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Abstract: The morphology of the brain undergoes changes throughout the aging process, and accu-
rately predicting a person’s brain age and gender using brain morphology features can aid in de-
tecting atypical brain pa erns. Neuroimaging-based estimation of brain age is commonly used to 
assess an individual’s brain health relative to a typical aging trajectory, while accurately classifying 
gender from neuroimaging data offers valuable insights into the inherent neurological differences 
between males and females. In this study, we aimed to compare the efficacy of classical machine 
learning models with that of a quantum machine learning method called a variational quantum 
circuit in estimating brain age and predicting gender based on structural magnetic resonance imag-
ing data. We evaluated six classical machine learning models alongside a quantum machine learning 
model using both combined and sub-datasets, which included data from both in-house collections 
and public sources. The total number of participants was 1157, ranging from ages 14 to 89, with a 
gender distribution of 607 males and 550 females. Performance evaluation was conducted within 
each dataset using training and testing sets. The variational quantum circuit model generally 
demonstrated superior performance in estimating brain age and gender classification compared to 
classical machine learning algorithms when using the combined dataset. Additionally, in bench-
mark sub-datasets, our approach exhibited be er performance compared to previous studies that 
utilized the same dataset for brain age prediction. Thus, our results suggest that variational quan-
tum algorithms demonstrate comparable effectiveness to classical machine learning algorithms for 
both brain age and gender prediction, potentially offering reduced error and improved accuracy. 
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structural magnetic resonance imaging; machine learning; quantum machine learning;  
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1. Introduction 
Neuroimaging-derived brain age serves as a valuable biomarker for monitoring the 

progression of brain-related conditions and aging [1]. This metric, often termed “brain 
age,” is calculated using machine learning algorithms applied to magnetic resonance im-
aging (MRI) data to predict an individual’s chronological age. The disparity between the 
predicted brain age and the actual chronological age reflects deviations from typical age 
trajectories and is utilized to assess brain health [1]. Elevated brain age relative to chron-
ological age has been correlated with diminished cognitive abilities. Moreover, mental 
health characteristics, such as Alzheimer’s disease [2], mild cognitive impairment [2], focal 
epilepsy [3], multiple sclerosis [4], traumatic brain injury [5], schizophrenia [6,7], bipolar 
disorder [8], major depressive disorder [9], etc., have been associated with an increased 
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brain age difference. These findings underscore the significance of the brain age difference 
as a biomarker for assessing brain health. The number of publications related to these 
studies is increasing every year [1]. 

Gender classification based on neuroimaging data has emerged as a crucial area of 
research with significant implications across various domains, including neuroscience, 
medicine, and psychology [10–12]. The ability to accurately classify gender from neuroim-
aging data offers valuable insights into the inherent neurological differences between 
males and females [10–12]. For instance, Flint et al. [10] demonstrated an increased mis-
classification in transgender women when employing structural MRI data for biological 
sex classification. Understanding these characteristics is essential for unraveling the com-
plexities of brain structure, function, and development, as well as for addressing gender-
related disparities in health and cognition. Moreover, gender classification from neuroim-
aging data contributes to the elucidation of sex-specific brain disorders and conditions. 
This capability enables researchers and clinicians to discern gender-specific pa erns, 
thereby facilitating early detection, intervention, and treatment of neurological disorders 
that may manifest differently between males and females. 

Numerous machine learning studies have sought to predict both brain age and gen-
der, primarily utilizing structural MRI data [1–12]. Structural MRI scans provide a pleth-
ora of brain morphological features, making them a preferred choice for investigating age-
related brain changes across various disorders and conditions [1]. The literature encom-
passes a diverse array of methodological approaches, ranging from classical machine 
learning methodologies [13–16] to those employing deep learning techniques [17–23]. 
Nevertheless, there seems to be a noticeable lack of research employing quantum machine 
learning for brain age and gender prediction. 

Quantum machine learning has emerged as a promising tool to enhance classical ma-
chine learning techniques [24]. Research indicates that both quantum and quantum-in-
spired computing models have the potential to optimize the training process of conven-
tional models, resulting in improved prediction accuracy for target functions with re-
duced iteration requirements [25,26]. Several studies have highlighted the practical ad-
vantages of quantum machine learning algorithms, demonstrating their superior perfor-
mance over classical counterparts in predicting complex medical outcomes [25] and image 
restoration [26]. Among various quantum machine learning methods, parameterized 
quantum circuits (PQCs), variational quantum circuits (VQCs), or quantum neural net-
works (QNNs) stand out as particularly promising. For instance, researchers have utilized 
hybrid quantum neural networks to discover drug molecules [25] and recover contami-
nated ghost images [26], showcasing superior performance compared to classical counter-
parts with fewer iterations and higher accuracy, especially when dealing with limited da-
tasets. This suggests their potential for addressing pharmacological and medical chal-
lenges, such as predicting patient responses to different medications or evaluating patient 
prognosis and diagnosis. 

