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Abstract: The prediction of motor learning in Parkinson’s disease (PD) is vastly understudied. Here, we
investigated which clinical and neural factors predict better long-term gains after an intensive 6-week
motor learning program to ameliorate micrographia. We computed a composite score of learning
through principal component analysis, reflecting better writing accuracy on a tablet in single and dual
task conditions. Three endpoints were studied—acquisition (pre- to post-training), retention (post-
training to 6-week follow-up), and overall learning (acquisition plus retention). Baseline writing, clinical
characteristics, as well as resting-state network segregation were used as predictors. We included
28 patients with PD (13 freezers and 15 non-freezers), with an average disease duration of 7 (±3.9) years.
We found that worse baseline writing accuracy predicted larger gains for acquisition and overall learning.
After correcting for baseline writing accuracy, we found female sex to predict better acquisition, and
shorter disease duration to help retention. Additionally, absence of FOG, less severe motor symptoms,
female sex, better unimanual dexterity, and better sensorimotor network segregation impacted overall
learning positively. Importantly, three factors were retained in a multivariable model predicting overall
learning, namely baseline accuracy, female sex, and sensorimotor network segregation. Besides the room
to improve and female sex, sensorimotor network segregation seems to be a valuable measure to predict
long-term motor learning potential in PD.

Keywords: Parkinson’s disease; motor learning; rehabilitation; micrographia; resting-state fMRI;
network segregation; prediction model

1. Introduction

People with Parkinson’s disease (PD) experience a variety of motor and non-motor
symptoms [1] caused primarily, but not exclusively, by dopamine deficiency in the basal
ganglia, affecting the sensorimotor striatum. The sensorimotor striatum is also implicated in
the acquisition and retention of motor skills [2–4], resulting in an impaired motor learning
ability in PD [5–7]. As a result, PD patients require more neural activity compared to
healthy controls to reach similar levels of motor performance and show an overreliance on
attentional processing during acquisition and retrieval of learned patterns [8,9].

Motor learning is an indispensable part of motor rehabilitation and can be defined
as a process in which motor skills are acquired and consolidated following practice and
time [6].

Although micrographia is an early and common symptom in PD, only a few studies
have investigated interventions to alleviate this debilitating symptom, characterized by a
stable or progressive reduction in writing size [10]. Real-time writing size can be improved
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using external cueing, such as visual target lines and auditory rhythms [11,12]. Interestingly,
a recent review showed that handwriting-specific training interventions, including the
addition of cueing, resulted in immediate improvements [13]. Additionally, previous results
from our lab did not only show immediate effects, but also consolidation and retention of
motor learning after a six-week intensive writing training program aimed at improving
micrographia [14].

Motor learning is thus possible in PD patients, although it requires greater effort and
more exposure compared to healthy individuals [5,9]. Importantly, certain patient subgroups
showed different training responses, highlighting the need for predictors of motor learning
to optimize and individualize training in PD [15]. Clinical markers, such as the presence of
freezing of gait (FOG), are associated with worse motor learning [15–17]. Similarly, baseline
performance and cognitive ability may predict response to training [18,19]. However, besides
clinical phenotyping, neural markers of motor learning, such as functional brain organization,
may provide additional relevant information to improve prediction of training improvements
in PD [20].

Resting-state functional Magnetic Resonance Imaging (RS-fMRI) is a useful tool to
analyze functional brain organization by capturing the degree of functional connectivity
(FC) within and between resting-state networks [21]. Several studies demonstrated that
training can alter RS-FC, both in healthy individuals and PD patients, indicating the
sensitivity of RS-FC to motor learning processes [22–24]. In the present cohort, we recently
showed that FC within the dorsal attention network increased in the group that received
the writing training [25]. Nevertheless, functional brain organization as a predictor of
motor learning has not yet been investigated in PD.

One important metric of functional brain organization is the modularity or segregation
of a network, reflecting the degree of within-network to between-network FC. Higher
segregation across all networks at rest, as well as of visuomotor networks with increasing
task complexity, has been associated with better performance of a bimanual coordination
task in healthy young and older adults [26,27]. Moreover, in terms of learning, higher
sensorimotor within-network RS-FC and lower visual–sensorimotor between-network
connectivity, both indicative of higher sensorimotor segregation, predicted better motor
learning outcomes in healthy young adults [20,28].

To the best of our knowledge, no studies have investigated the predictive value of
RS-FC brain organization for motor learning capacity in PD, or its added value to clinical
predictors. Here, we studied the association between baseline clinical measures and brain
network segregation, and improvements in writing performance after writing training in PD
patients, thereby contributing to the development of individualized rehabilitation. Based
on the work discussed above, we expected higher segregation of the sensorimotor network
and lower baseline performance to predict larger improvements in writing performance.

2. Materials and Methods
2.1. Participants

This study constituted a secondary analysis of previously published studies [14,15].
Thirty-two PD patients with RS-fMRI scans who received intensive writing training in a
large, randomized placebo-controlled study were included in this analysis. All participants
were diagnosed with idiopathic PD by a neurologist according to the United Kingdom PD
Society Brain bank criteria [29]. The inclusion criteria consisted of (1) right-handedness,
measured by the Edinburgh Handedness Inventory [30]; (2) Hoehn and Yahr (H&Y) stage
I–III [31]; (3) the presence of handwriting difficulties, indicated by a score ≥ 1 on item
II.7 of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) [32]. The exclusion criteria were (1) a Mini-Mental State Examination (MMSE)
score < 24 [33]; (2) other upper limb impairments that interfered with writing performance;
(3) self-reported visual impairments including color blindness, and (4) contra-indications
for MRI. The study was approved by the local Ethics Committee of the University Hospitals
Leuven (S54132) in accordance with the Declaration of Helsinki (version 1967). Prior to
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participation, all participants signed an informed consent form after detailed explanation
of the protocol.

