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Abstract: Motor imagery electroencephalography (EEG) signals have garnered a�ention in brain–

computer interface (BCI) research due to their potential in promoting motor rehabilitation and 

control. However, the limited availability of labeled data poses challenges for training robust 

classifiers. In this study, we propose a novel data augmentation method utilizing an improved Deep 

Convolutional Generative Adversarial Network with Gradient Penalty (DCGAN-GP) to address 

this issue. We transformed raw EEG signals into two-dimensional time–frequency maps and 

employed a DCGAN-GP network to generate synthetic time–frequency representations resembling 

real data. Validation experiments were conducted on the BCI IV 2b dataset, comparing the 

performance of classifiers trained with augmented and unaugmented data. Results demonstrated 

that classifiers trained with synthetic data exhibit enhanced robustness across multiple subjects and 

achieve higher classification accuracy. Our findings highlight the effectiveness of utilizing a 

DCGAN-GP-generated synthetic EEG data to improve classifier performance in distinguishing 

different motor imagery tasks. Thus, the proposed data augmentation method based on a DCGAN-

GP offers a promising avenue for enhancing BCI system performance, overcoming data scarcity 

challenges, and bolstering classifier robustness, thereby providing substantial support for the 

broader adoption of BCI technology in real-world applications. 

Keywords: motor imagery electroencephalography signals; time–frequency maps; Generative  

Adversarial Networks; data augmentation 

 

1. Introduction 

Brain–computer interface (BCI) technology, as a key technology connecting the 

human brain to external devices, has demonstrated enormous potential in various fields. 

By capturing the electrical signals emi�ed by the brain, BCI systems can interpret 

thoughts, intentions, and perceptions, providing unprecedented possibilities for 

rehabilitation, entertainment, and assistive functions [1–5]. However, despite the broad 

theoretical applicability of BCI technology, in practical applications, it still faces 

challenges such as reliance on EEG signals [6,7] and limitations in data quality [8–10]. In 

this context, motor imagery tasks, as a commonly used BCI paradigm, have a�racted 

widespread a�ention. The practice of motor imagery tasks leverages the activity pa�erns 

of participants during motor imagination to decode their intentions, thereby enhancing 

the understanding of the brain and improving the quality of EEG signals. 

In EEG signals, different frequency components play different roles in decoding 

motor imagery. Generally, the µ band (8–13 Hz) and the β band (13–30 Hz) are related to 

motor execution and imagery. The activities in these frequency bands often exhibit event-

related synchronization and desynchronization during motor imagery tasks [11] and 

present specific spatial pa�erns in the EEG, mainly concentrated in the sensorimotor 

cortex area [12]. Analyzing the activities in these frequency bands and specific regions can 

Citation: Du, X.; Ding, X.; Xi, M.;  

Lv, Y.; Qiu, S.; Liu, Q. A Data  

Augmentation Method for Motor 

Imagery EEG Signals Based on a 

DCGAN-GP Network. Brain Sci. 

2024, 14, 375. h�ps://doi.org/ 

10.3390/brainsci14040375 

Academic Editor: Natsue Yoshimura 

Received: 20 March 2024 

Revised: 9 April 2024 

Accepted: 11 April 2024 

Published: 12 April 2024 

 

Copyright: © 2024 by the authors. 

Licensee MDPI, Basel, Swi�erland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

A�ribution (CC BY) license 

(h�ps://creativecommons.org/license

s/by/4.0/). 



Brain Sci. 2024, 14, 375 2 of 17 
 

help researchers to be�er understand the working mechanism of the brain during motor 

imagery tasks, thereby improving the decoding accuracy of motor imagery intentions. 

In practical applications, building and optimizing classifiers usually require a large 

amount of high-quality training data with more features to ensure their accuracy and 

robustness. EEG signal classifiers are typically based on machine learning or deep 

learning techniques, which require a large amount of data to learn effective feature 

representations. More data help the model to be�er capture pa�erns and features in EEG 

signals, thereby improving the performance and generalization ability of the classifier. 

Complex classifiers often have a large number of parameters, and insufficient training 

data can lead to overfi�ing. Increasing the amount of data can alleviate overfi�ing issues 

and improve the model’s performance on unseen data. EEG signal data may have 

different distribution characteristics across individuals, tasks, and experimental 

conditions. By increasing the amount of data, different data distributions can be be�er 

covered, making the model more adaptable. A large amount of data can enhance the 

stability and robustness of the model, making it more resistant to noise and interference. 

Such models are more reliable in practical applications. However, the collection of EEG 

signals [13–16] is influenced by many factors, leading to the limited availability of training 

data. In addition, EEG signals themselves exhibit non-stationarity and high individual 

variability [17,18], which limits the applicability of traditional data augmentation methods 

[19–25] such as interpolation in the brain–computer interface field. 