This study investigates the application of VQC in predicting brain age and gender 
using brain morphological features derived from structural MRI data. To the best of our 
knowledge, these applications represent a novel endeavor. We aim to assess the perfor-
mance of VQC in comparison with classical machine-learning algorithms. The goal of this 
study is to explore the potential of quantum machine learning models in predicting brain 
age and gender based on brain morphometric data, providing invaluable insights into 
age-related disorders. 

2. Materials and Methods 
2.1. Description of Dataset 

In this study, we utilized three primary datasets: the IXI dataset (n = 563, age range 
18–88 years, h ps://brain-development.org [14] (accessed on 27 April 2023)), the CAU da-
taset (n = 156, age range 55–83 years [15]), and an in-house collected dataset (n = 438, age 
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range 14–89 years [27–29]). All participants included in our analysis underwent careful 
screening following local study protocols to confirm their status as healthy individuals 
without a history of neurological, psychiatric, or major medical conditions. T1-weighted 
MRI scans were acquired using either 1.5T or 3T scanners. Detailed information regarding 
the acquisition protocols for each dataset can be found in the corresponding references 
[14,15,27–29]. Figure 1 and Table 1 provide an overview of the age and gender distribu-
tions across our datasets. For each distribution of datasets, the details are provided in 
Supplementary Figure S1 and Tables S1–S3. Ethical approvals and informed consents 
were locally obtained for each dataset to ensure compliance with relevant research ethics 
guidelines. 

 
Figure 1. Age and sex distribution across datasets: (A) the datasets exhibit bimodal-like age distri-
bution (e.g., young and elderly). (B) Sex distribution across the datasets reveals a balanced repre-
sentation of male and female samples. 

Table 1. Demographics of subjects included in this study. 

Age Range 
No. of Subjects 

Male Female Total 
14–19 96 27 123 
20–29 159 120 279 
30–39 86 54 140 
40–49 59 60 119 
50–59 69 83 152 
60–69 95 134 229 
70–79 36 66 102 
80–89 7 6 13 
Total 607 550 1157 

2.2. Image Processing and Feature Extraction 
The structural brain T1-weighted MRI scans of all subjects were processed using the 

FastSurfer v2.1.0 [30], except for the CAU dataset, which had been processed using Free-
Surfer [31] run on Ubuntu Linux operating system version 22.04 LTS and was provided in 
a spreadsheet format, not as raw images. FastSurfer, an alternative version of FreeSurfer, 
employs deep learning techniques for structural MRI processing. The FastSurfer brain 
segmentations were carried out on Google Colab using the ‘Tutorial_FastSurf-
erCNN_QuickSeg.ipynb’ notebook. In brief, cortical and subcortical segmentation for 
each subject was conducted on their T1-weighted image through a series of steps, includ-
ing skull stripping, segmentation of cortical gray and white ma er, and identification of 
subcortical structures. Further technical details about the pipeline can be found in refer-
ence [30]. Notably, this method is highly efficient, taking only a few minutes per subject. 
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This study utilized estimated subcortical and cortical volume parcellation data. 
Based on previous studies [14,15], we selected 34 segmentation features from the available 
95 labels (refer to Table 2), and later reduced these to 17 features using principal compo-
nent analysis (PCA) decomposition for age and gender prediction models. This reduction 
was partly necessitated by the limited qubits available for quantum machine learning al-
gorithms. 

Table 2. The 34 selected features from MRI brain volume segmentation data. 

No. Feature No. Feature 
1 Left white ma er 18 Right white ma er 
2 Left lateral ventricle 19 Right lateral ventricle 
3 Left inferior lateral ventricle 20 Right inferior lateral ventricle 
4 Left cerebellum white ma er 21 Right cerebellum white ma er 
5 Left cerebellum cortex 22 Right cerebellum cortex 
6 Left thalamus proper 23 Right thalamus proper 
7 Left caudate 24 Right caudate 
8 Left putamen 25 Right putamen 
9 Left pallidum 26 Right pallidum 
10 Left hippocampus 27 Right hippocampus 
11 Left amygdala 28 Right amygdala 
12 Left accumbens area 29 Right accumbens area 
13 Left ventralDC 30 Right ventralDC 
14 Left choroid plexus 31 Right choroid plexus 
15 Left cerebral cortex 32 Right cerebral cortex 
16 Cerebrospinal fluid 33 Brain stem 
17 Third ventricle 34 Fourth ventricle 

2.3. Machine Learning Algorithms 
Brain age and gender prediction were performed using the scikit-learn library [32] 

for classical machine learning algorithms and the tensorcircuit package [33] for quantum 
machine learning algorithms. The tensorcircuit package was selected for its efficiency and 
ability to utilize a relatively large number of qubits in our experimental environment, al-
lowing us to employ up to 17 qubits in our case. All machine learning algorithms were 
executed on Google Colab.  

