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Abstract: Chronic opioid treatments dysregulate the glutamatergic system, inducing a hypergluta-
matergic state in mesocorticolimbic brain regions. This study investigated the effects of exposure to
hydrocodone overdose on locomotor activity, expression of target proteins related to the glutamatergic
system, signaling kinases, and neuroinflammatory factors in the nucleus accumbens. The locomotor
activity of mice was measured using the Comprehensive Laboratory Animal Monitoring System
(CLAMS). CLAMS data showed that exposure to hydrocodone overdose increased locomotion activ-
ity in mice. This study tested ceftriaxone, known to upregulate major glutamate transporter 1 (GLT-1),
in mice exposed to an overdose of hydrocodone. Thus, ceftriaxone normalized hydrocodone-induced
hyperlocomotion activity in mice. Furthermore, exposure to hydrocodone overdose downregulated
GLT-1, cystine/glutamate antiporter (xCT), and extracellular signal-regulated kinase activity (p-
ERK/ERK) expression in the nucleus accumbens. However, exposure to an overdose of hydrocodone
increased metabotropic glutamate receptor 5 (mGluR5), neuronal nitric oxide synthase activity (p-
nNOS/nNOS), and receptor for advanced glycation end products (RAGE) expression in the nucleus
accumbens. Importantly, ceftriaxone treatment attenuated hydrocodone-induced upregulation of
mGluR5, p-nNOS/nNOS, and RAGE, as well as hydrocodone-induced downregulation of GLT-1,
xCT, and p-ERK/ERK expression. These data demonstrated that exposure to hydrocodone overdose
can cause dysregulation of the glutamatergic system, neuroinflammation, hyperlocomotion activity,
and the potential therapeutic role of ceftriaxone in attenuating these effects.

Keywords: ceftriaxone; GLT-1; opioids; glutamate; xCT

1. Introduction

Chronic treatment with opioids alters several neurotransmitters, particularly gluta-
mate, in the central and peripheral systems. Many opioids are used for the management
of pain. Among these opioids, hydrocodone is a semisynthetic and potent opioid agonist
with a high abuse potential similar to fentanyl and morphine. Along with other opioids,
hydrocodone is among the most prescribed opioids in the United States to treat moderate
to severe pain [1]. Our current study focused on investigating the effects of exposure
to hydrocodone overdose on locomotor activity and the expression of target glutamate
transporters and signaling in one of the brain regions of the reward circuit, such as the
nucleus accumbens (NAc).

Repeated exposure to drugs of abuse is known to increase motor activity, leading to
behavioral hypersensitivity. For example, cocaine, amphetamines, morphine, ethanol, and
nicotine have been reported to cause behavioral hypersensitivity [2–5]. Behavioral hyper-
sensitivity induced by drugs of abuse relies on neural sensitivity and neuroplasticity within
the reward circuit of the brain [6]. Other studies have shown that exposure to opioids,
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including hydrocodone, induces locomotor sensitization [7,8]. Although a previous study
from our laboratory showed that ceftriaxone, a beta-lactam antibiotic known to upregulate
the major glutamate transporter GLT-1, attenuated reinstatement to hydrocodone using con-
ditioned place preference [9], the effect of ceftriaxone in attenuating hydrocodone-induced
locomotor sensitization is less studied. Thus, in this study, we used the Comprehensive
Laboratory Animal Monitoring System (CLAMS) to determine locomotion activity in
mice exposed to repeated doses of hydrocodone with a challenge at a higher dose, and
ceftriaxone treatment by breaking the infrared beam using infrared photocell technology.