2.2. Study Design

All participants performed a home-based largely unsupervised 6-week writing train-
ing program, except for a weekly visit from a researcher who managed training progression.
Training was performed 5 days per week, 30 min per day, while optimally medicated. To
assess the effects of training, all patients were tested at three time points, i.e., pre-training,
post-training and 6-week follow-up. Tests were performed ON medication, approximately
1 h after medication intake, which was standardized across the three time points. The
baseline session included tests examining clinical characteristics, as well as tests assessing
writing performance. Furthermore, MRI data were collected at baseline for all partici-
pants during the ON medication state. This scanning session included the acquisition of a
high-resolution anatomical image, a resting-state functional scan, a magnetic susceptibility
fieldmap and task-based functional scans, consecutively. The resting-state scan was col-
lected before the task-based scan, as well as before the behavioral assessment to avoid any
influence of task performance on resting-state brain organization. Findings with respect to
the task-based scans are reported elsewhere, and as such were not considered here [34–36].

2.3. Experimental Procedure

Clinical tests consisted of the motor part of the MDS-UPDRS (MDS-UPDRS-III) and
the H&Y scale. Cognitive function was assessed using the Montreal Cognitive Assessment
(MOCA) [37], and affective symptoms with the Hospital Anxiety and Depression Scale
(HADS) [38]. Levodopa equivalent daily dosage (LEDD) was calculated and medication
was kept constant throughout the study [39,40]. Using the New Freezing of Gait question-
naire [41], patients were classified as freezers or non-freezers, based on whether they had
experienced FOG in the past month. Sleep complaints were assessed using items 7 and
8 from the MDS-UPDRS part I, and unimanual dexterity was assessed with the Purdue
Pegboard Test number of pegs for the right hand [42].

Writing performance was assessed outside the scanner at the three time points using
two tasks: a trained task, and an untrained task. To assess acquisition and retention of
the learnt task rather than transfer of learning, we focused on the trained task, which
comprised a three-loop sequence with visual target zones [14]. The task was performed
without and with a cognitive dual task (counting low or high tones) to interrogate the
ability to withstand interference. The task was performed in two sizes, i.e., 0.6 (small) and
1.0 (large) cm, visually indicated by the distance between the bottom of the blue and top
of the yellow zone (Figure 1). All participants performed three runs of 27 s trials on a
touch-sensitive writing tablet with a sampling frequency of 200 Hz and a spatial resolution
of 32.5 µm.

The six-week writing training aimed to improve writing performance, more specifically
writing accuracy in relation to the desired size, and is described in detail elsewhere [14].
Briefly, it consisted of exercises on paper as well as on a touch-sensitive tablet in the
presence of visual target zones. The difficulty of writing exercises was gradually increased
over the course of training and dual tasking was also introduced to facilitate consolidation
by asking patients to count tones during the task. Compliance with training was recorded
through self-reported logbooks and was calculated as a percentage of the required training
dose. Training progressions were followed up by one of the researchers.
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Figure 1. Tasks used to assess learning. The writing task consisted of a three-loop sequence written 
between target lines, either alone, or in combination with a cognitive dual task. Upon completion of 
the three loops, participants had to return to the starting point to initiate a new sequence. Writing 
performance was assessed by amplitude, amplitude variability, deviation from target, and average 
speed. 

2.4. Writing Data Processing and Learning Outcomes 
Data from the touch-sensitive tablet, collected after the MRI scan, were filtered at 7 

Hz with a 4th-order Butterworth filter [43] and processed using MATLAB (R2011, The 
Mathworks Ltd., Natick, MA, USA). The differences between the local minima and 
maxima of the individual strokes were calculated to determine the writing amplitude (in 
% of target size). In addition, the coefficient of variation of amplitude (COVampl) was 
determined as well as the writing speed (cm/s). Further, the deviation from the target was 
calculated as the absolute difference between the target amplitude and the achieved 
amplitude (i.e., Deviation = |100 − writing amplitude|). A principal component analysis 
(PCA) was performed on the data of the large size condition in single and dual tasks over 
the three time points to determine the main components (explaining > 80% variance) of 
writing performance and to reduce dimensionality. Only the large size was used as it 
presented greater difficulty at pre-training (smaller amplitudes relative to the target) [14] 
and therefore greater scope for learning. Varimax rotation of the components was 
performed, and component regression scores were saved. Component scores were 
averaged for single and dual tasks within the time points to obtain a more robust measure 
of writing performance. Robustness was ensured as similar performance on both tasks 
would not impact the scores while tradeoff between the two tasks (better performance in 
one relative to the other) would cancel out, warranting a stable estimate of writing 
performance. Difference scores were then computed across time points to characterize 
acquisition of learning (pre- to post-6 weeks of training), retention of learning (post-
training to 6-week follow-up without training), and overall learning (pre-training to 
follow-up, 12 weeks). 

2.5. Neuroimaging Data 
2.5.1. Acquisition Parameters 

MRI scanning was carried out using a Philips Achieva 3T scanner (Best, The 
Netherlands). A standard 32-channel head coil was used with foam cushions to restrict 
head motion. High-resolution T1-weighted anatomical scans [T1 turbo field echo (TFE) 
sequence, duration = 383 ms; slice number = 182; slice thickness = 1.2 mm; repetition time 
(TR) = 9.624 s; echo time (TE) = 4.6 ms; flip angle = 8°; matrix = 256 × 256; FOV = 218.4 × 250 
× 250 mm] were acquired for each participant. Functional resting-state data were acquired 
with T2*-weighted functional images using gradient echo-planar imaging (EPI) pulse 
sequences (duration = 435 s; slice number = 31; slice thickness = 4 mm; TR = 1700 ms; TE = 

Figure 1. Tasks used to assess learning. The writing task consisted of a three-loop sequence written
between target lines, either alone, or in combination with a cognitive dual task. Upon comple-
tion of the three loops, participants had to return to the starting point to initiate a new sequence.
Writing performance was assessed by amplitude, amplitude variability, deviation from target, and
average speed.