For brain age prediction models, we employed the following six classical machine 
learning models in scikit-learn: linear regression (LR), support vector regression (SVR) 
with parameters {‘svr__C’: 15.0, ‘svr__cache_size’: 200, ‘svr_coef0’: 0.0, ‘svr__coef0’: 0.0, 
‘svr__degree’: 3, ‘svr__epsilon’: 0.2, ‘svr__gamma’: ‘scale’, ‘svr_kernel’: ‘rbf’, 
‘svr__max_iter’: -1, ‘svr__shrinking’: True, ‘svr__tol’: 0.001, ‘svr_verbose’: False}, extreme 
gradient boosting (XGBoost) with parameters {‘alpha’: 0.9, ‘çcp_alpha’: 0.0, ‘criterion’: 
‘friedman_mse’, ‘init’: None, ‘learning_rate’: 0.1, ‘loss’: ‘squared_error’, ‘max_depth’: 3, 
‘max_features’: None, ‘max_leaf_nodes’: None, ‘min_impurity_decrease’: 0.0, ‘min_sam-
ples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_fraction_leaf’: 0.0, ‘n_estimators’: 100, 
‘n_iter_no_change’: None, ‘random_state’: None, ‘subsample’: 1.0, ‘tol’: 0.0001, ‘valida-
tion_fraction’: 0.1, ‘verbose’: 0, ‘warm_start;: False}, random forest (RF) with parameters 
{‘bootstrap’: True, ‘ccp_alpha’: 0.0, ‘criterian’: ‘squared_error’, ‘max_depth’: None, 
‘max_features’: 1.0, ‘max_leaf_nodes’: None, ‘max_samples’: None, ‘min_impurity_de-
crease’: 0.0, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_fraction_leaf’: 0.0, 
‘n_estimators’: 100, ‘n_jobs’: None, ‘oob_score’: False, ‘random_state’: None, ‘verbose’: 0, 
‘warm_start’: False}, Bayesian ridge (BR) with parameters {‘alpha_1’: 1 × 10−6, ‘alpha_2’: 1 
× 10−6, ‘alpha_init’: None, ‘compute_score’: False, ‘copy_X’: True, ‘fit_intercept’: True, 
‘lambda_1’: 1e-06, ‘lambda_2’: 1 × 10−6, ‘lambda_init’: None, ‘n_iter’: 300, ‘tol’: 0.001, ‘ver-
bose’: False}, and multi-layer perceptron (MLP) regression with parameters {‘activation’: 
‘relu’, ‘alpha’: 0.0001, ‘batch_size’: 10, ‘beta_1’: 0.9, ‘beta_2’: 0.999, ‘early_stopping’: True, 
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‘epsilon’: 1e-08, ‘hidden_layer_sizes’: (17, 17, 17, 17, 17, 17, 17, 17, 17, 17), ‘learning_rate’: 
‘constant’, ‘learning_rate_init’: 0.01, ‘max_fun’: 15000, ‘max_iter’: 1000, ‘momentum’: 0.9, 
‘n_iter_no_change’: 10, ‘nesterouvs_momentum’: True, ‘power_t’: 0.5, ‘random_state’: 
None, ‘shuffle’: True, ‘solver’: ‘adam’, ‘tol’: 0.0001, ‘validation_fraction’: 0.1, ‘verbose’: 
True, ‘warm_start’: False}. For gender classification, we utilized logistic regression (LR) 
with parameters {‘C’: 1.0, ‘class_weight’: None, ‘dual’: False, ‘fit_intercept’: True, ‘inter-
cept_scaling’: 1, ‘l1_ratio’: None, ‘max_iter’: 100, ‘multi_class’: ‘auto’, ‘n_jobs’: None, ‘pen-
alty’: ‘l2’, ‘random_state’: None, ‘solver’: ‘lbfgs’, ‘tol’: 0.0001, ‘verbose’: 0, ‘warm_start’: 
False}, XGBoost, support vector classification (SVC) with parameters {‘C’: 1.0, ‘break_ties’: 
False, ‘cache_size’: 200, ‘class_weight’: None, ‘coef0’: 0.0, ‘decision_function_shape’: ‘ovr’, 
‘degree’: 3, ‘gamma’: ‘scale’, ‘kernel’: ‘rbf’, ‘max_iter’: −1, ‘probability’: False, ‘ran-
dom_state’: None, ‘shrinking’: True, ‘tol’: 0.001, ‘verbose’: False}, RF with parameters 
{‘bootstrap’: True, ‘oop_alpha’: 0.0, ‘class_weight’: None, ‘criterion’: ‘gini’, ‘max_depth’: 
None, ‘max_features’: ‘sqrt’, ‘max_leaf_nodes’: None, ‘max_samples’: None, ‘min_impu-
rity_decrease’: 0.0, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_frac-
tion_leaf’: 0.0, ‘n_estimators’: 100, ‘n_jobs’: None, ‘oob_score’: False, ‘random_state’: 
None, ‘verbose’: 0, ‘warm_start’: False}, MLP with the same parameters as in brain age 
estimation, and k-nearest neighbor (KNN) with parameters {‘algorithm’: ‘auto’, 
‘leaf_size’: 30, ‘metric’: ‘minkowski’, ‘metric_params’: None, ‘n_jobs’: None, ‘n_neigh-
bors’: 5, ‘p’: 2, ‘weights’: ‘uniform’}.  

