
Citation: Park, I.; Lee, S.-K.; Choi,

H.-C.; Ahn, M.-E.; Ryu, O.-H.; Jang,

D.; Lee, U.; Kim, Y.J. Machine

Learning Model for Mild Cognitive

Impairment Stage Based on Gait and

MRI Images. Brain Sci. 2024, 14, 480.

https://doi.org/10.3390/

brainsci14050480

Academic Editor: Daniele Corbo

Received: 13 April 2024

Revised: 28 April 2024

Accepted: 1 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Machine Learning Model for Mild Cognitive Impairment Stage
Based on Gait and MRI Images
Ingyu Park 1,†, Sang-Kyu Lee 2,† , Hui-Chul Choi 3, Moo-Eob Ahn 4, Ohk-Hyun Ryu 5 , Daehun Jang 1,
Unjoo Lee 6,* and Yeo Jin Kim 7,*

1 Department of Electronic Engineering, Hallym University, Chuncheon 24252, Republic of Korea;
qkrdlsrb3946@naver.com (I.P.); deahun123@naver.com (D.J.)

2 Department of Psychiatry, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College
of Medicine, Chuncheon 24253, Republic of Korea; skmind@hallym.ac.kr

3 Department of Neurology, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University College
of Medicine, Chuncheon 24253, Republic of Korea; dohchi@hallym.or.kr

4 Department of Emergency Medicine, Hallym University-Chuncheon Sacred Heart Hospital,
Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; mooeob@gmail.com

5 Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University-Chuncheon
Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
ohryu30@gmail.com

6 Division of Software, School of Information Science, Hallym University, Chuncheon 24252, Republic of Korea
7 Department of Neurology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
* Correspondence: ejlee@hallym.ac.kr (U.L.); yjhelena@hanmail.net (Y.J.K.)
† These authors contributed equally to this work.

Abstract: In patients with mild cognitive impairment (MCI), a lower level of cognitive function
is associated with a higher likelihood of progression to dementia. In addition, gait disturbances
and structural changes on brain MRI scans reflect cognitive levels. Therefore, we aimed to classify
MCI based on cognitive level using gait parameters and brain MRI data. Eighty patients diagnosed
with MCI from three dementia centres in Gangwon-do, Korea, were recruited for this study. We
defined MCI as a Clinical Dementia Rating global score of ≥0.5, with a memory domain score of
≥0.5. Patients were classified as early-stage or late-stage MCI based on their mini-mental status
examination (MMSE) z-scores. We trained a machine learning model using gait and MRI data
parameters. The convolutional neural network (CNN) resulted in the best classifier performance
in separating late-stage MCI from early-stage MCI; its performance was maximised when feature
patterns that included multimodal features (GAIT + white matter dataset) were used. The sin-
gle support time was the strongest predictor. Machine learning that incorporated gait and white
matter parameters achieved the highest accuracy in distinguishing between late-stage MCI and
early-stage MCI.

Keywords: machine learning; mild cognitive impairment; gait; magnetic resonance imaging; convo-
lutional neural network

1. Introduction

Mild cognitive impairment (MCI) is the prodromal stage of dementia [1]. While
previous research has primarily focused on drug treatments for dementia, current efforts
emphasise prevention and treatment before progressing to dementia, as this strategy is
known to maintain a higher quality of life and yield more significant treatment effects [2].
Consequently, research into the characteristics of MCI has become increasingly active [3].
MCI is further categorised into early and late stages, based on the extent of cognitive
impairment [4]. Patients with late-stage MCI have a higher likelihood of progressing to
dementia [5].
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It is known that MCI primarily affects cognitive function in the early stages, but as
brain atrophy progresses and cognitive impairment worsens, it also affects motor function.
Previous studies have reported motor function decline in patients with mild cognitive
impairment. Additionally, changes in gait have been noted to become more pronounced
as the degree of cognitive impairment worsens [6,7]. Previous research has shown that
gait characteristics differ according to the MCI stage [8], thereby suggesting that gait
characteristics can serve as indicators of MCI stages.