2.4. Writing Data Processing and Learning Outcomes

Data from the touch-sensitive tablet, collected after the MRI scan, were filtered at
7 Hz with a 4th-order Butterworth filter [43] and processed using MATLAB (R2011, The
Mathworks Ltd., Natick, MA, USA). The differences between the local minima and maxima
of the individual strokes were calculated to determine the writing amplitude (in % of target
size). In addition, the coefficient of variation of amplitude (COVampl) was determined
as well as the writing speed (cm/s). Further, the deviation from the target was calculated
as the absolute difference between the target amplitude and the achieved amplitude (i.e.,
Deviation = |100 − writing amplitude|). A principal component analysis (PCA) was
performed on the data of the large size condition in single and dual tasks over the three
time points to determine the main components (explaining > 80% variance) of writing
performance and to reduce dimensionality. Only the large size was used as it presented
greater difficulty at pre-training (smaller amplitudes relative to the target) [14] and therefore
greater scope for learning. Varimax rotation of the components was performed, and
component regression scores were saved. Component scores were averaged for single and
dual tasks within the time points to obtain a more robust measure of writing performance.
Robustness was ensured as similar performance on both tasks would not impact the scores
while tradeoff between the two tasks (better performance in one relative to the other)
would cancel out, warranting a stable estimate of writing performance. Difference scores
were then computed across time points to characterize acquisition of learning (pre- to
post-6 weeks of training), retention of learning (post-training to 6-week follow-up without
training), and overall learning (pre-training to follow-up, 12 weeks).

2.5. Neuroimaging Data
2.5.1. Acquisition Parameters

MRI scanning was carried out using a Philips Achieva 3T scanner (Best, The Nether-
lands). A standard 32-channel head coil was used with foam cushions to restrict head
motion. High-resolution T1-weighted anatomical scans [T1 turbo field echo (TFE) se-
quence, duration = 383 ms; slice number = 182; slice thickness = 1.2 mm; repetition
time (TR) = 9.624 s; echo time (TE) = 4.6 ms; flip angle = 8◦; matrix = 256 × 256;
FOV = 218.4 × 250 × 250 mm] were acquired for each participant. Functional resting-state
data were acquired with T2*-weighted functional images using gradient echo-planar imag-
ing (EPI) pulse sequences (duration = 435 s; slice number = 31; slice thickness = 4 mm;
TR = 1700 ms; TE = 33 ms; flip angle = 90◦; matrix = 64 × 64; FOV = 230 × 124 × 230 mm;
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voxel size = 3.59 × 3.74 × 4 mm). During the resting-state scan, participants were asked to
keep their eyes open and look at the white cross on the black screen. Moreover, a gradient
echo fieldmap was obtained (duration = 234 s; slice number = 35; slice thickness = 4 mm;
TR = 750 ms; TE = 5.76 ms; flip angle = 90◦; matrix = 96 × 96; FOV = 192 × 192 × 147 mm).

2.5.2. Preprocessing

Preprocessing of imaging data was performed using fMRIPrep 1.5.9 [44] (RRID:SCR_016216),
which is based on Nipype 1.4.2 [45] (RRID:SCR_002502). A brief description of the most important
steps follows. For a detailed overview of all preprocessing steps, please see the Supplementary
Methods S1.

The T1-weighted anatomical images were segmented into cerebrospinal fluid (CSF),
gray matter (GM) and white matter (WM) and normalized to the Montreal Neurological
Institute (MNI) standard space using a non-linear transformation. Resting-state functional
images underwent motion realignment, slice timing correction and unwarping and co-
registration to the anatomical image using a gradient-echo fieldmap. Functional images
were unwarped and normalized to the MNI standard space in a single transformation.
Noise components were calculated using ICA-AROMA and regressed from functional
scans after spatial smoothing with an 8 mm FWHM gaussian kernel. Further denoising
was performed using the CONN toolbox (version 19.c) [46] for MATLAB (version R2019b)
and SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/, accessed on 16 June
2020). Functional volumes were scrubbed if the framewise displacement exceeded 0.5 mm
or if the mean BOLD signal change was an outlier (i.e., it exceeded the third quartile and
was 1.5 times the interquartile range). Average timeseries extracted from GM, WM and
CSF masks, motion realignment parameters, their derivatives, and the quadratic effects
(24 parameters) as well as scrubbing dummy variables were included as regressors. More-
over, linear detrending and temporal high-pass filtering (0.008 Hz-Inf) were applied.

2.5.3. Quality Control

Based on previous literature, at least 4 min of RS-fMRI data is required to reliably
estimate functional connectivity [47]. Hence, participants with more than 108 scrubbed
volumes (based on a TR of 1.7 s) were excluded, resulting in a total of 28 participants in
this study (13 freezers, 15 non-freezers). All imaging data were also visually inspected for
gross artefacts.

2.6. Functional Connectivity Analysis and Outcomes

To identify the networks in the brain, the Cole-Anticevic Brain-wide Network Partition
version 1.1 [48] was used. This neurobiologically principled atlas combines 718 regions of
interest (ROIs) covering the entire cortex, subcortex and cerebellum into 12 networks. The
network names and spatial extent are shown in Figure 2. Cortical ROIs were created in
subject space by surface reconstruction and parcellation based on the Glasser Multimodal
atlas [49] performed in FreeSurfer (version 6.0), and then moved to standard volumetric
space. Subcortical and cerebellar ROIs were defined using the Cole-Anticevic subcortical
template in standard volumetric space.

Average timeseries for each ROI were extracted and Pearson’s correlation test was
performed between these timeseries. Correlation values were subsequently transformed
using the Fisher r-to-Z transformation to obtain a 718 × 718 symmetrical matrix. ROIs were
then sorted within networks and average within- and between-network connectivity was
calculated for each network to obtain a 12 × 12 symmetrical matrix. Moreover, negatively
correlated connections between regions were excluded, as the value of anti-correlations is
controversial [50,51]. Finally, for each network, segregation was calculated as the ratio of
the difference between within-network and between-network connectivity to the within-
network connectivity [52]. Higher scores on this ratio signify more segregation, which is a
marker of efficient neural processing.