In quantum machine learning models, we used variational quantum circuits for age 
prediction and gender classification tasks. Our VQC model was implemented based on 
the ‘Quantum Machine Learning for Classification Tasks’ tutorial notebook [33]. We 
adapted the Ising ZZ coupling gates to CNOT gates (Figure 2). The quantum logic gates 
used in this study are detailed in Table 3. The quantum circuit in Figure 2 was created 
using the Pennylane framework [34]. 

 
Figure 2. Variational quantum circuit (VQC) architecture for brain age regression and gender clas-
sification. T1-weighted structural MRI data undergo segmentation and feature selection, resulting 
in 34 features. These features are normalized and reduced to 17 elements using principal component 
analysis (PCA). The 17 features are then fed into the VQC, where trainable operations (Rx, Ry, Rz) 
and CNOT operations are applied across 10 blocks. After measurements, the outputs are combined 
into a single layer for brain age prediction or gender classification. Note that the blue arrows repre-
sent the direction of forward processing, and the blue circles denote individual features. 
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Table 3. Quantum logic gates used in this study. 

Name Purpose Matrix Symbol 

Parameterized  
X Rotation 

Rotates the qubit by 𝜃  
around the x-axis 

cos (
𝜃

2
) −𝑖𝑠𝑖𝑛(

𝜃

2
)

−𝑖𝑠𝑖𝑛(
𝜃

2
) cos (

𝜃

2
)

 
 

Parameterized  
Y Rotation 

Rotates the qubit by 𝜃  
around the y-axis 

cos (
𝜃

2
) −sin (

𝜃

2
)

sin (
𝜃

2
) cos (

𝜃

2
)

 
 

Parameterized  
Z Rotation 

Rotates the qubit by 𝜃  
around the z-axis 

exp (−
𝑖𝜃

2
) 0

0 exp (
𝑖𝜃

2
)

 
 

Controlled NOT  
(CNOT) 

Entangle two qubits  
in a quantum circuit 

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

 
 

2.4. Model Training and Evaluation 
Before applying PCA embedding to the model input, we utilized MinMaxScaler from 

the scikit-learn library to scale the features between zero and one. This normalized feature 
vector serves as the input for both classical and quantum machine learning algorithms. 
Focusing on the quantum model, the feature vector underwent transformation into a 
quantum layer within the VQC. This quantum layer comprised three components: em-
bedding (PCA embedding was employed here), variational layers, and measurement. In 
our study, we utilized 17 qubits and constructed 10 repeated blocks for the VQC architec-
ture (Figure 2). The normalized classical features were encoded into the quantum Hilbert 
space, with the resulting quantum state representing the input data from the preceding 
classical layer. Each variational layer within the VQC consisted of two parts: rotations 
with trainable parameters and control gates, typically subsequent to CNOT operations 
(Figure 2 and Table 3). These rotations acted as quantum gates, transforming the encoded 
input data based on variational parameters, whereas the CNOT operations entangled the 
qubits in the quantum layer, facilitating the creation of quantum superposition. Each block 
contained three layers. In the measurement component, all the qubits were measured and 
summed at a single node. Subsequently, a sigmoid activation function was applied to pro-
duce the final output. Thus, the output of the VQC provided predictions of brain age or 
gender values. The performance of the VQC model was compared with that of classical 
machine learning models. 