We further focused on investigating the glutamatergic system. Glutamate function
is regulated by several transporters and receptors, including the metabotropic glutamate
receptor 5 (mGluR5), glutamate transporter 1 (GLT-1), known to regulate the majority of
extracellular glutamate, and cystine/glutamate antiporter (xCT), which regulates gluta-
mate output from astrocytes [10,11]. mGluR5 is highly expressed in the NAc [12], and it
is an important mediator of synaptic plasticity and excitatory neurotransmission [13,14].
Exposure to substances of abuse downregulates GLT-1 and xCT expression in several brain
regions, and beta-lactams (e.g., ceftriaxone) attenuate these effects [15]. Indeed, a study
from our laboratory indicated that ceftriaxone treatment attenuates hydrocodone-induced
downregulation of GLT-1 and xCT expression in mesocorticolimbic brain regions, as well
as hydrocodone-induced upregulation of mGluR5 expression in chronic hydrocodone-
exposed mice [16]. Increased GLT-1 expression by beta-lactams can lead to a sustained
reduction in extracellular glutamate concentrations in the NAc [17] and consequently re-
duce the activation of mGluR5 downstream pathways, thereby reducing neuroexcitotoxicity.
Therefore, in this study, we tested whether the beta-lactam ceftriaxone attenuates the effects
of exposure to hydrocodone overdose on the expression of GLT-1, xCT, and mGluR5 in the
NAc. We further tested the effects of exposure to hydrocodone overdose in the signaling
pathways involved in neuronal nitric oxide synthase (nNOS) activity, the extracellular
signal-regulated kinases (ERK) signaling pathway, and the receptor for advanced glycation
end products (RAGE) as a signaling inflammatory marker, and whether ceftriaxone attenu-
ates these effects. Additionally, this study explored the modulatory effects of ceftriaxone
against hydrocodone-induced hyperlocomotion activity using CLAMS.

2. Materials and Methods
2.1. Animal Use Approval

All experimental procedures were approved by the Institutional Animal Care and Use
Committee (IACUC) at The University of Toledo, protocol number 400155 (approved 2
August 2022). This protocol follows the guidelines for the use of animals in research, as
described in the National Institutes of Health’s Guide for the Care and Use of Laboratory
Animals. Mice were intraperitoneal (i.p.) injected and handled with care to prevent any
distress and minimize any pain. The mice were monitored every day throughout the study,
particularly when hydrocodone treatment was performed, and this was to determine any
potential health issues. The mice were euthanized using CO2 inhalation and decapitated at
the end of the experiment.

2.2. Animal and Study Design

C57BL/6 mice were used in this study. These mice were reported to show robust
differences in drug dependence-relevant behaviors, including locomotor sensitization to
substance abuse [18,19]. Eight-week-old male C57BL/6 mice (Jackson Laboratory, Bar
Harbor, ME, USA, 25–30 g) were grouped into three groups: (1) control group (n = 7–8);
(2) hydrocodone group (n = 7–8); and (3) hydrocodone–ceftriaxone group (n = 7–8). The
animals were housed in a room maintained at 21 ◦C with a 12/12 h light/dark cycle.
Hydrocodone (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in saline at 20 mg/kg
and 40 mg/kg, and ceftriaxone (Pfizer, New York, NY, USA) was dissolved in saline at 200
mg/kg. For acclimatation purposes, mice were handled for three days prior to the start of
the experiment. The control mice received an i.p. injection of saline (vehicle) every other
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day from Day 1 to Day 9. Groups 2 and 3 received hydrocodone (20 mg/kg, i.p.) on Days 1,
3, 5, and 7. On Day 9, mice received an overdose of hydrocodone (i.p.) at 40 mg/kg. In
addition, group 3 received ceftriaxone (200 mg/kg, i.p.) on Days 5–9, and groups 1 and
2 received equivalent volume of vehicle saline (i.p.) on Days 5–9. On Day 7 of the drug
treatment, the mice were placed in Minispec NMR, which is used to measure the lean and
fat mass of mice (Figure 1). It is important to note that 40 mg/kg (i.p.) of hydrocodone was
considered a sublethal dose since we found that 45 mg/kg (i.p.) of hydrocodone was lethal
in the mice (n = 3). Thus, we have chosen to test 40 mg/kg (i.p.) of hydrocodone, which
was considered as a higher and sublethal dose.
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monitoring system.