To address these challenges, researchers have recently begun exploring the use of 

deep learning techniques for augmenting EEG signal data, aiming to expand limited 

training datasets and improve model generalization and performance. Komolovaitė et al. 

discussed the use of Generative Adversarial Networks (GANs) [26] and Variational 

Autoencoders (VAEs) to generate synthetic EEG signals. This data augmentation 

approach can learn data distributions and generate samples similar to real data, offering 

a potential solution for the brain–computer interface field. However, traditional GAN 

models struggle to fully capture the complexity and variability of real data, leading to 

issues such as mode collapse [27–29]. Directly applying them to EEG signal data 

generation poses certain challenges. To overcome this obstacle, we propose an innovative 

approach that combines the model structure of a Deep Convolutional Generative 

Adversarial Network (DCGAN) [30] with the loss function of a Wasserstein GAN with 

Gradient Penalty (WGAN-GP) [31]. Specifically, we transform EEG signal data into two-

dimensional time–frequency maps, and then utilize the improved DCGAN model to 

generate time–frequency map images, thereby achieving data augmentation for EEG 

signal data. 

The objective of this study is to explore data augmentation methods for 

electroencephalography (EEG) signals based on deep learning techniques and assess their 

effectiveness in enhancing BCI classifier performance. Figure 1 provides an overview of 

the proposed approach in this paper; starting from the initial data collection and 

preprocessing, we obtained multidimensional feature maps containing both time–

frequency and spatial information. These feature maps were fed into the improved 

DCGAN-GP model to generate corresponding image samples. We mixed these generated 

images with real data samples at different ratios and used the mixed data for training and 

evaluating our classification network. By observing changes in classification accuracy, we 

could infer the quality and diversity of the generated data. Based on this, we adjusted the 

data mixing ratios to discuss the optimal balance between real and generated data. 

Through comparative experiments to validate the effectiveness of the proposed method 

and investigate its potential applications under different conditions, we aim to offer new 

insights and methodologies for the further development and application of brain–

computer interface (BCI) technology. By leveraging the image generation capability of the 

DCGAN and the advantages of the loss function in the WGAN-GP, we aim to achieve 

effective augmentation of EEG signal data, thereby providing more reliable support for 

the enhancement of BCI system performance and its practical applications. 
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Figure 1. Illustrates the proposed data augmentation method. It involves using the Short-Time 

Fourier Transform (STFT) to obtain time-frequency images of input EEG signals. Real data is used 

to train the Deep Convolutional Generative Adversarial Network-Gradient Penalty (DCGAN-GP) 

model to generate synthetic time-frequency images. These synthetic images are then mixed with 

real images in proportion and used to train a convolutional classifier to distinguish between left-

hand and right-hand motor imagery (MI) actions. 

2. Related Work 

Traditional data augmentation methods [32] include, but are not limited to, random 

horizontal rotation; random adjustments of hue (H), saturation (S), and brightness (V); 

and random rotation, scaling, translation, and shearing. These methods generate new 

samples by applying various transformations and distortions to the original data, thereby 

increasing the diversity of the training data. However, traditional data augmentation 

methods have limitations [22–25]. For example, EEG signals are susceptible to noise and 

artifacts, making simple interpolation enhancement techniques difficult to apply 

effectively due to their non-stationary characteristics. Additionally, traditional methods 

often fail to capture the complex spatiotemporal pa�erns present in EEG data and the 

fundamental distribution of EEG signals, leading to poor results in data enhancement. 

Therefore, in recent years, researchers have begun to explore more advanced and effective 

data augmentation techniques to meet the growing demand for data and improve model 

performance. 

Recent studies have proposed various data augmentation (DA) techniques to 

overcome these issues by generating synthetic EEG data similar to limited recorded 

signals [33]. Generative Adversarial Networks (GANs) are a promising data 

augmentation technique that has shown significant improvements in generating images, 

audio, and video data [34]. GANs can learn the potential distribution of actual data 

without making any assumptions and then generate synthetic samples through 

adversarial training between the generator network and the discriminator network. 

However, GAN training is typically unstable, especially in the initial stages. The loss 

function used in traditional Generative Adversarial Networks (GANs), which minimizes 

the adversarial loss between the generator and the discriminator, has some flaws: 

adversarial training between the generator and the discriminator can lead to oscillations 

and instability in the training process, sometimes even causing mode collapse, which can 

result in synthesized data lacking diversity and realism; also the generator may tend to 

learn some common pa�erns or features in the dataset while ignoring other important 

features in the dataset. This can lead to pa�ern bias in the generated synthetic data, which 

may not sufficiently represent the comprehensive features of the real data. 