For model training, the preprocessed data were shuffled and distributed once into 
the training (80%) and testing (20%) sets. We selected this split ratio to ensure sufficient 
data for training the model while preserving a reasonable portion for testing purposes. 
The split was performed randomly.  

To enhance the representativeness of the dataset and mitigate inadvertent biases, the 
order of the samples in the training set was shuffled at each epoch, whereas it remained 
unchanged in the test set. For optimization, we employed an adaptive moment estimation 
(ADAM) optimizer with a learning rate set to 0.01. 

To evaluate the effectiveness of the brain age prediction model, we primarily used 
the mean absolute error (MAE) metric. This metric measures the discrepancy between the 
predicted brain age (𝑦) and the corresponding chronological age (y) for each sample in 
our dataset. The MAE is defined as follows: 

𝑀𝐴𝐸 = ∑ |𝑦 − 𝑦 |, 

where N is the number of samples in the dataset. The model’s successful performance is 
indicated by the low values of the MAE. Other regression metrics, such as the mean 



Brain Sci. 2024, 14, 401 7 of 13 
 

 

squared error (MSE), root mean squared error (RMSE), and r-squared, were also esti-
mated. 

On the other hand, to evaluate the performance of the gender classification model, 
we primarily used the accuracy score defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
   

   
. 

Other classification metrics such as precision, recall, and f1-score were also estimated. 
All models were implemented in Python and executed on Google Colab. The classical 

machine learning algorithms were implemented with scikit-learn, while the quantum ma-
chine learning algorithm was implemented with the Tensorcircuit framework. Addition-
ally, we conducted an experiment by training the classical and quantum machine learning 
models with the same hyperparameters on varying sizes of training data, including 57, 
115, 231, 462, 694, and 925 samples.  

3. Results 
3.1. Algorithm Performance for Brain Age Prediction 

The performance of each algorithm in the combined dataset is depicted in Figure 3 
and Table 4 for both the training set (left four figures) and the hold-out test set (right four 
figures). Additional metrics, including mean absolute error (MAE), mean squared error 
(MSE), root mean squared error (RMSE), and r-squared (R2), are presented. For a more 
comprehensive view, performance metrics for various training sample sizes are detailed 
in Supplementary Tables S4–S8. 

 
Figure 3. Relationship between training sample sizes and performance of classical (LR, BR, XGB, 
RF, SVR, MLP) and quantum machine learning (VQC) models for brain age predictions (plots dis-
play MAE (A,C), MSE (B,D), RMSE (E,G), and R2 (F,H) values for both train (A,B,E,F) and test 
(C,D,G,H) sets against training size). 

Table 4. Age prediction performance of various machine learning regressors. 

Regressors 
Train (N = 925) Test (N = 231) 

MAE MSE RMSE R2 MAE MSE RMSE R2 
LR 6.978 77.987 8.831 0.791 7.506 85.695 9.257 0.784 
BR 6.982 78.013 8.833 0.791 7.512 85.733 9.259 0.783 

XGBoost 4.437 33.259 5.767 0.911 7.639 104.394 10.217 0.736 
RF 2.809 14.118 3.757 0.962 8.275 118.161 10.870 0.701 

SVR 5.395 42.177 6.494 0.887 7.324 88.986 9.433 0.775 
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MLP 6.118 62.193 7.886 0.834 7.103 83.184 9.121 0.790 
VQC 6.200 66.674 8.165 0.822 6.744 80.092 8.949 0.798 

LR: linear regression; BR: Bayesian ridge; XGBoost: extreme gradient boosting; RF: random forest; 
SVR: support vector regression; MLP: multilayer perceptron; VQC: variational quantum circuit. 