Efforts have been made to discover diagnostic biomarkers that were previously uniden-
tified through traditional means using machine learning (ML) technology [9,10]. ML
techniques for analysing brain imaging data have become prevalent in medical data analy-
sis [11]. In particular, attempts have been made to distinguish between normal cognitive
function and dementia or between normal cognitive function and MCI using ML applied
to brain imaging data [12]. Machine learning can encompass various clinical data, not
just MRI data. Previous research has utilised cognitive data, activity of daily living, and
behavioural and psychological symptoms of dementia to differentiate between MCI and
Alzheimer’s disease (AD) through machine learning [13], and diverse biomarkers and clini-
cal data have been employed to predict the prognosis of MCI through machine learning [14].
Additionally, studies using physiological data from wearable devices have shown results
in predicting cognitive function in MCI [15]. Furthermore, machine learning utilising gait
information has been employed to distinguish types within MCI [16].

Distinguishing late-stage MCI, which has a higher likelihood of progressing to demen-
tia, from early-stage MCI could also aid in predicting the prognosis of MCI and applying
interventions. To explore a novel approach for differentiating between early-stage and
late-stage MCI, we utilised machine learning with both MRI and clinical data, specifically
focusing on gait data. We aimed to determine whether MRI findings or gait data were more
effective in distinguishing between early-stage and late-stage MCI, and to identify specific
parameters within MRI and gait data that differentiate between the two stages. Therefore,
we conducted a classification of early-stage and late-stage MCI within the realm of MCI
using both gait data and MRI imaging data.

2. Materials and Methods
2.1. Participants

We prospectively recruited 80 patients with MCI at Chuncheon Sacred Heart Hospital
between October 2020 and April 2021. The inclusion criteria were as follows: (a) age
40–100 years; (b) patients with MCI who met the diagnostic criteria for minor neurocogni-
tive disorder as determined by the Diagnostic and Statistical Manual of Mental Disorders
Fifth Edition (DSM-V); (c) the absence of dementia according to physicians’ judgment; and
(d) a Clinical Dementia Rating (CDR) global score of 0.5, with a memory domain score of
≥0.5. The exclusion criteria were as follows: (a) severe illness with an anticipated fatal
outcome within 3 months; (b) a language barrier; (c) deafness or blindness; and (d) the
lack of ability to provide informed consent. The patients were classified into two groups:
(a) late-stage MCI, which showed performance on the MMSE of <1.5 standard deviations
(SDs) below the normative mean; and (b) early-stage MCI, which showed performance on
the MMSE of ≥1.5 SDs below the normative mean.

Written informed consent was obtained from each patient; the Institutional Review
Board (IRB) of Chuncheon Sacred Heart Hospital approved the study protocol (IRB number:
Chuncheon 2020-09-005; approved on 12 October 2020).

2.2. Clinical Assessment

We recorded the patients’ demographics (age, sex, and years of education) and body
composition measures (height, weight, and waist circumference). We also determined their
blood pressure and conducted specific blood tests (i.e., fasting glucose and total cholesterol).
The patients completed the depression (Short form of Geriatric Depression Scale, SGDS),
anxiety (Korean Geriatric Anxiety Inventory, K-GAI), and quality of life (Geriatric Quality
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of Life Dementia, GQOL-D) scales, as well as the Korean National Health and Nutrition
Examination Survey (KNHANES). Additional medical comorbidities were checked during
the in-clinic interviews.

2.3. Gait Assessment

The GAITRite® instrumentation (CIR systems Inc., Havertown, PA, USA) consists of
an electronic walkway of 5.6 m in length and 0.9 m in width. Each patient was instructed
to walk at a normal pace without a gait aid on the walkway. Each patient walked on
the GAITRite® pad in a single pass. The study coordinator observed the gait of each
patient without interfering with it. The present analysis focused on individual spatial
(stride and step lengths), temporal (gait speed, step count, cadence, and stance time), and
spatiotemporal (cadence) parameters.