2.3. Comprehensive Laboratory Animal Monitoring System (CLAMS)

Mice were placed individually in a Comprehensive Laboratory Animal Monitoring
system (CLAMS; Columbus Instruments, Columbus, OH, USA) and had access to free food
and water from day 7 to day 11 (Figure 1). The mice were placed at room temperature
under alternating 12 h light and 12 h dark cycles. After adaptation for one day, individual
locomotor activity was detected using IR photocell technology.

2.4. Brain Tissue Extraction

The mice were sacrificed using CO2 inhalation euthanasia procedure on Day 12
(Figure 1). The brains were dissected out and frozen on dry ice and further stored at
−80 ◦C. NAc (core and shell) was extracted using a cryostat machine (Leica CM1950, Leica,
Deer Park, IL, USA). The NAc was selected using the Brain Mouse Atlas [20]. NAc samples
were stored at −80 ◦C for determination of target proteins using a Western blot assay.

2.5. Western Blot Analyses

Protein expression of phospho-nNOS, nNOS, RAGE, phospho-ERK, ERK, xCT, GLT-1,
mGluR5, and β-tubulin was determined in the NAc (core and shell) using a Western blot
assay. NAc tissues from all groups were lysed using lysis buffer (50 mM Tris-HCl, 150 mM
NaCl, 1 mM EDTA, 0.5% NP-40, 1% Triton, 0.1% SDS) with phosphatase and protease
inhibitors. Quantification of the amount of protein was performed using a detergent-
compatible protein assay (Bio-Rad, Hercules, CA, USA). Protein from each sample with
equal amounts was mixed with laemmili dye and further loaded onto 10% Tris-glycerine
gel for separation of loaded proteins using an electrophoresis apparatus. Separated proteins
were transferred from the gels into a polyvinylidene difluoride (PVDF) membrane. The
PVDF membranes were incubated in 5% fat-free milk in Tris-buffered saline with Tween 20
(TBST) for 30 min at room temperature. The membranes were further incubated overnight
at 4 ◦C with primary antibodies: rabbit anti-phospho-ERK (1:1000, Abcam, Waltham, MA,
USA, ab201015), rabbit anti-ERK (1:1000, Abcam, Waltham, MA, USA, ab17942), rabbit anti-
Phospho-nNOS (1:1000, Abcam, Waltham, MA, USA, ab16650), rabbit anti-nNOS (1:1000,
Abcam, Waltham, MA, USA, ab76067), rabbit anti-RAGE (1:1000, Abcam, Waltham, MA,
USA, ab37647), rabbit anti-GLT-1 (1:5000, Abcam, Waltham, MA, USA, ab205248), rabbit
anti-xCT (1:1000, Abcam, Waltham, MA, USA, ab125186), and rabbit anti-mGluR5 (1:1000,
Abcam, Waltham, MA, USA, ab76316). We used mouse anti-β-tubulin (1:1000, BioLeagend,
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San Diego, CA, USA) as a control loading protein. The next day, the membranes were
washed with TBST five times and incubated with the corresponding secondary antibody
(1:4000) for 60 min. The membranes were washed with TBST and dried for further analysis.
The membranes were then incubated in chemiluminescent reagents (Super Signal West
Pico, Perce Inc., Appleton, WI, USA) for 1–2 min. The GeneSys imaging system (Syngene,
Frederick, MD, USA) was used for blot development and digitization. The expression of
phospho-nNOS, nNOS, RAGE, phospho-ERK, ERK, xCT, GLT-1, mGluR5, and β-tubulin
blots were quantified and analyzed using ImageJ software (Version 1.53t 24). The control
vehicle group was reported as 100% for determination of changes in the expression of
selected target proteins in the NAc, as described previously [21,22].

2.6. Statistical Analyses

GraphPad Prism software (Version 10) was used to perform statistical analyses of the
expression of the studied proteins. The analyses of Western blot data were conducted using
one-way ANOVA followed by the Newman–Keuls post hoc multiple comparison test. The
data were presented and analyzed as a percentage (relative to control values) ratio to the
loading control protein, β-tubulin. The data are reported for a significance level of p < 0.05.