Abdelfattah et al. conducted one of the earliest studies to augment MI signals using 

GANs, where they introduced a Recursive Generative Adversarial Network (RGAN) 

model to generate synthetic EEG data to increase the dataset size [35]. Compared to 

Autoencoders (AE) and Variational Autoencoders (VAE) and their improvements [36], 

RGANs utilize a cyclic structure to model time-series data, which can be�er capture the 

temporal correlations in EEG data, thereby improving classification accuracy. However, 

an RGAN may face the issue of vanishing or exploding gradients when dealing with long 

sequence data, leading to training instability. Additionally, the model design overlooks 

the most important frequency and spatial features in motor imagery events.  
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Additionally, Fahimi et al. [37,38] used Deep Convolutional Generative Adversarial 

Networks (DCGANs) to generate synthetic MI data, focusing on the similarity between 

generated data and real EEG data in both the time and frequency domains. By employing 

convolutional operations to extract features from input feature maps, they retained more 

valid information from real data, thereby increasing the diversity and authenticity of the 

data. However, their model improvements still led to mode collapse, where the generator 

becomes stuck in a local optimum, resulting in insufficient diversity in the generated 

samples. In [39,40], spectral images rather than the MI dataset itself were used for 

classification. They employed a DCGAN and a combination of a conditional VAE and a 

GAN to generate MI-EEG brain signals. These studies indicate that when using generated 

GAN data and recorded signals to train BCI systems, the accuracy of recognizing actions 

from EEG signals is significantly higher than when using recorded signals alone. 

However, issues such as gradient vanishing and training instability in the model have not 

been fully resolved, and there has been insufficient consideration and extraction of the 

multidimensional features of motor imagery EEG signals, resulting in low-quality 

generated samples. Zhang et al. [41] proposed a Conditional Deep Convolutional 

Generative Adversarial Network (CDCGAN) method aimed at improving BCI 

performance. This method was inspired by GANs and overcame the problem of small 

training datasets by automatically generating more artificial EEG signals [42]. Although 

this method successfully improved classification accuracy, it still did not fully cover the 

frequency and spatial characteristics of motor imagery signals, which may limit its 

effectiveness in certain applications. 

Wasserstein Generative Adversarial Networks (WGANs) are a type of GAN model 

proposed by Gulrajani et al. [31] to address training stability issues [27–29]. Its innovation 

lies in introducing the Wasserstein distance as the distance measure between the generator 

and the discriminator. Compared to traditional GAN models, WGANs can more 

accurately evaluate the quality of generated samples, thereby avoiding mode collapse and 

training instability issues. However, WGANs also have some drawbacks [43], including 

high sensitivity to network structure and training parameters, and difficulty in handling 

imbalanced updates of generator and discriminator parameters. 

In the study by Mao et al. [44], they proposed Least Squares Generative Adversarial 

Networks (LSGANs), which use the least squares loss function as the loss function of the 

discriminator. By minimizing the objective function of LSGANs, the Pearson χ² 

divergence can be minimized, thereby improving the problem of gradient disappearance 

during training. Traditional GANs use the sigmoid cross-entropy loss function, which 

may lead to gradient disappearance problems. The innovation of LSGANs lies in the use 

of the least squares loss function, but it still does not solve other potential issues in GANs 

such as mode collapse. By using the loss function of the CWGAN-GP, we can further 

improve the training stability of GANs, thereby compensating for other potential issues 

that may exist in LSGANs. 

In summary, while existing research has made some progress in data augmentation 

techniques, there are still limitations in addressing the shortage of training data and 

improving classifier performance. Particularly, when it comes to the frequency and spatial 

characteristics of motor imagery signals, existing methods have not yet achieved ideal 

results. Therefore, this paper explores a new method based on deep learning, proposing 

a novel network model, the DCGAN-GP. First, we have specifically improved the 

preprocessing steps to fully extract the time–frequency and spatial features of motor 

imagery signals, obtaining higher-quality input feature maps, which helps improve the 

quality and diversity of the generated data. Second, we optimized the model’s loss 

function by introducing the Gradient Penalty (GP) technique, reducing the risk of gradient 

vanishing and mode collapse during training, thereby improving the model’s 

performance. Finally, adaptive improvements were made to the generator and 

discriminator structures of the DCGAN model, enhancing the stability of the training 

process and speeding up the model training. The method proposed in this paper is not 
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only applicable to the classification of EEG signals but can also be extended to other fields 

such as image and signal processing, demonstrating good versatility. 

3. Model and Methods 

This chapter will introduce the structure and innovation of the data augmentation 

model DCGAN-GP proposed in this paper. Firstly, the improvement of the loss function 

of the DCGAN-GP will be detailed, followed by an explanation of the optimization of the 

model structure. Pseudocode implementation of the DCGAN-GP will also be provided to 

be�er demonstrate the implementation details of the model. Figure 2 illustrates the overall 

architecture of the DCGAN-GP, including the rough process of data input to the generator 

for synthesizing data, and then entering the discriminator for distinguishing between real 

and fake data. 

 

Figure 2. DCGAN-GP model. The green color in the figure represents the two components of the 

model, namely the generator and the discriminator. The orange color represents the data, and the 

arrows indicate the direction of data flow. 