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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2.7. Statistical Analysis

Demographic and clinical predictors were selected based on previous literatu-
re [15,18,53–56] and consisted of age, gender, MDS-UPDRS-III, disease duration, Purdue
Pegboard test, LEDD, HADS, sleep complaints, FOG presence and MOCA. Improvements
in writing over time were analyzed with a repeated measurement analysis of variance with
time as a within-subject condition. Post hoc pairwise comparisons were Bonferroni corrected.
Associations between baseline writing performance and writing improvements (difference
scores) were assessed with Pearson’s correlation. Associations between baseline clinical and
neural predictors and writing improvements were assessed using Pearson’s partial correla-
tions, accounting for the influence of baseline writing performance. Confidence intervals
(95%) for all estimates were obtained from the bias-corrected and accelerated bootstrap (BCa)
using 1000 resamples with replacement (BCa 95%CI). The BCa method for calculating the
bootstrap confidence interval accounts for bias and skewness in the bootstrap distribution of
the estimate and provides adequate coverage of the true estimate [57,58]. Inference was made
based on the bootstrap confidence intervals to ensure that results were not driven by a few
influential observations. Predictors with confidence intervals excluding 0 were entered in a
multivariable backward linear regression model (criteria for retaining predictors was p < 0.1) to
obtain the parsimonious combination of significant predictors. All variables were demeaned
and scaled to unit variance prior to inclusion in the correlation or regression analyses. Alpha
was set at 0.05 and all statistical analyses were performed using SPSS (version 23, SPSS Inc.,
Chicago, IL, USA).

3. Results

The clinical demographics of all 28 PD patients included in the analysis are provided
below in Table 1. Participants ranged from early to advanced disease stages but were
non-demented. In our sample, patients with FOG had a longer disease duration and
higher disease severity scores, as measured with the MDS-UPDRS-III, compared to patients
without FOG (Supplementary Table S2). Participants complied well with the prescribed
training (mean compliance rate: 95.5%, range: 63.3–100%).
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Table 1. Clinical demographics.

Measure (Units) Mean (SD) Range

Age (years) 63.93 ± 8.58 46–78
Sex (M/F) 17/11

EHI (%) 100 (80; 100) 7.7–100
H&Y (1–5) 2 (2; 2) 1–4

Disease duration (years) 6.89 ± 3.93 1–17
FOG presence (Yes/No) 13/15

LEDD (mg/24 h) 641.5 ± 288.47 126–1417.5
MDS-UPDRS-III (0–132) 31.14 ± 15.07 6–63
Sleep complaints (0–8) 3.71 ± 1.71 0–7
Purdue Pegboard Right 8.64 ± 2.71 3–14

MMSE (0–30) 29 (28; 29) 25–30
MoCA (0–30) 26.54 ± 1.73 22–29

HADS-anxiety (0–21) 6.32 ± 4.16 0–14
HADS-depression (0–21) 5.29 ± 3.21 0–13

Mean and standard deviations or medians with first and third quartiles (H&Y and MMSE) along with the ranges
across the sample are shown here. SD—standard deviation, M—male, F—female, EHI—Edinburgh Handedness
Inventory, H&Y—Hoehn and Yahr, FOG—freezing of gait, LEDD—Levodopa equivalent dose, MDS-UPDRS-
III—Movement Disorders Society sponsored revisions of the Unified Parkinson’s Disease Rating Scale part III,
MMSE—Mini Mental Status Examination, MoCA—Montreal Cognitive Assessment; HADS—Hospital Anxiety
and Depression Scale.

3.1. Determining Writing Accuracy Outcomes

Principal component analysis including the four outcome measures resulted in the
identification of two main components of writing performance (for details, see
Supplementary Table S1). The first component reflected writing accuracy (57.4% of vari-
ance explained), while the second component reflected writing speed (29.5% of variance
explained; cumulative: 86.9%). A higher component score implies more accurate and faster
writing, respectively. Given that the intensive writing training focused specifically on
improving amplitude and accuracy, only the first principal component was included in
further analyses. An overview of the changes in this component score over time for all
participants is illustrated in Figure 3.
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was combined for single and dual tasks, for acquisition, retention, and overall learning shown for
each participant (filled circles) and for the whole group (box plots). Means are indicated by unfilled
diamonds, and mild outliers by unfilled circles.
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3.2. Changes in Writing Accuracy for Acquisition, Retention and Overall Learning, and
Associations with Baseline Writing Accuracy

Repeated measures ANOVA revealed a significant within-subject effect of Time
(F (2,54) = 8.18, p = 0.001, partial eta-square = 0.23), with better writing accuracy at post-
training (acquisition; mean difference = 0.66, SD = 1.10, Bonferroni-p = 0.012) and follow-up
(overall learning; mean difference = 0.44, SD = 0.87, Bonferroni-p = 0.037) compared to
pre-training. No differences were found between post-training and follow-up (retention;
mean difference = −0.22, SD = 0.58, Bonferroni-p = 0.176).

Pearson correlation revealed significant negative associations between baseline writ-
ing accuracy and gains during acquisition (r = −0.49, BCa 95%CI = −0.62 to −0.34)
and overall learning (r = −0.39, BCa 95%CI = −0.54 to −0.18), but not with retention
(r = 0.34, BCa 95%CI = −0.1 to 0.65). In other words, participants with lower baseline
writing accuracy showed larger gains during acquisition and overall learning. Correlations
between acquisition, retention and overall learning revealed that overall learning was
strongly driven by acquisition (r = 0.85, BCa 95%CI = 0.60 to 0.96), as opposed to retention
(r = −0.12, BCa 95%CI = −0.52 to 0.29). Interestingly, retention was inversely associated
with acquisition (r = −0.62, BCa 95%CI = −0.79 to −0.31), suggestive of overlapping and
opposing, as well as independent and additive contributions to overall learning.