3. Results
3.1. Effects of Exposure to Hydrocodone Overdose and Ceftriaxone Treatment on
Locomotion Activity

We evaluated the effects of exposure to hydrocodone overdose and ceftriaxone on
locomotion activity. There was a significant difference in x activity (n = 7–8 mice per group,
F2,9 = 12.97, p < 0.01, Figure 2A), x ambulatory (n = 7–8 mice per group, F2,11 = 8.394,
p < 0.01, Figure 2B), and z activity (n = 7–8 mice per group, F2,11 = 37.13, p < 0.0001, Fig-
ure 2C) among all tested groups. The Newman–Keuls post hoc test analysis demonstrated
that x activity (p < 0.01, Figure 2A), x ambulatory (p < 0.01, Figure 2B), and z activity
(p < 0.0001, Figure 2C) significantly increased in the hydrocodone group compared to the
control group. Importantly, treatment with ceftriaxone normalized x activity (p < 0.05,
Figure 2A) and z activity (p < 0.001, Figure 2C) in the mice. Significant changes in loco-
motion activity were found between the control group and the hydrocodone–ceftriaxone
group in x activity (p < 0.05), x ambulatory (p < 0.05), and z activity (p < 0.05) (Figure 2).
However, no significant change was detected in x ambulatory between the hydrocodone
and hydrocodone–ceftriaxone groups (Figure 2B).
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Figure 2. Effects of exposure to hydrocodone overdose on locomotion activity in mice. (A) Statistical
analysis revealed that x activity increased in the hydrocodone-treated group compared to the control
group, while treatment with ceftriaxone (200 mg/kg, i.p.) reduced x activity compared to the
hydrocodone-treated group. (B) Statistical analysis demonstrated that x ambulatory increased in the
hydrocodone-treated group compared to the control group, and there was no significant difference in
x ambulatory in the hydrocodone–ceftriaxone group compared to the hydrocodone-treated group.
(C) Statistical analysis revealed that z activity increased in the hydrocodone-treated group compared
to the control group, and ceftriaxone treatment (200 mg/kg, i.p.) reduced z activity compared to the
hydrocodone-treated group. Data from the control group are represented as 100%. Each column is
expressed as mean ± S.E.M (n = 7–8/group), (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001).
Hyd, hydrocodone.
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3.2. Effects of Exposure to Hydrocodone Overdose and Ceftriaxone on GLT-1, xCT, and mGluR5
Protein Expressions in the NAc