The prediction performance varied with the regression algorithms. When the train-
ing sample size was 925, the best prediction performance was achieved using VQC (MAE 
= 6.744, MSE = 80.092, MRSE = 8.949, and R2 = 0.798), whereas the worst performance was 
observed with RF (MAE = 8.275, MSE = 118.161, RMSE = 10.870, and R2 = 0.701). Similarly, 
with 694 samples in the training set, MLP demonstrated the best performance (MAE = 
5.293, MSE = 50.448, RMSE = 7.103, and R2 = 0.868), whereas RF exhibited the worst per-
formance (MAE = 6.382, MSE = 78.092, MRMSE = 8.837, and R2 = 0.796). For the 462 sam-
ples in the training set, VQC exhibited the best performance (MAE = 5.502, MSE = 56.829, 
RMSE = 7.539, R2 = 0.856), whereas RF exhibited the worst performance (MAE = 7.348, 
MSE = 87.258, RMSE = 9.341, R2 = 0.780). For 231 samples in the training set, VQC outper-
formed the other methods (MAE = 5.171, MSE = 49.714, RMSE = 7.051, and R2 = 0.877), 
whereas RF exhibited the worst performance (MAE = 7.439, MSE = 92.641, RMSE = 9.625, 
and R2 = 0.770). Furthermore, with 115 samples, RF achieved the best performance (MAE 
= 6.452, MSE = 65.773, RMSE = 8.110, and R2 = 0.847), whereas LR achieved the worst per-
formance (MAE = 8.391, MSE = 122.784, RMSE = 11.081, and R2 = 0.714). Finally, with 57 
samples in the training set, MLP exhibited the best performance (MAE = 5.914, MSE = 
73.814, RMSE = 8.591, R2 = 0.761), whereas SVR and RF demonstrated the worst perfor-
mances (MAE = 8.283, MSE = 94.746, RMSE = 9.734, R2 = 0.693, and MAE = 7.938, MSE = 
125.458, RMSE = 11.201, R2 = 0.593, respectively).  

3.2. Algorithm Performance for Gender Prediction 
The gender classification performance of each algorithm on the combined dataset is 

visualized in Figure 4 and summarized in Table 5 for both the training and holdout test 
sets. The prediction performance varied across classification algorithms. Key metrics such 
as accuracy, precision, recall, and f1-score values are presented. The detailed results for 
the different training sample sizes are shown in Supplementary Tables S9–S13. 

 
Figure 4. Relationship between training sample sizes and performance of classical (LR, KNN, XGB, 
RF, SVC, MLP) and quantum machine learning (VQC) models for gender predictions (plots display 
accuracy (A,C), precision (B,D), recall (E,G), and f1-score (F,H) for both train (A,B,E,F) and test 
(C,D,G,H) sets against training size). 
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Table 5. Gender prediction performance of various machine learning classifiers. 

Classifiers 
Train (N = 925) Test (N = 231) 

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score 
LR 0.811 0.819 0.820 0.819 0.810 0.828 0.815 0.821 

KNN 0.838 0.837 0.851 0.844 0.779 0.779 0.798 0.788 
XGBoost 0.997 0.998 0.996 0.997 0.762 0.754 0.786 0.770 

RF 0.997 0.994 1.000 0.758 0.770 0.770 0.770 0.770 
SVC 0.835 0.845 0.840 0.843 0.771 0.787 0.780 0.784 
MLP 0.789 0.845 0.774 0.808 0.753 0.811 0.744 0.776 
VQC 0.809 0.864 0.791 0.826 0.818 0.885 0.794 0.837 

LR, logistic regression; KNN, k-nearest neighbor; XGBoost, extreme gradient boosting; RF, random 
forest; SVC, support vector classifier; MLP, multilayer perceptron; VQC, variational quantum cir-
cuit. 

In gender classification tasks, accuracy, precision, recall, and f1-score values varied 
across different training sample sizes. For instance, with a training sample size of 925, 
accuracy ranged from 0.753 to 0.818, with the highest accuracy achieved by VQC and the 
lowest by XGBoost. Similarly, precision values ranged between 0.754 and 0.885, recall val-
ues ranged between 0.744 and 0.815, and f1-score values ranged from 0.770 to 0.837. VQC 
consistently demonstrated the best prediction performance across various sample sizes, 
whereas XGBoost exhibited the lowest performance. The performance trends for the other 
sample sizes followed a similar pa ern, with VQC consistently outperforming the other 
algorithms in terms of accuracy, precision, recall, and F1-score metrics. 

3.3. Comparative Study for Brain Age Prediction 
For comparative analysis, we constructed a VQC model to predict brain age using 

the IXI and CAU sub-datasets. The model’s performance metrics were as follows: in the 
IXI dataset, the model achieved an MAE of 6.265, MSE of 65.812, RMSE of 8.106, and R2 of 
0.759 on the training set (N = 450), and an MAE of 7.201, MSE of 83.074, RMSE of 9.114, 
and R2 of 0.679 on the test set (N = 112) (Table 6). 

Table 6. Comparative study of IXI dataset for brain age prediction in the training data (N = 450) and 
prediction performance (N = 113). 