3.1. Improved Loss Function 

The training strategy of Generative Adversarial Networks (GANs) involves defining 

a game between two competing networks. The generator network maps inputs from a 

noise source to samples in the data space. The discriminator network receives samples 

from the generator or real data samples and a�empts to distinguish between the two. The 

goal of the generator is to deceive the discriminator, while the goal of the discriminator is 

to accurately distinguish between these two types of samples. Formally, the game between 

the generator G and the discriminator D is expressed as a minimax objective function: 

~ ~min max [log ( )] [log(1 ( ( )))] 
data zx p z p

G D
D x D G z   (1)

where datap  is the distribution of real data and zp  is the distribution of the noise input 

to the generator. In ideal circumstances, by minimizing this objective function, the 

generator will learn to generate samples similar to the distribution of real data, while the 

discriminator will be unable to accurately distinguish between generated samples and real 

data. 

However, in practice, traditional training methods can lead to problems such as 

gradient vanishing and mode collapse, especially as the discriminator becomes 

increasingly proficient. To address this issue, the Wasserstein distance has been proposed 

and is able to mitigate these problems to some extent. For two distributions P  and Q , 

the Wasserstein distance is defined as the minimum cost to transform distribution P  into 

distribution Q  . In the context of GANs, this is interpreted as the minimum cost to 
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transform the generated distribution into the distribution of real data, i.e., the minimum 

difference between the samples generated by the generator and real samples. 

The definition of the Wasserstein distance is as follows: 

(P , ) ( , )~( , ) inf [ ]
r gr g P x yW P P x y    (2)

where rP  is the distribution of real data, gP  is the distribution of generated data by the 

generator,  is a joint distribution between P  and gP  satisfying the condition that the 

marginal distributions are P  and gP , respectively, and (P , )r gP  denotes the set of 

all joint distributions satisfying these conditions. 

The computation of the Wasserstein distance can be approximated using the 

Kantorovich–Rubinstein duality. For GANs, this means rewriting the loss functions of the 

generator and discriminator in terms of the Wasserstein distance and restricting the 

parameters of the discriminator to achieve this goal. This is the basic idea of the WGAN. 

The loss function of the WGAN changes the objective of the generator from deceiving the 

discriminator to maximizing the Wasserstein distance, i.e., maximizing the difference 

between generated samples and real samples. Its form is as follows: 

~ ~min max [ ( )] [ ( ( ))] 
r zx p z p

G D
D x D G z





 (3)

where   denotes the set of all 1-Lipschi� continuous functions. The WGAN achieves 

the Lipschi� constraint on the discriminator by clipping its parameters, but this approach 

is often challenging to implement. 

In order to be�er enforce the Lipschi� constraint on the discriminator, the WGAN-

GP (Wasserstein GAN with Gradient Penalty) proposes an improved loss function, which 

adds a gradient penalty term to the original WGAN loss function. This penalty term aims 

to penalize the deviation of the gradient of the discriminator’s output with respect to its 

input. This allows for be�er enforcement of the Lipschi� constraint on the discriminator, 

thereby stabilizing the training of both the generator and discriminator. The loss functions 

for the generator and discriminator are as follows: 

~ [ ( ( ))]
zG z P D G z   (4)

ˆ

2
ˆ ˆ~ ~ ~ 2

ˆ[ ( )] [ ( ( ))] [( ( ) 1) ]  
r z xD x P z P x P xD x D G z D x       (5)

where    is the weight of the gradient penalty term, x̂   is a randomly interpolated 

sample between real and generated data, and x̂P   is the distribution of these interpolated 

samples. 

3.2. Model Architecture of DCGAN-GP 

In this study, we improved and redesigned the DCGAN model, and the following 

are the main architecture and training details of the model. 

The generator G   receives random noise and class labels as input, ultimately 

generating 32 × 32 grayscale time–frequency images. The network structure of the 

generator is shown in Figure 3. The generated samples are mixed with real samples 

corresponding to their class labels, and then fed into the discriminator D   for 

authenticity judgment. The input to the generator is an arbitrary vector space composed 

of Gaussian distribution values (100 dimensions), which is then represented by a fully 

connected layer with a large number of nodes to generate a low-resolution version of the 

output image, facilitating be�er and faster data generation. Layer normalization is added 

after each transpose convolutional layer to enhance training stability. The activation 

function of the generator adopts the Leaky ReLU activation function. 
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The discriminator D   receives both real samples and samples generated by the 

generator and judges their authenticity, as shown in Figure 4. The discriminator’s network 

structure also includes layer normalization and Leaky ReLU activation functions, making 

the model more stable and be�er able to learn and generate synthetic samples that 

conform to the distribution of real EEG signal data. This improved architecture can 

effectively capture the complex features of the data, thereby enhancing the quality of the 

generated samples and improving training stability. 

Compared to the DCGAN and WGAN-GP models, our improvements mainly focus 

on the structures of the generator and discriminator and the loss function. First, we have 

improved the generator by increasing the output size of the fully connected layers, thereby 

enhancing the output resolution of the generator and making the generated images clearer 

and more diverse. Additionally, we introduced a Reshape layer to reshape the one-

dimensional vector into a high-dimensional tensor. This step not only helps to speed up 

the training process but also helps to retain more noise information, improving the 

expressive power of the generator and the diversity of the generated images. 