2.4. Datasets for Machine Learning

Gait characteristics and MRI features were obtained at the patients’ baseline visits.
For each subject, the measurements extracted from the gait and MRI data were combined
as follows: (a) Gait dataset (unimodal dataset): this contained the GAITRITE-derived
measures (74 features per subject); (b) Gray matter dataset: this contained the gray matter
area among the MRI-derived matrix (476 features per subject); (c) White matter dataset: this
contained the white matter area among the MRI-derived matrix (27 features per subject);
(d) MRI dataset (multimodal dataset): this contained the entire MRI-derived matrix and was
obtained by combining (b) and (c) into a single dataset, which resulted in 503 features per
subject; (e) Gait + gray matter dataset (multimodal dataset): this was obtained by unifying
(a) and (b) into a single dataset, resulting in 550 features per subject; (f) Gait + white
matter dataset (multimodal dataset): this was obtained by combining (a) and (c) into a
single dataset, resulting in 101 features per subject; (g) Gait + MRI dataset (multimodal
dataset): this was obtained by unifying (a) and (d) into a single dataset, resulting in
577 features per subject.

2.5. MR Imaging Techniques

Standardised T2-, fluid-attenuated inversion recovery (FLAIR)-, and three-dimensional
(3D) T1-weighted images were acquired from all eligible participants at the Chuncheon
Sacred Heart Hospital using the same 3.0T MRI scanner (Siemens Skyra). We acquired 3D
T1-weighted structural brain images using a Magnetisation Prepared Rapid Acquisition
Gradient Echo (MPRAGE) sequence with the following parameters: sagittal slice thickness
of 1.0 mm, no gap, repetition time (TR) of 2300.0 msec, echo time (TE) of 2.98 msec, flip
angle of 9◦, inversion time (TI) of 900 msec, and imaging matrix size of 256 × 240 × 176.
The following parameters were used for the FLAIR images: (a) axial slice thickness of
2 mm; (b) no gap; (c) TR of 11,000 msec; (d) TE of 125 msec; (e) flip angle of 90◦; and
(f) matrix size of 512 × 512 pixels. All axial sections were acquired parallel to the anterior
and posterior commissures.

2.6. Gray Matter Measurements

For this study, 3D Slicer (http://www.slicer.org, accessed on 28 April 2024; Surgical
Planning Laboratory, Harvard University, Boston, MA, USA, version 4.11) and FreeSurfer
(http://www.freesurfer.net, accessed on 28 April 2024; MIT Health Sciences & Technology,
and Massachusetts General Hospital, USA, version 7.1.1) software were used to measure
the total volume, mean and SD of thickness, mean curvature, Gaussian curvature, folding
index, and curvature index of the gray matter for each subcortical region from the 3D T1
image data in Digital Imaging and Communications in Medicine (DICOM) format. The
DICOM files were converted into Neuroimaging Informatics Technology Initiative (NifTI)
format using 3D Slicer and then reconstructed into a two-dimensional (2D) cortical surface
using the recon-all function of FreeSurfer [17,18]. The reconstruction involved several steps
of the recon-all function, including motion correction, skull stripping, normalisation and
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transformation, white and gray matter segmentation, averaging and smoothing, parcella-
tion of subcortical regions, and measurement of parcellation statistics. The results of the
parcellation statistics provided the values of the gray matter for each of the 34 subcortical
regions per hemisphere.

2.7. White Matter Hyperintensity Measurements

Brain Intensity AbNormality Classification Algorithm (BIANCA) software (BIANCA,
FSL 6.0.5) in FSL (FMRIB Software Library) was used for the segmentation and quan-
tification of white matter hyperintensities (WMHs) in MRI images for each subject. The
segmentation and quantification of WMHs include pipelined processing steps using tools
in FSL. FLAIR MRI images were used as the standard template with six degrees of free-
dom. Then, a WMH classification model was generated using the BIANCA algorithm, in
which the datasets of the MICCAI WMH segmentation challenge (http://wmh.isi.uu.nl/,
accessed on 28 April 2024) were used as training sets and the following non-default options
were used in the training: the location of training points = no border and the number of
training points = 2000 lesion points and 10,000 non-lesion points.