Author Method 
Model  

Performance  
(MAE) 

Prediction  
Performance  

(MAE) 
Han, J. et al. [14]  ARD 7.4790 8.0453 

Proposed  VQC 6.265 7.201 
ARD: Automatic Relevance Determination, VQC: variational quantum circuit; MAE: mean squared 
error. 

For the CAU dataset, the model’s performance on the training data (N = 109) resulted 
in MAE = 3.451, MSE = 17.992, RMSE = 4.242, and R2 =0.587, whereas on the test set (N = 
47), the performance yielded MAE = 3.302, MSE = 16.675, RMSE = 4.083, and R2 =0.425 
(Table 7). 

Table 7. Comparative study of CAU dataset for brain age prediction in the training data (N = 109) 
and prediction performance (N = 47). 

Author Method MAE MSE RMSE R2 
Simfukwe, C. et al. [15]  BR 3.310 18.280 4.280 0.300 

Proposed  VQC 3.302 16.675 4.083 0.425 
BR, Bayesian ridge; VQC, variational quantum circuit; MAE, mean absolute error; MSE, mean 
squared error; RMSE, root mean squared error. 
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4. Discussion 
In this study, we conducted a comprehensive comparison between quantum machine 

learning (QML) and classical machine learning (CML) algorithms for brain age regression 
and gender classification using combined and benchmark datasets. Our findings demon-
strate that QML algorithms, particularly variational quantum circuits (VQCs), either out-
perform or perform comparably to classical algorithms in both tasks. 

For brain age prediction, the performance of various algorithms varies significantly, 
underscoring the importance of algorithm selection. Notably, VQCs consistently exhibit 
superior performance across different sample sizes, displaying lower mean absolute error 
(MAE), mean squared error (MSE), and root mean squared error (RMSE) values and 
higher r-squared (R2) scores than the other algorithms. This suggests the potential of QML 
approaches, particularly VQCs, for accurately predicting brain age based on structural 
MRI findings. Conversely, random forest (RF) consistently showed comparatively inferior 
performance, especially in larger sample sizes, highlighting its limitations in handling 
complex data relationships. Additionally, the performance of linear regression (LR) de-
graded notably with smaller sample sizes, indicating susceptibility to overfi ing or inad-
equate model complexity. In contrast, the multi-layer perceptron (MLP) demonstrated ro-
bust performance across various sample sizes, indicating its adaptability to diverse da-
taset characteristics. 

Similarly, in gender prediction tasks, observed variations in accuracy, precision, re-
call, and F1-score values across different training sample sizes underscore the significance 
of both algorithm selection and dataset characteristics. Once again, VQCs consistently out-
performed other classical machine learning algorithms across varying sample sizes, 
achieving superior metrics for all performance measures. This consistent superiority high-
lights the potential of QML, particularly VQCs, in gender classification tasks, a ributed 
to its ability to capture complex data relationships and generalize across different sample 
sizes. 

Furthermore, the comparative analysis of the VQC model’s performance in predict-
ing brain age using IXI and CAU sub-datasets provided valuable insights into its effec-
tiveness across diverse datasets. Our findings indicate that VQC outperforms previous 
studies [14,15] that utilized Automatic Relevance Determination (Table 6) and Bayesian 
Ridge (Table 7) algorithms, achieving be er brain age prediction metrics using brain mor-
phometric data. These results suggest the superiority of VQC in accurately predicting 
brain age across different datasets. 

One interesting finding is that, although VQC did not demonstrate superior perfor-
mance compared to other algorithms in the training set for both brain age prediction and 
gender classification tasks, it exhibited excellent performance in the test set (Figures 3 and 
4). This result implies that QML may possess be er generalization capabilities than CML 
algorithms. The quantum advantage might indeed have played a role in enabling this en-
hanced performance [35]. 

Overall, our study contributes to the expanding body of literature on QML applica-
tions in healthcare and neuroscience. While our findings demonstrate promising results 
for VQC in brain age regression and gender classification tasks, further research is war-
ranted to explore its generalizability and integration into clinical practice for neurological 
research.  