Second, we adjusted the discriminator by redesigning the structures of the 

convolutional layers and fully connected layers to be�er adapt to the input image 

resolution, improving its ability to recognize real and generated images. Furthermore, we 

replaced batch normalization with layer normalization, which helps alleviate the problem 

of mode collapse during training, improving training stability and the quality of the 

generated images. Additionally, we introduced a gradient penalty term, further 

enhancing the stability and training effectiveness of the model. 

In summary, our improvements mainly focus on increasing the output resolution of 

the generator, improving the structure of the discriminator, and introducing a gradient 

penalty term. These improvements make our DCGAN-GP model perform be�er in EEG 

signal data augmentation tasks, generating synthetic data that more closely aligns with 

the characteristics of real data, with higher quality and diversity. 

During the training process, we used the Adam optimizer for stochastic gradient 

descent, with a momentum parameter of 0.5 and a learning rate of 0.0002. We conducted 

a total of 2000 iterations to train the model. The selection of this architecture and these 

training details aims to improve the stability of the model and the quality of generated 

samples, in order to be�er generate artificial samples that conform to the distribution of 

real EEG signal data. 

 

Figure 3. Illustration of the architecture of the generator network. 
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Figure 4. Illustration of the architecture of the discriminator network. 

To provide a clearer description of the training process of the proposed DCGAN-GP 

model in the manuscript, we present detailed pseudocode implementation below. 

Algorithm 1 outlines the training algorithm of the DCGAN-GP model, including the 

training steps for the generator G  and the discriminator D , as well as the process of 

computing the loss function. 

Algorithm 1. The training algorithm for DCGAN-GP. 

1. Input: Input: Number of iterations N , discriminator D  per iteration, training iterations k , batch 

size m , gradient penalty weight  , discriminator update count limit criticn  

2. Randomly initialize generator G  network parameters G  and discriminator D  network 

parameters G  

3. 1: For i N do  

# Train the discriminator 

4. 1: For j k do  

# Collect mini-batch samples 

5. Randomly sample m samples 1 2{ , , , }mz z z  from the random noise distribution data ( )p z  

6. Randomly sample m  real samples 1 2{ , , , }mx x x  from the real distribution dataset 

( )datap x  

# Compute the random interpolation points for the gradient penalty term. 

7. Sample m  random numbers 1 2{ , , , }m    from a uniform distribution in the range [0,1]  

8. Construct interpolation samples ˆ (1 ) ( )i i i i ix x G z     

# Calculate the loss function of the discriminator and update the parameters 

9. Calculate the loss function of the discriminator 

10. Calculate the gradient penalty term 

11. The gradient of the discriminator model parameters with respect to D  is 

ˆ

2
ˆ ˆ~ ~ ~ 2

ˆ[ ( )] [ ( ( ))] [( ( ) 1) ]  
r z xD x P z P x P xD x D G z D x       

12. End  

# Train the generator 

13. Collecting m  samples 1 2{ , , , }mz z z  from the random noise distribution ( )p z  

# Calculating the generator’s loss function and updating parameters 

14. Calculating the generator’s loss function. 

15. Updating the generator model parameters G  with gradient [ ( ( ))]
G G iD G z     

16. End  

17. Output: Generator G  
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4. Experimental Verification Design 

4.1. Dataset Description 

To evaluate the performance of our proposed network model, we selected the BCI 

Competition IV 2b dataset [45], which is widely used in the field of motor imagery EEG 

signal classification. This dataset is provided by the Graz University of Technology Brain–

Computer Interface Laboratory and is specifically designed for motor imagery tasks. It 

includes EEG data recordings of 9 subjects performing left-hand and right-hand motor 

imagery tasks. During the experiment, data were collected using three electrode channels, 

C3, Cz, and C4, covering two motor imagery tasks (left hand and right hand). The first 3 

sets of data were used for training, consisting of 400 trials of motor imagery experiments; 

the last 2 sets of data were used as test data, consisting of 320 trials of motor imagery 

experiments. The experiment process included two paradigms: no feedback and feedback. 

Examples of the experimental process are shown in Figures 5 and 6. The first 2 sets of data 

each contained 120 trials without recognition result feedback; the last 3 sets of data each 

contained 160 trials with neural feedback of recognition results. The system would mark 

the screen with a green smiley face or a red frowny face according to the recognition result, 

indicating whether the imagined direction was correct. To ensure data accuracy, the EEG 

data recorded by the channels were bandpass filtered from 0.5 Hz to 100 Hz and sampled 

at a frequency of 250 Hz. Additionally, a 50 Hz notch filter was used to eliminate power 

line interference. We chose the BCI Competition IV 2b dataset primarily because it 

contains rich motor imagery task data and has undergone rigorous experimental design 

and preprocessing, ensuring the quality and applicability of the data. 

 

Figure 5. Example of the experiment process without feedback. 

 

Figure 6. Example of the experiment process with feedback. 