The features of WMHs were estimated using the Nilearn library, a Python package
(python 3.8.3) that facilitates the use of advanced machine learning techniques to analyse
data acquired by MRI. A total of 27 WMH features were estimated; these were total WMH
volume, total periventricular WMH, total deep WMH, total WMH volumes of the right
and left four lobes, periventricular WMH volumes of the right and left four lobes, and deep
WMH volumes of the right and left four lobes. Periventricular WMH volume was defined
as the regional WMH volume within 10 mm of the edge of the ventricle in each axial slice;
deep WMH volume was defined as the regional WMH volume outside 10 mm of the edge
of the ventricle in each axial slice.

2.8. Deep Learning Analysis

Three unsupervised ML algorithms for feature reduction were trained using features
from each of the seven datasets: independent component analysis (ICA), principal com-
ponent analysis (PCA), and random projection (RP). We considered 20, 40, and 60 as the
numbers of reduced features. For each of the seven datasets, three supervised ML algo-
rithms for classification were trained with reduced features corresponding to each number
(platform): support vector machine (SVM), random forest (RF), and convolutional neural
network (CNN). To evaluate the performance of the model architectures for the predictive
classification and diagnosis of MCIs, SVM, RF, and CNN were constructed using various
numbers of features reduced from three unsupervised ML algorithms. The CNN archi-
tecture used for reducing feature dimensions presented in Supplementary Table S1. The
data were divided into training (80%) and test (20%) datasets. The training performance
of the different ML models was evaluated using a 10-fold cross-validation; this process
was repeated 10 times. Hyperparameter tuning was automatically performed by testing
60 different values of each hyperparameter.

A total of 27 combinations of MLs (9 combinations of 1 of the 3 MLs for classification
combined with 1 of the 3 MLs for feature reduction) for each of the 3 different numbers
(20, 40, and 60) of reduced features were tested, optimised using 60 hyperparameter
variations, and evaluated using 10-fold cross-validation. In the testing phase, the prediction
performance of each combination of ML models was evaluated using parameters, including
the area under the receiver operating characteristic curve (AUC), accuracy (ACC), recall,
precision, and F1 score. The entire process was repeated for the seven datasets: Gait,
Gray matter, White matter, MRI, Gait + gray matter, Gait + white matter, and Gait + MRI.
Performances of Gait dataset presented in Supplementary Table S2. Performances of MRI
dataset presented in Supplementary Table S3. And performances of Gait + MRI dataset
presented in Supplementary Table S4. The computing machine is used for timestamping
runs on Ubuntu 18.04 and is equipped with an Intel Core i9-9820X CPU (10 cores, Intel®
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Xeon® Silver 4210, @2.20 Ghz, 128 GB RAM), 64 GB of memory, and an NVIDIA GTX 1080
Ti GPU (NVIDIA GeForce RTX 3090 24 GB).

2.9. Statistical Analysis

Baseline characteristics based on the data are presented as mean and standard devia-
tion (SD) for continuous variables and percentages for categorical variables. Differences
between the early-stage MCI and late-stage MCI groups were confirmed using Student’s
t-test for continuous variables and the chi-square test for categorical variables. Statistical
analyses were conducted using the SPSS version 27 software (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Baseline Characteristics

The detailed demographic and clinical characteristics of the participants are presented
in Table 1. The early-stage MCI group exhibited a higher proportion of females compared
to the late-stage MCI group. Years of education were shorter in the early-stage MCI group
than in the late-stage MCI group. Additionally, the early-stage MCI group had a higher
number of comorbidities than the late-stage MCI group. Body mass index (BMI) was higher
in the early-stage MCI group than in the late-stage MCI group.

Table 1. Demographic and clinical characteristics.

