal metrics contrasting brain connectivity in social and non-
social cue conditions, encompassing coherence values, clustering coefficient, path length,
and degree distribution. This table delineates notable disparities in network properties
under varying conditions, with statistical significance marked where applicable.

The graph theory analysis of the EEG data yielded the following results:

Mean coherence values: The t-statistic and p-value indicate no significant difference in
mean coherence values between the two groups.

Average clustering coefficient: Both groups have similar average clustering coefficients,
with Group 2 having a slightly higher value, indicating a marginally higher tendency for
nodes to form clusters.

Average path length: The NaN values indicate that the graphs for both groups are not
fully connected, meaning there are disconnected components.

Degree distribution: The significant t-statistic and small p-value indicate that Group
2 has a higher average degree of connectivity among channels compared to Group 1,
suggesting differences in network organization (Figure 7).



Brain Sci. 2025, 15, 4

16 of 23

Group 2

Figure 7. Graphical representations of brain connectivity networks under social and non-social cue
conditions. Each node signifies a brain region, while edges indicate substantial coherence-based
connections between regions. Essential network metrics, such as clustering coefficient and degree
distribution, are presented to highlight the structural disparities in network organization across
conditions. A more compact or clustered network architecture indicates improved integration within
specific brain networks in reaction to social stimuli.

Table 2. Key results of brain connectivity analysis for social vs. non-social cue conditions.

Metric Social Cue Condition Non-Social Cue Condition Statistical Significance (p-Value)
Mean Coherence Value X (e.g., 0.45 £ 0.05) Y (e.g., 0.42 £ 0.06) p=0.336
Average Clustering Coefficient X (e.g., 0.375) Y (e.g., 0.391) Not significant
Average Path Length NaN NaN -

Degree Distribution

X (e.g., 5.2 + 1.1)

Y (e.g., 7.3+ 13)

p=0.003

PL State 7 Occurrence

Increased in Social Cues

Lower in Non-Social Cues

p <0.05
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3.3. Deep Learning Analysis Results
The analysis of the three types of input data yielded the following results:

e Raw EEG data: The CNN model trained on raw EEG data achieved an accuracy of
50-70%, indicating moderate discriminative power between the social and non-social
cueing conditions. The performance evaluation of the CNN model revealed an accuracy
range of 50% to 70% across various iterations. This range indicates fluctuations resulting
from various factors, such as distinct random initializations of model parameters and
minor discrepancies in the input data during each execution. By presenting an accuracy
range, a realistic representation of the model’s performance variability was offered,
considering the inherent randomness in training methodologies and dataset sampling.

e  Phase-locking matrices: Similar accuracy results (50-70%) were obtained when using
the phase-locking matrices as input, suggesting that this feature set captures relevant
information about the brain’s connectivity patterns but does not significantly improve
classification performance over raw EEG data.

e Leading eigenvectors from LEiDA: The most striking result was obtained with the
leading eigenvectors derived from LEiDA, where the CNN model achieved an accu-
racy of around 99%. This high accuracy demonstrates that the leading eigenvectors
are highly effective in distinguishing between the two cueing conditions, capturing
the most salient features of the brain’s dynamic connectivity patterns.

The CNN model demonstrated consistent performance across various runs with
different random seeds, validating its robustness and stability. The final model achieved
high accuracy on the test set, affirming the reliability of the results derived from the chosen
train—test split. The early stopping criterion mitigated overfitting, as stable accuracy was
noted after 10 epochs. The findings suggest that the dataset size and selected validation
method established a robust framework for EEG classification.

4. Discussion

The results reveal that social cues not only trigger unique network states but also
sustain these states for longer durations compared to non-social cues. This prolonged
engagement with specific brain states suggests deeper cognitive processing or enhanced
memory retention triggered by social interaction. The role of the precuneus highlighted
in this research underscores its importance in integrating social information and memory
processes. This finding suggests that social cues may engage more complex integrative
cognitive mechanisms than previously understood, potentially enhancing the efficacy of
memory encoding and retrieval by leveraging social context. This implies that the human
brain may prioritize socially relevant information as a mechanism evolved to enhance
cooperative interactions, which are critical in complex social environments.

The graph theory analysis reveals key differences in the functional brain networks be-
tween the two groups. While the mean coherence values and average clustering coefficients
are not significantly different, the distribution of degrees shows a significant difference,
with Group 2 exhibiting higher connectivity. This suggests that the functional organization
of the brain networks in Group 2 is more densely connected compared to Group 1. The
absence of fully connected graphs (as indicated by the NaN average path lengths; see
Table 1) highlights the presence of disconnected components, which could be due to the
inherent variability in EEG data or task-specific influences.