4.2. Evaluation of the CNN Model 

To evaluate our proposed GAN-based data augmentation approach, we employed 

two CNN classifiers for testing, namely ResNet10 and ResNet18. We compared the 

performance of each CNN model under two conditions: one being trained separately 
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using the original data from each subject (i.e., non-augmented data), and the other being 

trained using a combination of the original data and synthetic time–frequency images 

generated by GAN. 

The selection of neural network models plays a critical role in the performance and 

efficiency of deep learning systems. In our study, we chose to evaluate the ResNet-10 and 

ResNet-18 models due to their specific advantages and suitability for our task. 

Firstly, ResNet-10 and ResNet-18 are considered lightweight models compared to 

deeper ResNet architectures. This characteristic is particularly advantageous in our 

research, as we aim to strike a balance between model complexity and computational 

efficiency. By opting for these models, we could achieve satisfactory performance without 

compromising computational resources. 

Secondly, ResNet-10 and ResNet-18 have demonstrated strong performance in 

various image processing tasks, including image classification. Their effectiveness in 

handling complex data pa�erns while maintaining high accuracy and computational 

efficiency made them a�ractive choices for our study. 

Furthermore, the ease of training and debugging of these models was a significant 

factor in our decision-making process. ResNet-10 and ResNet-18 are known for their ease 

of training, allowing us to experiment with different hyperparameters and configurations 

effectively. 

Additionally, the wide availability of open-source implementations and pre-trained 

models for ResNet-10 and ResNet-18 contributed to our decision. Leveraging these 

existing resources facilitated the integration of these models into our research framework 

and enabled us to compare our results with other studies more effectively. 

Another crucial aspect that influenced our choice was the residual structure of 

ResNet-10 and ResNet-18. The residual connections in these models enable the learning 

of residual mappings, which helps in training deeper networks and mitigating overfi�ing, 

especially when dealing with small datasets such as EEG signals. This characteristic was 

particularly relevant to our study, as we aimed to control model complexity and enhance 

generalization performance. 

In summary, the selection of ResNet-10 and ResNet-18 was based on their lightweight 

nature, strong performance, ease of training, wide availability, and residual structure, 

which collectively contributed to the effectiveness of our EEG signal classification task. 

We utilized classification accuracy as the performance metric to assess the models’ 

performance, calculated as the ratio of correctly classified instances. Tables 1 and 2, 

respectively, present the detailed structures of the CNN models used for evaluation. Both 

models consist of convolutional layers, pooling layers, and fully connected layers. The 

convolutional layers are responsible for extracting features from input images, while the 

pooling layers compress data and parameters to reduce overfi�ing. Finally, the fully 

connected layers transform the output matrix into an n-dimensional vector to obtain the 

distribution of predictions for different classes. 

Table 1. ResNet-10 Network Architecture. 

Layers Filter Size Output Dimension Activation 

Input -- (32, 32, 1) -- 

Convolution (3, 3) (32, 32, 64) ReLU 

Maxpool (2, 2) (16, 16, 64) -- 

ResBlock 1 (3, 3) (16, 16, 64) ReLU 

ResBlock 2 (3, 3) (8, 8, 128) ReLU 

ResBlock 3 (3, 3) (4, 4, 256) ReLU 

ResBlock 4 (3, 3) (2, 2, 512) ReLU 

Avgpool (2, 2) (1, 1, 512) -- 

Output 

(Dense) 
-- 2 Softmax 
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Table 2. ResNet-18 Network Architecture. 

Layers Filter Size 
Output  

Dimension 
Activation 

Input -- (32, 32, 1) -- 

Convolution (3, 3) (32, 32, 64) ReLU 

ResBlock 1 (3, 3) (32, 32, 64) ReLU 

ResBlock 2 (3, 3) (32, 32, 64) ReLU 

ResBlock 3 (3, 3) (16 ,16, 128) ReLU 

ResBlock 4 (3, 3) (16, 16, 128) ReLU 

ResBlock 5 (3, 3) (8, 8, 256) ReLU 

ResBlock 6 (3, 3) (8, 8, 256) ReLU 

ResBlock 7 (3, 3) (4, 4, 512) ReLU 

ResBlock 8 (3, 3) (4, 4, 512) ReLU 

Avgpool (4, 4) (1, 1, 512) -- 

Output 

(Dense) 
-- 2 Softmax 

4.3. EEG Signal Preprocessing 

Research indicates that during motor imagery tasks, rhythmic brain activity occurs 

in the sensorimotor cortex, primarily concentrated in the mu and beta frequency bands. 

Therefore, we specifically focused on signal variations within these two frequency bands. 

In the preprocessing of EEG signals, we initially employed EEGLAB for signal processing. 

We selected three channels, C3, Cz, and C4, and performed independent component 

analysis (ICA) and signal filtering to retain frequency components ranging from 0.5 Hz to 

40 Hz. These channels recorded EEG signals from the cerebral cortex. 

Following signal processing, we transformed the data into grayscale spectrograms. 