The limitation of this study is that, first, we generally could not demonstrate that our 
model outperforms deep-learning-based models in other previous studies [17–23]. For in-
stance, in the brain age prediction task, Wang et al. [36] examined a T1-weighted MRI 
dataset of 3688 dementia-free participants with a mean age of 66 years, utilizing a convo-
lutional neural network (CNN) deep learning algorithm to predict brain age. They 
achieved a mean absolute error (MAE) of 4.45 years. Hwang et al. [18] explored the feasi-
bility and clinical relevance of brain age prediction using axial T2-weighted images of 
healthy subjects with a deep CNN model. The CNN model was trained with 1530 scans, 
and the MAE evaluated the performance between the predicted age and the chronological 
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age based on an internal and external test dataset. The model showed MAEs of 4.22 years 
in the internal test set and 9.96 years in the external test set. Mendes, S.L et al. [11] em-
ployed two public datasets, ABIDE-II and ADHD-200, comprising healthy controls (HC, 
N = 894), autism spectrum disorder (ASD, N = 251), and a ention deficit hyperactivity 
disorder (ADHD, N = 357) individuals, for age prediction and gender classification tasks. 
They utilized T1-weighted sMRI scans and preprocessed gray and white ma er images 
using Voxel-Based Morphometry (VBM), and subsequently trained models with 3D con-
volutional neural networks (CNNs). Their best-performing model, trained on the ADHD-
200 dataset, achieved an MAE of 1.43 years and an R2 score of 0.62 for age prediction on 
the test set. For gender classification, the model achieved an AUC-ROC of 0.85, with pre-
cision, recall, and F1-score values of 0.84, 0.81, and 0.83, respectively. Conversely, when 
using the ABIDE-II dataset, the age prediction model yielded an MAE of 1.63 and an R2 
score of 0.54, while the gender classification model achieved an AUC-ROC of 0.82, with 
precision, recall, and F1-score values of 0.87, 0.80, and 0.83, respectively.  

As our study did not employ the same datasets as those mentioned above, a direct 
comparison might be challenging. However, it appears that the deep-learning-based stud-
ies cited above demonstrated higher performance metrics than ours, likely owing to com-
monalities in their methodologies. Specifically, many of these studies minimized or com-
pletely avoided the preprocessing steps, trained deep learning models directly on raw 
images, or used minimal transformations. In contrast, our study involved preprocessing 
to extract brain morphometry features, and the limited number of qubits required for 
VQCs hindered us from training the model using all the features, potentially leading to 
information loss. To address these challenges, hybrid approaches that combine classical 
and quantum machine learning [25,26] and employ techniques such as quanvolutional 
neural networks [37,38] or data reuploading [39] could potentially yield be er results. In 
addition, our study did not demonstrate the clinical utility of age prediction and gender 
classification, which may require disease-specific or atypical data. Therefore, future re-
search should focus on applying improved models to a broader range of applications, in-
cluding clinical scenarios, to demonstrate their practical relevance.  

5. Conclusions 
In conclusion, our study compared quantum and classical machine learning algo-

rithms for brain age regression and gender classification. We found that variational quan-
tum circuits (VQCs) consistently outperformed or were comparable to classical algorithms 
across both tasks. Although VQCs consistently showed superior performance, limitations 
such as information loss due to preprocessing and qubit constraints were noted. Future 
research should explore hybrid approaches or advanced techniques to address these chal-
lenges and demonstrate their practical relevance in clinical scenarios. 

Supplementary Materials: The following supporting information can be downloaded from: 
h ps://www.mdpi.com/article/10.3390/brainsci14040401/s1, Table S1: Demographics of in-house 
collected dataset, Table S2: Demographics of IXI dataset, Table S3: Demographics of CAU dataset, 
Table S4: Age prediction performance of various machine learning regressors (training data, N = 694, 
hold-out test data, N = 173), Table S5: Age prediction performance of various machine learning re-
gressors (training size, N = 462, hold-out test data, N = 115), Table S6: Age prediction performance 
of various machine learning regressors (training size, N = 231, hold-out test data, N = 57), Table S7: 
Age prediction performance of various machine learning regressors (training size, N = 115, hold-out 
test data, N = 28), Table S8: Age prediction performance of various machine learning regressors 
(training size, N = 57, hold-out test data, N = 14), Table S9: Gender prediction performance of various 
machine learning classifiers (training data, N = 694, hold-out test data, N = 173), Table S10: Gender 
prediction performance of various machine learning classifiers (training data, N = 462, hold-out test 
data, N = 115), Table S11: Gender prediction performance of various machine learning classifiers 
(training data, N = 231, hold-out test data, N = 57), Table S12: Gender prediction performance of 
various machine learning classifiers (training data, N = 115, hold-out test data, N = 28), Table S13: 
Gender prediction performance of various machine learning classifiers (training data, N = 57, hold-
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out test data, N = 14). Figure S1: Age and sex distributions across each dataset. (A) in-house collected 
dataset. (B) IXI dataset. (C) CAU dataset. Figure S2: The scree plot (A) and the cumulative explained 
variance ratio (B) by the number of principal components. 
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