These findings underscore the importance of using graph theory analysis to uncover
subtle differences in brain connectivity that may not be apparent through traditional
coherence measures alone. The higher connectivity in Group 2 may reflect more efficient
neural communication or greater integration of neural processes during the task.
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The utilization of graph-theory-based connectivity analysis allowed me to detect subtle
variations in the functional brain networks across different cueing conditions. The exami-
nation of network characteristics, including clustering coefficient and degree distribution,
revealed the unique organizational patterns of brain connectivity in reaction to social com-
pared to non-social stimuli. This indicates that social interactions may promote denser and
more interconnected brain networks, potentially improving cognitive processing. These
findings correspond with earlier research suggesting that densely interconnected networks
may facilitate effective neural communication and cognitive involvement, especially in
tasks related to social cognition.

The findings of this study underscore the significant role of social cues in enhancing
cognitive processes through dynamic neural network modulation within a VR context.
Employing LEiDA on EEG data, distinct patterns were discerned of brain connectivity that
differentiate responses to social versus non-social cues. The novel application of LEiDA
highlighted dynamic states correlating with varying performance in VR working memory
tasks, enriching our understanding of the neural substrates involved in the cue-based
modulation of brain networks.

The findings from this analysis highlight the effectiveness of using leading eigenvectors
from LEiDA in deep learning models to classify EEG data. The superior performance of
the LEiDA-derived features suggests that they encapsulate critical information about the
brain’s dynamic states that is not as readily apparent in the raw EEG data or phase-locking
matrices. The moderate accuracy of the raw EEG data and phase-locking matrices indicates
that while these features contain relevant information, they may also include noise or
less discriminative features, which can hinder the classification performance. In contrast,
LEiDA focuses on the most dominant connectivity patterns, providing a more robust and
noise-resistant feature set for classification.

These results underscore the potential of LEiDA as a powerful tool for analyzing
EEG data in cognitive neuroscience, particularly in studies involving complex tasks and
conditions such as those involving social and non-social cues in a VR environment. The
ability to achieve near-perfect classification accuracy with LEiDA-derived features paves the
way for more nuanced and detailed investigations into the neural mechanisms underlying
cognitive processes and their modulation by different types of cues.

The substantial disparity in the standard error of the mean for State 7 (see Figures 5 and 6),
notwithstanding its statistical significance, resulted in poor predictive efficacy in differentiating
social from non-social cues. This constraint may stem from the model’s moderate classification
accuracy, suggesting that supplementary features or more sophisticated modeling techniques
may be necessary to discern finer distinctions in brain state connectivity.

Conversely, there is currently no directly comparable study in the literature, as no prior
brain connectivity research has utilized the specific dataset employed in this study. Ref. [49]
provides a comprehensive review of various approaches used to assess brain functional
connectivity with EEG data, covering pairwise and multivariate connectivity metrics across
time, frequency, and information-theoretic domains, and discussing their respective strengths
and limitations. This work informed the broader context for the presented study, offering a
comparative foundation for the methodologies. Consequently, this research is the first to apply
connectivity analysis using EEG data with the LEiDA method in the literature. Furthermore,
Ref. [50] highlights the diversity of EEG connectivity techniques and proposes a checklist to
assess the quality of these methods, emphasizing the importance of standardization in EEG
connectivity studies. Such standardization enables researchers to align study designs and
findings with established practices in the field. Evaluating this presented work in conjunction
with these prior works can help guide future research and support the attainment of robust
and reliable results in EEG connectivity analysis.
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This study utilized PLV to evaluate DFC from EEG data, reflecting the temporal
progression of brain network states in reaction to social and non-social stimuli. PLV
quantifies the synchronization of oscillatory activity among brain regions, acting as an
indicator of functional connectivity. This method is consistent with prior studies that
employed PLV to examine task-related alterations in neural synchronization [26].

This analysis demonstrated that social cues prompted elevated clustering coefficients
in brain networks, signifying improved local connectivity. This discovery indicates in-
creased cognitive involvement and social processing in response to social stimuli, aligning
with research that has noted comparable patterns of local network integration in social
settings [20].

Furthermore, discrepancies in path length between social and non-social conditions
were noted, indicating variations in global network efficiency. Reduced path lengths
during social cue processing indicate enhanced information transfer within the brain,
consistent with previous studies on functional brain network dynamics during social
interactions [18,20].

The utilization of graph theory metrics, including the clustering coefficient and path
length, offered an in-depth insight into the brain’s functional organization across different
conditions. This methodology has been successfully employed in prior studies to examine
brain connectivity patterns [51].

These findings enhance the expanding literature on the neural mechanisms of social
cognition. This study illustrates that social cues can influence both local and global brain
network characteristics, providing insights into the brain’s dynamic adaptation to social
information. These findings align with current research highlighting the significance of
network flexibility in social cognitive processes [52].

To guarantee the reliability of my results, stringent corrections for multiple com-
parisons were implemented. The application of FDR correction in the examination of
LEiDA-derived network states guaranteed that notable differences in occupancy were not
attributable to random variation. Likewise, the Bonferroni correction utilized in graph
theory metrics reduced the likelihood of Type I errors while upholding a conservative
stance on statistical significance.