Total
(n = 80)

Early-Stage MCI
(n = 53)

Late-Stage MCI
(n = 27) p Value

Mean age 74.6 ± 5.74 74.6 ± 5.33 74.6 ± 6.58 0.950
Gender, female number (%) 58 (72.5) 43 (81.1) 15 (55.6) 0.020

Years of education 6.88 ± 3.980 5.94 ± 4.069 8.72 ± 3.114 0.003
Number of comorbidities 3.7 ± 1.70 3.9 ± 1.61 3.1 ± 1.77 0.047

Depression scale 4.9 ± 4.09 4.9 ± 4.24 5.1 ± 3.83 0.833
Anxiety scale 6.8 ± 6.52 7.1 ± 6.87 6.3 ± 5.86 0.600

QOL scale 34.4 ± 8.67 33.3 ± 8.39 36.5 ± 9.00 0.124
Height 156.1 ± 8.11 155.4 ± 7.98 157.7 ± 8.30 0.232
Weight 61.0 ± 10.92 61.9 ± 11.47 59.3 ± 9.72 0.324

BMI, mean (SD) 25.0 ± 3.70 25.6 ± 3.84 23.8 ± 3.17 0.045
Waist circumference (cm) 87.8 ± 10.12 87.6 ± 10.39 88.1 ± 9.75 0.825

Systolic BP (mmHg) 128.6 ± 18.27 130.0 ± 18.44 126.0 ± 17.97 0.349
Diastolic BP (mmHg) 77.0 ± 9.82 77.4 ± 9.41 76.1 ± 10.73 0.606

Fasting glucose (mg/dL) 108.8 ± 26.28 111.3 ± 28.44 104.0 ± 21.08 0.240
Total cholesterol (mg/dL) 162.4 ± 32.54 34.0 ± 4.67 30.1 ± 5.79 0.913

The data are mean ± SD unless otherwise indicated a Number (%). Abbreviations: MCI, mild cognitive impair-
ment; QOL, quality of life; BMI, body mass index; BP, blood pressure; SD, standard deviation.

3.2. Classification Results

The machine learning classification of the participants is presented in Table 2. Three
machine learning algorithms (SVM, RF, and CNN) were employed to identify the optimal
feature pattern for distinguishing late-stage MCI from early-stage MCI. In the Gait dataset,
the CNN demonstrated superior classification performance, achieving an AUC of 98%
and an ACC of 99%. For the MRI dataset, the CNN also exhibited the best classification
performance, with an AUC of 94% and an ACC of 96%. In the Gait + white matter dataset,
the CNN displayed the highest classification performance, yielding an AUC of 96% and an
ACC of 97%.
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Table 2. Machine learning classification of patients with MCI.

Group Algorithm for
Classification

Algorithm
for Feature
Reduction

No. of
Features
Reduced

AUC ACC Recall Precision F1

Gait CNN RP 40 0.98 ± 0.04 0.99 ± 0.04 0.99 ± 0.03 0.99 ± 0.03 0.99 ± 0.04
Gray matter CNN PCA 20 0.92 ± 0.08 0.94 ± 0.07 0.94 ± 0.10 0.97 ± 0.05 0.95 ± 0.06
White matter CNN PCA 20 0.83 ± 0.14 0.86 ± 0.13 0.88 ± 0.11 0.96 ± 0.07 0.89 ± 0.11

MRI CNN PCA 20 0.94 ± 0.10 0.96 ± 0.08 0.95 ± 0.09 0.99 ± 0.03 0.97 ± 0.05
Gait + gray matter CNN PCA 40 0.95 ± 0.08 0.96 ± 0.08 0.97 ± 0.06 0.96 ± 0.08 0.96 ± 0.06
Gait + white matter CNN RP 60 0.96 ± 0.07 0.97 ± 0.06 0.97 ± 0.06 0.98 ± 0.04 0.98 ± 0.05

Gait + MRI CNN RP 60 0.94 ± 0.10 0.95 ± 0.10 0.95 ± 0.08 0.98 ± 0.04 0.96 ± 0.07

Abbreviations: AUC, area under the receiver operating characteristic curve; ACC, accuracy.