The effects of exposure to hydrocodone overdose on GLT-1, xCT, and mGluR5 ex-
pression were determined in the NAc. Immunoblot analyses revealed significant differ-
ences in the expression of GLT-1 (F2,14 = 7.837, p < 0.01, Figure 3A), xCT (F2,15 =15.90,
p <0.001, Figure 3B), and mGluR5 (F2,13 = 66.11, p < 0.0001, Figure 3C) in the NAc among
all groups. Statistical analyses demonstrated downregulation of the expression of GLT-1
(p < 0.01, Figure 3A) and xCT (p < 0.001, Figure 3B) in the hydrocodone-treated group
compared to the control group. Furthermore, exposure to hydrocodone overdose signifi-
cantly increased mGluR5 expression in the NAc (p < 0.05, Figure 3C) in the hydrocodone
group compared to the control group. Ceftriaxone treatment normalized hydrocodone-
induced downregulation in GLT-1 (p < 0.05, Figure 3A) and xCT (p < 0.001, Figure 3B)
expression and attenuated the effect of hydrocodone exposure on mGluR5 expression
(p < 0.0001, Figure 3C). There were no changes in the expression of GLT-1 (Figure 3A) and
xCT (Figure 3B) between the control saline and hydrocodone–ceftriaxone groups. However,
there were significant changes in mGluR5 expression (p < 0.0001, Figure 3C) between the
control and hydrocodone–ceftriaxone groups.
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Figure 3. Effects of exposure to hydrocodone overdose on GLT-1, xCT, and mGluR5 expression in
the NAc. (A) Western blots for GLT-1 and β-tubulin in the NAc. One-way ANOVA followed by
the Newman–Keuls multiple comparisons test showed downregulation of GLT-1 expression in the
hydrocodone-treated group compared to the control group, and ceftriaxone treatment (200 mg/kg,
i.p.) normalized GLT-1 expression in the NAc compared to the hydrocodone-treated group. (B) One-
way ANOVA followed by the Newman–Keuls multiple comparisons test revealed downregulation of
xCT expression in the hydrocodone-treated group compared to the control group, and ceftriaxone
treatment (200 mg/kg, i.p.) normalized xCT expression in the NAc compared to the hydrocodone-
treated group. (C) One-way ANOVA followed by the Newman–Keuls multiple comparisons test
revealed upregulation of mGluR5 expression in the hydrocodone-treated group compared to the
control group, and ceftriaxone treatment (200 mg/kg, i.p.) attenuated this effect. There was also
a significant difference between the control and hydrocodone–ceftriaxone-treated groups in the
expression of mGluR5 in the NAc. Data from the control group are represented as 100%. Each column
is expressed as mean ± S.E.M (n = 7–8/group), (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001).
GLT-1, glutamate transporter 1; xCT, cystine/glutamate antiporter; mGluR5, metabotropic glutamate
receptor subtype 5; Hyd, hydrocodone.

3.3. Effects of Exposure to Hydrocodone Overdose and Ceftriaxone on nNOS and ERK Protein
Expression in the NAc

We next explored the effects of exposure to hydrocodone overdose and ceftriaxone
on the protein expression of nNOS and ERK in the NAc. One-way ANOVA showed a
significant difference in nNOS (F2,15 = 42.44, p < 0.0001, Figure 4A) and ERK (F2,15 = 14.10,
p < 0.001, Figure 4B) expression among all tested groups in the NAc. Newman–Keuls post
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hoc analyses revealed that hydrocodone exposure upregulated nNOS expression in the
NAc compared to the control group (p < 0.05, Figure 4A). The analysis also revealed that
hydrocodone exposure downregulated ERK expression compared to the control group
(p < 0.001, Figure 4B). Importantly, treatment with ceftriaxone significantly attenuated
hydrocodone-induced upregulation of nNOS (p < 0.0001, Figure 4A) and hydrocodone-
induced downregulation of ERK (p < 0.05, Figure 4B) compared to the hydrocodone group.
In addition, significant differences were observed when comparing the control group with
the hydrocodone–ceftriaxone group in both nNOS (p < 0.0001, Figure 4A) and ERK (p < 0.05,
Figure 4B).
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Figure 4. Effects of exposure to hydrocodone overdose on the expression of nNOS and ERK in
the NAc. (A) Western blots for p-nNOS and NOS in the NAc. One-way ANOVA followed by the
Newman–Keuls multiple comparisons test revealed that hydrocodone exposure increased nNOS
expression compared to the control group, and ceftriaxone treatment (200 mg/kg, i.p.) decreased
nNOS expression in the NAc compared to the hydrocodone group. (B) Western blots for p-ERK
and ERK in the NAc. One-way ANOVA followed by the Newman–Keuls multiple comparisons test
revealed that hydrocodone exposure downregulated ERK expression compared to the control group,
and ceftriaxone treatment (200 mg/kg, i.p.) upregulated ERK expression in the NAc compared to the
hydrocodone group. Data from the control group are represented as 100%. Each column is expressed
as mean ± S.E.M (n = 7–8/group), (* p < 0.05, *** p < 0.001 and **** p < 0.0001). nNOS, neuronal nitric
oxide synthase; ERK, extracellular signal-regulated kinases; Hyd, hydrocodone.