3.3. Clinical and Neural Predictors of Writing Accuracy Improvements

Acquisition of writing accuracy was better in females compared to males (rpartial = 0.43,
BCa 95%CI = 0.1 to 0.69) but was not associated with any other clinical or neural predictors.
Retention of writing accuracy was negatively associated with longer disease duration
(rpartial = −0.26, BCa 95%CI = −0.53 to −0.01), but no other predictors. Two predictors that
were significant in the original sample, namely MDS-UPDRS III for acquisition and sleep
complaints for retention, did not perform consistently upon bootstrapping (Table 2), and
were thus not included in a multivariable model.

Table 2. Associations between baseline predictors and writing accuracy gains, accounting for baseline
writing accuracy.

Acquisition (Pre to Post-Training) Retention (Post-Training to
Follow-Up)

Overall Learning (Pre-Training to
Follow-Up)

R p BCa 95%CI R p BCa 95%CI R p BCa 95%CI
Lower Upper Lower Upper Lower Upper

Clinical
measures

Age 0.00 0.985 −0.45 0.55 −0.16 0.433 −0.55 0.27 −0.10 0.611 −0.45 0.30
Female sex 0.43 0.024 0.10 0.69 −0.02 0.935 −0.40 0.26 0.51 0.007 0.20 0.74

LEDD 0.13 0.523 −0.23 0.47 −0.18 0.377 −0.61 0.20 0.03 0.868 −0.39 0.59
Non-freezer 0.26 0.183 −0.15 0.61 0.19 0.351 −0.26 0.51 0.44 0.021 0.06 0.74

Disease
duration −0.02 0.930 −0.43 0.40 −0.26 0.195 −0.53 −0.01 −0.20 0.326 −0.60 0.22

MDS-UPDRS
III −0.45 0.020 −0.82 0.23 0.02 0.923 −0.39 0.40 −0.52 0.005 −0.79 −0.08

Sleep
complaints 0.23 0.245 −0.28 0.59 −0.40 0.038 −0.72 0.18 0.00 0.982 −0.45 0.39

MoCA 0.13 0.525 −0.25 0.55 −0.02 0.912 −0.23 0.14 0.14 0.493 −0.28 0.56
HADS-
anxiety 0.04 0.841 −0.48 0.52 −0.09 0.640 −0.47 0.32 −0.02 0.939 −0.52 0.46

HADS-
depression −0.06 0.782 −0.40 0.35 −0.08 0.678 −0.35 0.23 −0.12 0.539 −0.48 0.26

Purdue
Unimanual

Right
0.21 0.306 −0.20 0.48 0.10 0.628 −0.47 0.55 0.31 0.114 0.02 0.56
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Table 2. Cont.

Acquisition (Pre to Post-Training) Retention (Post-Training to
Follow-Up)

Overall Learning (Pre-Training to
Follow-Up)

R p BCa 95%CI R p BCa 95%CI R p BCa 95%CI
Lower Upper Lower Upper Lower Upper

Network
Segregation

Primary
visual 0.00 0.986 −0.52 0.51 0.13 0.523 −0.35 0.45 0.08 0.680 −0.42 0.53

Secondary
visual 0.01 0.964 −0.47 0.35 −0.06 0.755 −0.41 0.32 −0.03 0.875 −0.41 0.29

Sensorimotor 0.31 0.111 −0.08 0.60 0.28 0.156 −0.11 0.62 0.57 0.002 0.29 0.78
Cingulo-
opercular −0.16 0.423 −0.47 0.18 0.15 0.449 −0.22 0.51 −0.09 0.658 −0.39 0.23

Dorsal
attention 0.27 0.178 −0.11 0.58 −0.09 0.660 −0.29 0.16 0.26 0.191 −0.15 0.55

Language −0.20 0.306 −0.49 0.18 0.02 0.910 −0.26 0.37 −0.23 0.249 −0.49 0.12
Frontoparietal −0.06 0.752 −0.49 0.26 0.11 0.579 −0.25 0.44 0.00 0.998 −0.46 0.40

Auditory 0.23 0.252 −0.22 0.56 −0.10 0.607 −0.50 0.41 0.20 0.310 −0.21 0.50
Default 0.00 0.988 −0.37 0.39 0.09 0.651 −0.20 0.36 0.06 0.772 −0.32 0.48

Posterior
multimodal 0.16 0.423 −0.12 0.41 −0.18 0.369 −0.48 0.08 0.07 0.727 −0.33 0.43

Ventral
multimodal −0.24 0.236 −0.52 0.26 0.24 0.230 −0.33 0.57 −0.12 0.550 −0.46 0.37

Orbito-
affective −0.11 0.576 −0.49 0.24 −0.14 0.500 −0.51 0.42 −0.23 0.254 −0.59 0.15

Inference was made based on the confidence interval not including 0. Significant predictors are highlighted in
bold. Note that some predictors showed significant associations in the original sample (shown in italic), but their
bootstrap confidence intervals included 0, and vice versa. R—Partial correlation in original sample, p—p-value
for partial correlation in original sample, BCa 95%CI—Bias-corrected and accelerated bootstrap 95% confidence
intervals. LEDD—Levodopa equivalent dose, MDS-UPDRS-III—Movement Disorders Society sponsored revisions of
the Unified Parkinson’s Disease Rating Scale part III, MoCA—Montreal Cognitive Assessment; HADS—Hospital
Anxiety and Depression Scale.

Overall learning gains were larger in non-freezers compared to freezers (rpartial = 0.44,
BCa 95%CI = 0.06 to 0.74), and in females compared to males (rpartial = 0.51, BCa 95%CI
= 0.20 to 0.74). Overall learning gains were positively associated with unimanual dexterity
(rpartial = 0.31, BCa 95%CI = 0.02 to 0.56), sensorimotor network segregation (rpartial = 0.57, BCa
95%CI = 0.29 to 0.78), and negatively associated with MDS-UPDRS III scores (rpartial = −0.52,
BCa 95%CI = −0.79 to −0.08). All significant associations are visualized in Figure 4.