3.3. Top 10 Features of Discriminating between Late- and Early-Stage MCI

The top 10 features of discriminating late-stage MCI from early-stage MCI are pre-
sented in Table 3. Three different machine learning algorithms (ICA, PCA, and RP) were
utilised for feature reduction. In the Gait dataset, the SD of the stride velocity of the right
leg was the strongest predictor. Additionally, the stride length SD of the left leg and stance
percentage of the cycle of the right leg were among the top predictors. The next most
significant predictors were the swing time SD of the right leg, step time differential of the
left leg, and stance time of the left leg. For the MRI dataset, the left fusiform thickness was
the strongest predictor. The right inferior parietal and right supramarginal thicknesses were
also among the top predictors. Following this, predictors such as right middle temporal,
left supramarginal, right fusiform, and left inferior parietal thicknesses were identified. The
single support time was the strongest predictor of classification using the Gait + white mat-
ter dataset. The total WMH volume of the right parietal area and single support percentage
of the right leg cycle were among the top predictors. The next top predictors included the
cycle time of the right leg and SD of the step length of the right leg.

Table 3. Top 10 features associated with late-stage MCI (PCA component = 40).

GAIT Data MRI Data GAIT + WMH Data

Stride Velocity SD R ThickAvg_L.fusiform Single Support Time (sec) L
Stride Length SD L ThickAvg_R.inferiorparietal Single Support Time (sec) R
Stance % of Cycle R ThickAvg_R.supramarginal R parietal total WMHs

Swing Time SD R ThickAvg_R.middletemporal Single Support % Cycle R
Step Time Differential ThickAvg_L.supramarginal Cycle Time (sec) R

Stance Time (sec) L ThickAvg_R.fusiform Step Length SD R
Step Time (sec) L ThickAvg_L.inferiorparietal R parietal deep WMHs

Double Support Unload Time L ThickAvg_L.precentral Support Base SD R
Stride Length SD R ThickAvg_R.precentral Heel Off/On SD R

Double Support Time SD L ThickAvg_L.lateralorbitofrontal Toe In/Out R

Abbreviations: PCA, principal component analysis; SD, standard deviation; R, right; L, left; ThickAvg, mean
thickness of gray matter.

Utilising the Gait dataset for machine learning with the CNN algorithm, the best
performance was observed in distinguishing between early-stage and late-stage MCI.
Among the top 10 features that distinguish late-stage MCI from early-stage MCI are stride
velocity standard deviation of the right leg, stride length standard deviation of the left leg,
stance percentage of cycle of the right leg, swing time standard deviation of the right leg,
step time differential, stance time of the left leg, step time of the left leg, double support
unload time of the left leg, stride length standard deviation of the right leg, and double
support time standard deviation of the left leg.

4. Discussion

In our research, among several datasets, the model with the highest accuracy included
only the gait datasets. Gait characteristics are closely related to cognitive impairment. In
previous studies, patients with MCI exhibited a greater reduction in motor function than
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those without cognitive impairment [19]. Moreover, these results suggested that motor de-
cline can manifest before the onset of MCI [20]. Decreased memory and executive functions
are associated with gait impairment [21]. Therefore, gait disturbance can potentially serve
as a more accurate indicator for differentiating the levels of cognitive impairment within
MCI compared to brain MRI, which reflects structural changes.

Although the accuracy was slightly lower than that of the Gait dataset, the MRI
dataset also exhibited a high accuracy of 96% in distinguishing early- from late-stage MCI.
However, when distinguishing between gray and white matter, the accuracy for gray matter
was notably high at 94%, whereas the accuracy for white matter dropped to 86%. This
study exhibited better performance compared to previous research in the field. Table 4
demonstrates the performance of machine learning models utilised in patients with mild
cognitive impairment in prior studies.

Table 4. Previous studies using machine learning model in patients with mild cognitive impairment.