Specifically, we utilized windows with a size of 128 points and an overlap ratio of 75%, 

employing 512 FFT points to achieve frequency resolution. We filtered the data within the 

frequency range of interest from 0.5 Hz to 40 Hz and adjusted the spectrograms of each 

channel to a size of 11 × 33. Finally, we vertically merged and overlaid the spectrograms 

of the three channels, C3, Cz, and C4, to output a spectrogram of size 32 × 32. 

The purpose of these preprocessing steps is to highlight the frequency range involved 

in the motor imagery tasks and to preserve useful EEG signal features to the maximum 

extent possible. This processing approach helps improve the quality and diversity of 

images generated by the DCGAN-GP model, making it more suitable for applications in 

brain–computer interface systems. 

5. Simulation Verification and Result Analysis 

5.1. Image Generation Analysis 

We conducted a comparative analysis between the spectrograms generated by the 

proposed DCGAN-GP and actual spectrograms derived from EEG recordings. Figure 7 

illustrates the spectrograms corresponding to right-hand and left-hand movements from 

real EEG recordings, alongside the sample images generated by the DCGAN-GP 

network’s generator. By comparing these images, we can observe the similarities between 

the generated spectra and the real spectra. For instance, during right-hand motor imagery, 

the low-frequency mu rhythm (8–12 Hz) in the C4 channel of real samples exhibits more 

prolonged activity and duration throughout the event compared to the left-hand motor 

imagery real samples. The spectrograms generated by the DCGAN-GP model already 

visually present contours and contrasts similar to real samples. Despite the presence of 

some noticeable irregular textures and a degree of lack of naturalness in the generated 

samples, they closely resemble real samples in the performance of mu rhythm (8–12 Hz) 

and beta rhythm (13–28 Hz). 
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However, solely relying on visual inspection cannot comprehensively assess the 

quality of the generated data. To thoroughly evaluate the quality of the generated EEG 

spectro-temporal features, we further combined the generated samples with real samples 

and utilized them for neural network classification training. By observing the final 

classification accuracy on the real test set, we could more accurately assess the quality of 

the generated data. 

 

Figure 7. (a) Real sample of right-hand movement; (b) generated sample of right-hand movement; 

(c) real sample of left-hand movement; (d) generated sample of left-hand movement. 

5.2. Classification Result Analysis 

In this section, we compare the performance of two evaluation networks trained 

using real data only and a combination of real and generated data. We first compare the 

performance when training solely with real data and then contrast it with the performance 

when training with a 1:1 mixture of real and generated data. Table 3 shows the 

classification accuracies (expressed as percentages) of different subjects under different 

conditions. 

Table 3. Comparison of Data Augmentation Results (%). 

Subject ResNet-10 ResNet-18 
DCGAN/Res

Net-10 

DCGAN/ResNet

-18 

CDCGAN 

[37]/ResNet-10 

CDCGAN 

[37]/ResNet-18 

DCGAN-

GP/ResNet-10 

DCGAN-

GP/ResNet-18 

S1 65.3 67.9 66.7 68.4 68.3 68.9 69.2 69.2 

S2 53.2 56.2 54.6 57.2 54.8 56.9 52.2 57.1 

S3 64.3 65.1 64.5 64.9 64.7 65.7 63.2 66.3 

S4 92.4 94.8 93.8 96.2 94.0 95.6 94.5 97.9 

S5 84.5 86.9 86.2 89.3 86.4 89.3 87.1 90.2 

S6 83.9 84.6 84.3 85.4 84.5 85.6 85.3 87.2 

S7 78.3 79.7 78.6 80.4 79.1 80.8 79.2 81.4 

S8 87.8 88.2 88.4 89.1 88.8 90.1 89.3 90.1 

S9 85.3 87.1 86.2 86.9 85.7 87.2 86.4 88.2 

Mean 76.7 78.7 77.3 79.2 78.3 80.0 78.4 81.2 
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From individual subjects, it can be observed that the classifier’s performance is 

significantly improved in most cases when using the data generated by the DCGAN-GP 

mixed with real data. For instance, on ResNet-10, the classification accuracy for subject S1 

shows the most notable improvement, increasing from 65.3% to 69.2%; similarly, subject 

S4 also experiences a significant improvement. Similar trends are observed on ResNet-18 

as well, such as subject S5’s classification accuracy increasing from 86.9% to 90.2%, and 

subject S6’s classification accuracy rising from 84.6% to 87.2%. In the performance of 

individual subjects, some subjects exhibit be�er classification results after data 

augmentation with the DCGAN-GP, while the improvement for others is less pronounced. 

However, overall, the increase in average classification accuracy indicates the 

effectiveness of our method in improving the classification performance of brain–

computer interface applications. 