Multivariable backward linear regression was then performed for the overall learning
gains in writing accuracy including these five predictors as well as baseline writing accuracy.
The final model retained baseline accuracy (beta = −0.51, BCa 95%CI = −0.73 to −0.26),
female sex (beta = 0.42, BCa 95%CI = 0.12 to 0.71), and sensorimotor network segregation
(beta = 0.49, BCa 95%CI = 0.26 to 0.77) as significant predictors of the overall gains in
writing accuracy (model adjusted R2 = 0.54, p < 0.001).
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4. Discussion

In this study, we investigated the predictive value of clinical measures and resting-state
brain functional network organization for motor learning capacity after writing training in
PD patients. On a behavioral level, writing accuracy improved after six weeks of training
and was maintained after a follow-up period of six weeks without training in the large
writing condition, supporting previous work [14]. In line with our expectations based
on previous work [18,19,56], worse baseline writing accuracy was associated with greater
learning gains over the short and longer term. After correcting for the influence of baseline
writing accuracy, we found female sex to be predictive of better acquisition and shorter
disease duration to be predictive of better retention of learning. Moreover, overall gains
combining acquisition and retention were positively associated with female sex, absence
of FOG, higher unimanual dexterity, and higher sensorimotor network segregation, and
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negatively associated with motor symptom severity. Importantly, upon combining these
predictors in a multivariable model, only baseline accuracy, female sex, and sensorimotor
network segregation were predictive of overall learning gains. These findings shed light
on the clinical and brain functional determinants of motor skill learning and highlight the
complementarity of these indicators to predict motor learning responses in PD.

4.1. Clinical Predictors of Motor Learning after Accounting for Baseline Accuracy

We tested several clinical measures including age, sex, cognition, anxiety, depression,
sleep complaints, unimanual dexterity and disease severity metrics as possible predictors
of writing training. After correcting for baseline writing performance, only sex, uniman-
ual dexterity and disease severity measures (disease duration, motor severity and FOG
presence) showed associations with writing gains across any time points. Cognition has
often been shown to predict learning following training [19,54,59] and hence the lack of
association here is surprising. However, this sample showed relatively preserved cognitive
capacity, and the task itself was minimally cognitively demanding, reducing the likelihood
of cognition being a driving or limiting factor for learning. In addition, anxiety and depres-
sion were not identified as predictors for writing training success. Previous studies have,
however, showed a significant impact on training compliance, one of the key factors for
training success in PD [60,61]. As such, the high compliance rates in our study may explain
why these neuropsychiatric symptoms were not identified as predictors. Nevertheless,
future studies should examine the influence of compliance, using objective measures, and
neuropsychiatric symptoms on training success in a large sample of PD patients.

On the other hand, female sex was an unexpected positive finding, showing consistent
predictive values for acquisition as well as overall gains in writing accuracy. There is no
documented effect of sex at birth on motor learning in general, and the advantage may
be task-specific. Females on average exhibit superior language abilities, particularly for
writing with reports of medium effect sizes [62] and show more efficient (lesser activity
and more segregated) neural processing while writing [63]. As such, studies investigating
learning in language-related tasks should take sex into account.

Interestingly, fewer sleep complaints measured by MDS-UPDRS items I.7 and I.8 were
associated with better retention of learning in the original sample, but this result did not
hold upon bootstrapping. This is an ordinal and subjective metric and better objective
outcomes of sleep quality could be obtained. Indeed, previous work in young adults,
quantifying sleep quality using actigraphy, found that time spent awake after sleep onset
was negatively associated with subsequent learning of a motor sequencing task [64]. Future
studies should consider using such objective measures of sleep quality to further investigate
its contribution to motor learning in PD.

4.2. Sensorimotor Network Segregation as a Neural Signature of Motor Learning Capacity

We showed that sensorimotor network segregation was a strong predictor of the
overall gains in writing accuracy after training. Notably, this result supports findings
from young adults showing higher sensorimotor within-network RS-FC [28] and lower
sensorimotor-visual between-network RS-FC [20] being predictive of better motor learn-
ing. Although portraying a less-connected sensorimotor network as being more efficient
seems counterintuitive, it likely reflects a larger capacity for reconfiguration into a more
integrated state based on task demands [65]. Indeed, Monteiro et al. (2020), showed that
as task complexity of a bimanual coordination task increased, the sensorimotor and vi-
sual networks became more connected with each other and more segregated from other
task-irrelevant networks in young adults. Older adults, however, who had less segregated
networks at rest [26], were unable to similarly modulate their connectivity with increasing
task complexity, which reflected in worse task performance [27].

Previously, we demonstrated in the same cohort that connectivity within the DAN
increased significantly from pre- to post-training, which we interpreted as cognitive com-
pensatory involvement responsible for robust learning [25]. Within the framework of
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segregation, increased within-network connectivity also translates to more segregated
processing. Several studies have also shown more segregated brain networks as a result of
motor learning in healthy individuals [66–68], the specific networks involved varying in
relation to the particular training mode [68] or type of feedback provided [67]. Here, we
did not find DAN segregation to be predictive of motor learning capacity, suggesting that
changes in the DAN are the result of the specific training provided, while the efficiency
of the sensorimotor network may determine the ability to flexibly explore and respond to
progressive training demands, and thereby predict motor learning capacity.

Finally, sensorimotor network segregation as defined in the present study is a rather
coarse metric, not specific to the visual–sensorimotor nor to the attentional–sensorimotor
interactions, which are more related to the writing task [34]. This lack of specificity, however,
makes sensorimotor network segregation a promising marker for characterizing motor
learning capacity for a variety of motor tasks in PD. Measuring network segregation at
rest also increases feasibility for paradigms that are challenging to perform in the scanner,
or that may result in highly variable execution. Future work should seek to validate this
marker with larger PD cohorts and varied motor learning tasks.