Reference Algorithm Feature Selection Objective Participants Outcomes

Lin et al. [7] RF 29 gene
biomarkers

To predict stable
MCI patients

195 normal, 271
MCI, and 112 AD

AUC of cross-validation
and test dataset was
0.841 and 0.775,
respectively

Lu et al. [11] XGboost, Bayers,
SVM, and LR

ADL, BPSD,
and cognitive
function

Differentiation of
AD from MCI 458 AD and MCI

XGBoost with Precision
was 0.82, Bayes with
Precision was 0.75, SVM
with Precision was 0.78,
and LR with Precision
was 0.81

Adelson et al. [12] XGboost, KNN,
MLP, and LR

Demographics,
family medical
history,
comorbidities, and
neuropsychiatric
assessments

Identification of
risk of
progressing from
MCI to AD

493 MCI

XGBoost with AUC at
12 months was 0.857, at
24 months, it was 0.980,
and at 48 months, it
was 0.975

Rykov et al. [13] ElasticNet, RF,
and XGBoost

106 digital
physiological
features

To predict
cognitive
function

30 MCI

RF with Pearson
r was 0.61 in the
individual-based
cross-validation,
whereas RF with
Pearson r was 0.77 in the
interval-based
cross-validation

Chen et al. [14] SVM

Gait analysis
system to perform
walk, time up and
go, and jump test

To predict
different types of
MCI

34 PD MCI;
47 non-PD MCI

Accuracy was 91.67%
and AUC was 0.9143
with polynomial
kernel function

Abbreviations: RF, random forest; XGBoost, extreme gradient boosting; SVM, support vector machine; LR, logistic
regression; KNN, k-nearest neighbour; MLP, multi-layer perceptron; ElasticNet, elastic net regression; ADL, activ-
ity of daily living; BPSD, behavioural and psychological symptoms of dementia; MCI, mild cognitive impairment;
AD, Alzheimer’s disease; PD, Parkinson’s disease; AUC, area under the receiver operating characteristic curve.

Cognitive function is partly a consequence of neuronal loss in the gray matter, thus
making its volume highly relevant to cognitive function [22]. AD is characterised by cog-
nitive impairment and a loss of gray matter volume [23]; therefore, it is expected that the
pattern of gray matter loss will differ depending on the cognitive function stage of MCI [24].
White matter primarily consists of fibres through which neurones transmit signals [25];
this may explain why changes in the white matter are less relevant to cognitive function
than changes in the gray matter. Both white and gray matter changes contributed to distin-
guishing between elderly individuals with normal cognition and those with MCI [26,27].
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However, when it comes to reflecting the degree of cognitive function in MCI, gray matter
atrophy was found to be a more significant factor [28].

Interestingly, despite our results, using the Gait + white matter datasets instead
of the Gait + gray matter datasets resulted in higher accuracy for machine learning in
distinguishing between early- and late-stage MCI. When gait parameters were included in
the analysis, it was observed that white matter contributed to improved accuracy, whereas
gray matter did not provide any assistance and further decreased accuracy. This is contrary
to the results obtained using only MRI data. While the classification accuracy decreased
when using only white matter information, it suddenly increased when gait data from a
clinical dataset were included. This suggests that although white matter changes may not
be directly correlated with cognitive impairment, they can serve as indicators of the degree
of cognitive impairment. In previous studies, there was no difference in the overall white
matter volume change between early- and late-stage MCI; however, there were differences
in the specific regions of white matter change [29]. Since white matter changes do not
directly cause functional abnormalities similar to gray matter changes, [30] using only the
structural information of white matter changes makes it difficult to distinguish early- from
late-stage MCI. However, our study indicates that when combined with data reflecting
functions such as gait, the characteristics of white matter changes can be used as a better
indicator to differentiate between the two forms.