The ResNet-10’s average classification accuracy improved by 1.7 percentage points, 

and that of the ResNet-18’s by 2.5 percentage points when using the DCGAN-GP-

generated data mixed with real data. Compared to using data generated by traditional 

DCGANs and CDCGANs, the use of the DCGAN-GP led to an average increase in 

classification accuracy of 1.1 and 0.1 percentage points, respectively, for ResNet-10, and 

2.0 and 1.2 percentage points, respectively, for ResNet-18. These results indicate that our 

improved data augmentation method enhances the robustness and diversity of the models, 

enabling them to generate more diverse artificial samples that be�er match the 

distribution of real data, ultimately effectively improving the performance of the 

evaluation network. Additionally, we also observed that the performance improvement 

of ResNet-18 was higher than that of ResNet-10 when using our improved data 

augmentation method, indicating that our improvements have a more significant effect 

on more complex network structures. Therefore, our research results fully validate the 

effectiveness of our improvements to the DCGAN network in improving the quality of 

generated data and the performance of evaluation networks. 

In summary, our improved method not only increases classification accuracy but also 

enhances the model’s adaptability to different samples. By introducing gradient penalty 

and layer normalization, we effectively alleviate the problem of mode collapse during 

model training and more efficiently capture the distribution characteristics of the data, 

thereby improving the quality and diversity of the generated data. This diversity is crucial 

for training robust and comprehensive models, and it helps provide valuable insights for 

research in brain–computer interfaces and other related fields. 

5.3. Data Mixing Ratio and Classification Performance 

In this section of the experiment, we further investigated the impact of mixing 

different proportions of generated samples with real samples on the classification 

accuracy of the ResNet-18 network. Through this series of experiments, our aim was to 

evaluate the effect of generated samples on classifier performance under different mixing 

ratios and validate the effectiveness of our proposed DCGAN-GP model in enhancing 

classification performance. 

As shown in the results of Figure 8, we observed a gradual increase in the 

classification accuracy of the ResNet-18 network as the proportion of generated samples 

increased. Specifically, when mixing 0.5 times the generated time–frequency feature 

samples, the classification accuracy increased by 1.49 percentage points, and when mixing 

1 times the generated samples, it increased by 2.51 percentage points. This indicates that 

an appropriate number of generated samples can increase the diversity of the dataset, 

helping the classifier to be�er capture pa�erns and features in the dataset. However, when 

the proportion of generated samples to real samples increased to 1.5 times, the 

classification performance began to saturate and stabilized at around 81.4%. This may be 

because too many generated samples introduced too much noise, affecting the 

performance of the classifier. Therefore, in practical applications, a balance needs to be 
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struck between the quantity and quality of generated samples to achieve the best 

classification performance. 

 

Figure 8. Classification performance with different proportions of generated samples. 

Furthermore, our experimental results also validate the effectiveness of our improved 

data augmentation method in improving classification performance. Compared to data 

generated by traditional DCGAN networks, our improved method generates data that are 

closer to the distribution of real data, which is beneficial for improving the generalization 

ability of the classifier. This further demonstrates the DCGAN-GP model’s ability to more 

effectively improve the performance of EEG signal classification. 

Overall, our experimental results provide important insights into the impact of data 

mixing ratios on classification performance, and further validate the effectiveness of our 

improved data augmentation method. In practical BCI applications, our research results 

provide valuable insights for selecting appropriate data augmentation strategies. 

Depending on the specific application requirements, different data mixing ratios and 

other data augmentation methods can be used to optimize the performance of the 

classifier. Future research could further explore adaptive data mixing strategies based on 

specific application requirements to further improve the performance and stability of BCI 

systems. 

6. Conclusions 

In this study, we proposed a data augmentation method based on an improved 

DCGAN-GP model for generating two-dimensional grayscale spectro-temporal images of 

EEG signals. By combining generated data with real data for training, we have 

demonstrated that this approach can improve the classification accuracy of EEG signals. 

Our main innovations include optimizing the model’s loss function and making stability 

improvements to the generator and discriminator structures of the DCGAN model. 

Through the analysis of experimental results, we found that training with generated data 

can enhance the performance of the evaluation network, thereby improving the accuracy 

of classifying EEG signals. Compared to training with only real data, mixing the datasets 

resulted in be�er classification performance across different subjects. This suggests that 

our proposed data augmentation method can effectively address the issue of insufficient 

training due to limited data in EEG signal classification tasks. 
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Our study also revealed several advantages of the improvements. Firstly, the 

introduction of generated data expands the training dataset, which helps improve the 

model’s generalization ability. Secondly, as the quality of generated data continues to 

improve, the differences between generated data and real data decrease, which helps to 

improve the performance of the model, especially when facing noise, interference, and 

individual differences in the real world. By introducing more complex loss functions or 

increasing data diversity, the model can become more adaptable and robust. Finally, our 

method is not only applicable to EEG signal classification tasks but can also be extended 

to other fields such as image processing and signal processing. Future directions include 

further optimizing model structures and training parameters, and exploring more data 

augmentation methods and training strategies to further enhance the quality and diversity 

of generated data. Future research could consider integrating EEG signals with other 

biosignals (such as eye movement data, electromyography signals) or non-biological 

signals (such as images, speech) to improve the performance and diversity of brain–

computer interface systems. By designing multimodal generation models, more 

comprehensive and accurate data augmentation can be achieved. We believe that through 

continued effort and innovation, our research will make valuable contributions to the 

development and application of brain–computer interface technology. 
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