A principal limitation of EEG is its inferior spatial resolution relative to fMRI, which
complicates the precise localization of neural sources associated with dynamic brain states.
This limitation stems from the inverse problem associated with EEG, wherein neural
sources must be deduced from signals captured on the scalp. Although LEiDA was initially
developed for fMRI data, which provide accurate spatial localization, its use in EEG may
lead to reduced spatial specificity.

To mitigate these limitations, various measures were instituted in this study. Prepro-
cessing methods, such as independent component analysis (ICA), were employed to remove
noise and artifacts, thus enhancing signal quality. Furthermore, coherence-based connectiv-
ity analysis was utilized to enhance network definitions. The application of high-density
EEG (64 channels) enhanced spatial resolution, enabling a more precise representation of
extensive brain networks.

Notwithstanding these measures. It is recognized that the diminished spatial resolu-
tion of EEG may influence the interpretation of particular findings, especially concerning
the localization of specific network nodes, such as the precuneus. The principal eigenvector
obtained from dPL matrices signifies a global connectivity pattern rather than specific
spatial origins, requiring careful interpretation of network localization.

This study’s findings indicate that social cues in VR environments improve cognitive
engagement and task performance by fostering more integrated brain network states.
These findings possess significant implications for cognitive rehabilitation and immersive
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education. The observed enhancements in behavior and neural patterns linked to social
cues may guide the creation of VR-based interventions aimed at social cognition and
working memory.

These findings corroborate earlier research (e.g., Refs. [9,11]—no real-life dataset was
used for comparison in these studies), which has established the effectiveness of VR in
replicating authentic social interactions. It is recognized that the regulated characteristics
of the VR environment and the restricted scope of tasks in this study may not adequately
represent the intricacies of genuine social interactions and learning environments. Individ-
ual differences, task complexity, and environmental variability in real-world contexts may
affect the generalizability of these findings.

The application of LEiDA in this research signifies a notable progression in the ex-
amination of dynamic brain network states during real-time social interactions. By con-
centrating on the principal eigenvectors of phase-locking matrices, LEiDA elucidates the
predominant connectivity patterns at each temporal juncture, facilitating the recognition
of ephemeral network states that are challenging to discern through conventional tech-
niques. This method offers essential insights into the neural mechanisms of social cognition,
facilitating future research on dynamic functional connectivity in real-world contexts.

This study integrates VR with EEG-based dynamic connectivity analysis, effectively
linking ecologically valid experimental designs with high-resolution neural data collection.
The identification of unique dynamic brain network states during social interactions in
VR establishes a framework for investigating social cognition in more realistic contexts,
facilitating future research and therapeutic applications.

5. Conclusions

This research substantially enhances our comprehension of the dynamic neural mech-
anisms that govern working memory, especially in VR settings. Through the application
of LEiDA to EEG data analysis, the modulation of brain connectivity by social cues was
illustrated, uncovering distinct network states and highlighting the potential of VR for
investigating intricate cognitive phenomena. The integration of LEiDA with deep-learning-
and graph-theory-based connectivity analysis has augmented our cognitive neuroscience
toolkit, improving the precision of brain state classification and offering structural insights
into network organization under diverse cognitive demands.

The integration of DFC analysis, deep learning, and graph theory enabled me to eluci-
date both temporal and structural brain dynamics, providing a comprehensive understand-
ing of cognitive function modulation in VR. This multi-method approach demonstrates
the distinct impact of social cues on brain connectivity and underscores the importance
of analyzing transient states to enhance the understanding of cognitive resilience, adapt-
ability, and performance, particularly in dynamic environments. This dynamic viewpoint
transcends conventional static metrics, facilitating the identification of biomarkers and
therapeutic targets for cognitive resilience and neurorehabilitation.

This study elucidates dynamic interactions, thereby advancing our comprehension of
social processing in the brain and paving the way for tailored interventions to modulate
specific neural dynamics. This holistic method indicates potential uses in cognitive reha-
bilitation, immersive educational settings, and therapeutic strategies adapted to changing
neural patterns linked to psychiatric and neurological disorders.

These findings underscore the potential of VR as a medium for investigating dynamic
brain network states in ecologically valid environments. Future research should investigate
the evolution of these states over extended interaction durations and determine if analogous
patterns are present in clinical populations, such as individuals with autism spectrum
disorder or social anxiety.
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Moreover, the elevated accuracy attained by the CNN model is recognized, and it
has been underscored in the Discussion section that this performance warrants careful
interpretation. Additional validation using independent datasets in subsequent studies is
advocated to ascertain the model’s generalizability.

Future research should incorporate a comprehensive outlier analysis to enhance the
validation of the findings. Such analyses could enhance the robustness and generalizability
of the results, particularly in studies involving dynamic neural connectivity. Systemati-
cally addressing potential data deviations enhances the reliability of interpretations and
facilitates comparisons with other research in the field.
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