Gait variability is recognised as a reliable indicator of cognitive function, which could
explain why SD emerged as the top feature associated with late-stage MCI used in machine
learning with gait data in our study. Reports have suggested that gait variability is a
better predictor of cognitive decline in healthy elderly individuals and in patients with
MCI [31,32]. Previous research has also demonstrated associations between double support
phase variability and executive function, processing speed, and visuospatial ability, as
well as a correlation between swing time standard deviation and global cognitive function,
memory, attention, language, and visuospatial function [33]. These findings from prior
studies may provide a basis for the selection of stride velocity SD or stride length SD as
top features for determining the level of cognitive function within MCI in our research.
Furthermore, in our study, the top feature distinguishing the Gait dataset corresponded
mainly to the temporal parameters [33]. In a previous study, gait parameters such as
step length and stride length, which are spatial parameters, distinguished the elderly
with dementia and MCI from healthy individuals [6]. However, in elderly individuals
with no cognitive impairment, executive function and processing speed had a stronger
association with temporal parameters than with spatial parameters [34]. Furthermore,
temporal parameters were better at distinguishing between non-MCI elderly groups and
MCI groups compared to spatial parameters in previous research [32]. Considering that
temporal parameters were predominantly included as the top features in our research
results, it may be speculated that temporal parameters may better reflect the degree of
cognitive impairment in MCI.

The top features used in machine learning with MRI data were consistent with the
top 10 features used in machine learning with gray matter data alone. This suggested
that in distinguishing the degree of cognitive impairment, gray matter characteristics were
more relevant than gait characteristics. In particular, the fact that gray matter thickness,
among other gray matter parameters, emerged as a top feature indicated that the degree
of cognitive impairment in MCI was most significantly reflected by gray matter thickness.
Among the top 10 features, the thicknesses of regions related to the temporal and parietal
lobes, such as the fusiform gyrus, inferior parietal lobule, and supramarginal gyrus, were
predominantly included. The fusiform gyrus plays a significant role in visual cognition;
visual cognitive deficits are commonly reported in patients with AD [35]. Previous func-
tional MRI studies have reported altered functional connectivity of the fusiform gyrus
in patients with MCI as compared to subjects without cognitive impairment [35]. Given
that the fusiform gyrus connects various regions in the occipital and temporal lobes and
exhibits active connections with multiple areas, it may be one of the first areas to reflect
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cognitive function within MCI through its cortical thickness. The inferior parietal lobule,
which consists of the supramarginal gyrus and angular gyrus, is a specific neuroimaging
marker for predicting the conversion from MCI to AD [36]. Among the regions within the
inferior parietal lobule, the supramarginal gyrus plays a crucial role in short-term memory
storage and rehearsal [37]. It has also been reported in previous studies as an area that
distinguishes MCI from normal cognitive function [38].

The top 10 features used in machine learning with the Gait + WMH dataset were
single support time and white matter hyperintensity in the right parietal area. A previous
study reported that white matter changes in the frontal area differed between patients
with early-stage MCI and those with late-stage MCI [29]. However, in our study, using
machine learning to distinguish between early-stage MCI and late-stage MCI, only white
matter changes in the parietal area were included as distinguishing features. Frontal and
parietal WMHs were associated with frontal glucose metabolism [39]. Therefore, it is likely
that parietal WMHs also play a role in discriminating between the MCI cognitive levels.
Moreover, executive function appeared to be influenced more by white matter changes
and frontal glucose metabolism than by cortical atrophy [39]. Executive functions are also
associated with gait disturbances [40]. Therefore, the improved classification of early- and
late-stage MCI, when the data include both gait parameters and white matter changes, may
be attributed to the differences in their respective executive function.

Limitations

First, we did not classify the patients with mild amnestic cognitive impairment. There-
fore, we cannot exclude the possibility that participants with a degenerative pathology
related to parkinsonism or vascular damage may have been present. As our study targeted
a heterogeneous population of patients with MCI, caution is required when interpret-
ing the results. Secondly, musculoskeletal problems affecting gait disturbances were not
considered. Third, because this was a cross-sectional study, it was difficult to establish
causal relationships.

5. Conclusions

In this study, we classified patients with MCI into early- and late-stage MCI groups
using gait characteristics and MRI features. Importantly, we discovered that gait charac-
teristics were sufficiently accurate to distinguish between early-stage MCI and late-stage
MCI. This implies that gait features can serve as markers for detecting the progression of
cognitive impairment even within the MCI population.
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