4.3. Two to Tango—Preserved System Hardware and the Room to Improve

The results of this study are largely in line with previous work in PD showing that
lower baseline values and more preserved “system hardware” are predictive of larger
learning gains [18,19,55,56,59]. Lower baseline values indicate lower than average per-
formance relative to the rest of the sample on a particular task, which we interpret as
being undertrained on that particular task, and thereby having a larger room to improve.
Conceptually, the utility of lower baseline values as a predictor of learning may be impacted
by inadequate sample variability as well as task context. For instance, ceiling effects or
floor effects on very simple or challenging tasks may reduce sample variability and its
predictive utility. Further, it is also unclear whether baseline values would be predictive of
learning gains when the training target increases adaptively as a function of performance.
Nevertheless, poor baseline performance should not discourage clinicians and patients to
implement motor task training, as our results showed more potential for improvements.

By system hardware, we adopt the terminology of Ophey and colleagues [59] who use
it to refer to the resources “to acquire, implement and sharpen” learning strategies, based
on the compensation and magnification model [69]. In different learning contexts, the
precise piece of hardware that is important differs, such as balance confidence for highly
challenging balance training [18], years of education and fluid intelligence for working
memory training [59], visual episodic memory for bilateral motor sequence learning [70],
global cognition for dual task gait training [19], and perhaps female sex for language-related
tasks such as in this study.

Limited work has been carried out on the neural hardware of motor learning capac-
ity, with one study showing that greater cortical thickness of the visual, dorsal attention,
frontoparietal and lateral sensorimotor networks predicted larger improvements in dual
task gait speed subsequent to 6 weeks of cognitively challenging gait and balance train-
ing [55]. Although freezers and non-freezers showed slightly different network associations,
these findings further support the need for a multi-network approach when investigating
markers of motor learning capacity in PD.

4.4. Clinical Implications and Limitations

This study is one of the few addressing the following question: “who is likely to benefit
most from motor learning?”, with the ultimate aim to achieve personalized rehabilitation
for people with PD. Given the effort required for training, it is imperative to better under-
stand patients’ training potential at rehabilitation onset. This study shows that adding
a short 5 min RS-fMRI scan could aid in the prediction when combined with unimanual
dexterity and disease severity measures (disease duration, motor symptom severity and
FOG presence) that are already common clinical tests. Also, initial writing performance
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proved important as an indicator for the ‘room for improvement’, illustrating the relevance
of using sufficiently challenging tasks to measure improvements. Still, the current results
must be interpreted with caution as they are based on a limited and convenient sample and
likely to be overoptimistic. In addition, a liberal threshold of p < 0.1 was used for retaining
predictors in the regression model. Even though the risk of overfitting was counteracted
with rigorous bootstrapping and PCA methods, future studies are needed to replicate the
findings in different cohorts, including a control group of healthy subjects, while address-
ing different task training. Our study sample only included patients with intact cognitive
function, showing no impact of cognition on training success. Nevertheless, future studies
should include patients with cognitive dysfunctions, as up to 80% of patients develop
dementia over the disease course [71]. Moreover, global cognitive assessments may not be
sufficient to predict motor learning capacity in PD, as different cognitive subdomains are
affected, such as executive function and memory, which likely impact more seriously on
learning [7,72].

5. Conclusions

Motor learning potential is progressively affected in Parkinson’s disease, which
presents a clinical challenge to interventions aiming to teach patients new skills or re-
learn previously learned skills, such as handwriting. Clinical and neural markers of motor
learning potential may facilitate clinical decision-making regarding the optimal conditions
for undertaking such motor learning approaches. In this study, we therefore investigated
clinical measures as well as functional brain organization as markers of motor learning
potential following writing training in PD. The results showed that baseline writing perfor-
mance, female sex, and resting-state sensorimotor network segregation predict long-term
motor learning capacity following writing training in people with PD. Though requiring
further validation, these findings provide a promising marker to predict motor learning
potential and to personalize rehabilitation in PD.
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72. Muslimović, D.; Post, B.; Speelman, J.D.; Schmand, B. Cognitive Profile of Patients with Newly Diagnosed Parkinson Disease.
Neurology 2005, 65, 1239–1245. [CrossRef] [PubMed]

73. Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine
learning for neuroimaging with scikit-learn. Front. Neurosci. 2014, 8, 14. [CrossRef] [PubMed]

74. Avants, B.; Epstein, C.; Grossman, M.; Gee, J. Symmetric diffeomorphic image registration with cross-correlation: Evaluating
automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008, 12, 26–41. [CrossRef] [PubMed]

75. Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A component based noise correction method (CompCor) for BOLD and perfusion based
fMRI. NeuroImage 2007, 37, 90–101. [CrossRef] [PubMed]

76. Cox, R.W.; Hyde, J.S. Software Tools for Analysis and Visualization of fMRI Data. NMR Biomed. 1997, 10, 171–178. [CrossRef]
77. Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 1999,

9, 179–194. [CrossRef]
78. Esteban, O.; Blair, R.; Markiewicz, C.J.; Berleant, S.L.; Moodie, C.; Ma, F.; Isik, A.I.; Erramuzpe, A.; Kent, J.D.; Goncalves, M.; et al.

FMRIPrep. Software. Zenodo. 2018. Available online: https://doi.org/10.5281/zenodo.852659 (accessed on 15 February 2020).
79. Evans, A.C.; Janke, A.L.; Collins, D.L.; Baillet, S. Brain templates and atlases. NeuroImage 2012, 62, 911–922. [CrossRef] [PubMed]
80. Fonov, V.; Evans, A.; McKinstry, R.; Almli, C.; Collins, D. Unbiased nonlinear average age-appropriate brain templates from birth

to adulthood. NeuroImage 2009, 47, S102. [CrossRef]
81. Glasser, M.F.; Sotiropoulos, S.N.; Wilson, J.A.; Coalson, T.S.; Fischl, B.; Andersson, J.L.; Xu, J.; Jbabdi, S.; Webster, M.; Polimeni,

J.R.; et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 2013, 80, 105–124. [CrossRef]

https://doi.org/10.3389/fresc.2021.754118
https://doi.org/10.1002/hbm.25211
https://doi.org/10.1016/j.apmr.2023.09.008
https://doi.org/10.1002/(SICI)1097-0258(20000515)19:9%3C1141::AID-SIM479%3E3.0.CO;2-F
https://doi.org/10.1111/1365-2656.12382
https://www.ncbi.nlm.nih.gov/pubmed/26074184
https://doi.org/10.1177/1545968320981956
https://doi.org/10.3233/JPD-171173
https://doi.org/10.3233/JPD-202247
https://www.ncbi.nlm.nih.gov/pubmed/32925106
https://doi.org/10.1037/amp0000356
https://doi.org/10.1002/hbm.24968
https://www.ncbi.nlm.nih.gov/pubmed/32090433
https://doi.org/10.1037/bne0000131
https://www.ncbi.nlm.nih.gov/pubmed/26881313
https://doi.org/10.1016/j.neuroimage.2017.08.010
https://www.ncbi.nlm.nih.gov/pubmed/28782684
https://doi.org/10.3390/brainsci12050530
https://www.ncbi.nlm.nih.gov/pubmed/35624919
https://doi.org/10.1016/j.neuroimage.2012.03.067
https://www.ncbi.nlm.nih.gov/pubmed/22503778
https://doi.org/10.1523/JNEUROSCI.2640-17.2018
https://www.ncbi.nlm.nih.gov/pubmed/29483284
https://doi.org/10.3389/fnhum.2012.00141
https://doi.org/10.1097/WNR.0000000000001707
https://doi.org/10.1016/j.jns.2009.08.034
https://www.ncbi.nlm.nih.gov/pubmed/19733364
https://doi.org/10.1212/01.wnl.0000180516.69442.95
https://www.ncbi.nlm.nih.gov/pubmed/16247051
https://doi.org/10.3389/fninf.2014.00014
https://www.ncbi.nlm.nih.gov/pubmed/24600388
https://doi.org/10.1016/j.media.2007.06.004
https://www.ncbi.nlm.nih.gov/pubmed/17659998
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://www.ncbi.nlm.nih.gov/pubmed/17560126
https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5%3C171::AID-NBM453%3E3.0.CO;2-L
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.5281/zenodo.852659
https://doi.org/10.1016/j.neuroimage.2012.01.024
https://www.ncbi.nlm.nih.gov/pubmed/22248580
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/j.neuroimage.2013.04.127


Brain Sci. 2024, 14, 376 17 of 17

82. Gorgolewski, K.J.; Esteban, O.; Markiewicz, C.J.; Ziegler, E.; Ellis, D.G.; Notter, M.P.; Jarecka, D.; Johnson, H.; Burns, C.; Manhães-
Savio, A.; et al. Nipype. Software. Zenodo. 2018. Available online: https://doi.org/10.5281/zenodo.596855 (accessed on
15 February 2020).

83. Greve, D.N.; Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 2009, 48, 63–72.
[CrossRef] [PubMed]

84. Jenkinsona, M.; Bannisterab, P.; Bradyb, M.; Smitha, S. Improved Optimization for the Robust and Accurate Linear Registration
and Motion Correction of Brain Images. NeuroImage 2002, 17, 825–841. [CrossRef]

85. Klein, A.; Ghosh, S.S.; Bao, F.S.; Giard, J.; Häme, Y.; Stavsky, E.; Lee, N.; Rossa, B.; Reuter, M.; Neto, E.C.; et al. Mindboggling
morphometry of human brains. PLoS Comput. Biol. 2017, 13, e1005350. [CrossRef] [PubMed]

86. Lanczos, C. Evaluation of Noisy Data. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 1964, 1, 76–85. [CrossRef]
87. Power, J.D.; Mitra, A.; Laumann, T.O.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Methods to detect, characterize, and remove

motion artifact in resting state fMRI. NeuroImage 2014, 84, 320–341. [CrossRef] [PubMed]
88. Pruim, R.H.R.; Mennes, M.; van Rooij, D.; Llera, A.; Buitelaar, J.K.; Beckmann, C.F. ICA-AROMA: A robust ICA-based strategy for

removing motion artifacts from fMRI data. NeuroImage 2015, 112, 267–277. [CrossRef] [PubMed]
89. Tustison, N.J.; Avants, B.B.; A Cook, P.; Zheng, Y.; Egan, A.; A Yushkevich, P.; Gee, J.C. N4ITK: Improved N3 Bias Correction.

IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [CrossRef] [PubMed]
90. Zhang, Y.; Brady, M.; Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the

expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5281/zenodo.596855
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://www.ncbi.nlm.nih.gov/pubmed/19573611
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1371/journal.pcbi.1005350
https://www.ncbi.nlm.nih.gov/pubmed/28231282
https://doi.org/10.1137/0701007
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://www.ncbi.nlm.nih.gov/pubmed/23994314
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://www.ncbi.nlm.nih.gov/pubmed/25770991
https://doi.org/10.1109/TMI.2010.2046908
https://www.ncbi.nlm.nih.gov/pubmed/20378467
https://doi.org/10.1109/42.906424

	Introduction 
	Materials and Methods 
	Participants 
	Study Design 
	Experimental Procedure 
	Writing Data Processing and Learning Outcomes 
	Neuroimaging Data 
	Acquisition Parameters 
	Preprocessing 
	Quality Control 

	Functional Connectivity Analysis and Outcomes 
	Statistical Analysis 

	Results 
	Determining Writing Accuracy Outcomes 
	Changes in Writing Accuracy for Acquisition, Retention and Overall Learning, and Associations with Baseline Writing Accuracy 
	Clinical and Neural Predictors of Writing Accuracy Improvements 

	Discussion 
	Clinical Predictors of Motor Learning after Accounting for Baseline Accuracy 
	Sensorimotor Network Segregation as a Neural Signature of Motor Learning Capacity 
	Two to Tango—Preserved System Hardware and the Room to Improve 
	Clinical Implications and Limitations 

	Conclusions 
	References