3.4. Effects of Exposure to Hydrocodone Overdose and Ceftriaxone on RAGE Protein Expression in
the NAc

Lastly, we tested the effects of hydrocodone, and hydrocodone–ceftriaxone on RAGE
expression. One-way ANOVA analysis demonstrated a significant difference in the ex-
pression of RAGE in the NAc among all tested groups (F2,15 = 4.277, p < 0.05, Figure 5).
Newman–Keuls post hoc analysis revealed that hydrocodone exposure increased RAGE
expression in the NAc compared to the control group (p < 0.05), and ceftriaxone treatment
normalized this effect (p < 0.05) (Figure 5).
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sion was upregulated in the hydrocodone group compared to the control group, while ceftriaxone
(200 mg/kg) downregulated RAGE expression in the NAc compared to the hydrocodone group.
Data from the control group are represented as 100%. Each column is expressed as mean ± S.E.M
(n = 7–8/group), (* p < 0.05). RAGE, receptor for advanced glycation end products; Hyd, hy-
drocodone.

4. Discussion

In the current study, the effects of exposure to hydrocodone overdose on locomotion
activity were investigated, and we determined whether ceftriaxone could modulate changes
in locomotion activity in mice. Using CLAMs, we found that exposure to hydrocodone
overdose increases locomotion activity in mice. In this study, we aimed to establish a hy-
drocodone overdose mouse model using CLAMS. We used 20 mg/kg (i.p.) of hydrocodone
every other day (four i.p. injections) and then challenged the mice with a sublethal dose
of hydrocodone (40 mg/kg, i.p.) since 45 mg/kg (i.p.) of hydrocodone was lethal. Thus,
we investigated whether ceftriaxone attenuates the effects of sublethal hydrocodone dose
in locomotor activity and the changes in the expression of target proteins. Hydrocodone-
induced hyperlocomotion activity is consistent with studies demonstrating that exposure
to morphine and fentanyl increases locomotor activity in rats [23,24]. Hyperlocomotion
activity caused by drugs of abuse is known as locomotion sensitization. This behavioral
sensitization is thought to underlie some aspects of drug dependence and is related to
dopaminergic systems, which are implicated in motor function and reward [25,26]. Impor-
tantly, the present results revealed that treatment with the beta-lactam ceftriaxone, which is
known to upregulate GLT-1 expression, significantly reduces hydrocodone-induced hyper-
locomotion activity in mice. This is consistent with other studies showing that ceftriaxone
attenuates the development of behavioral sensitization produced by chronic cocaine and
amphetamine exposures [27,28]. These latter studies supported our finding (Figure 2)
that ceftriaxone is associated with normalizing behavioral sensitization upon exposure to
hydrocodone overdose in mice [29]. In this present study, we tested only male mice, as the
aim was to establish a model of hydrocodone overdose using CLAMS and to determine
whether ceftriaxone attenuates the effect of hydrocodone exposure, particularly with a
higher dose. Further studies are warranted to investigate the effects of extended duration
of exposure to opioids in the brains of male as well as female mice for determination of sex
difference. In addition, further studies are warranted to determine the effects of different
doses of hydrocodone and ceftriaxone, as well as to test a novel beta-lactam non-antibiotic
such as MC-100093, which has been shown to be protective in the brain of rats exposed to
ethanol [22].
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Increased extracellular glutamate concentrations at the synaptic cleft can lead to gluta-
mate neuroexcitotoxicity, which might be associated with certain neuroinflammatory and
neurodegenerative diseases [30–32]. Therefore, maintaining glutamate homeostasis is very
important. GLT-1 and xCT are highly expressed in astrocytes and help remove excess extra-
cellular glutamate concentrations from the synaptic cleft. Hydrocodone exposure has been
associated with reduced GLT-1 and xCT, resulting in an elevation of extracellular glutamate
concentrations in the NAc [28]. Previous studies from our laboratory and others have
demonstrated that a reduction in GLT-1 expression in the brain is associated with chronic
exposure to substances of abuse [33–35]. Furthermore, we recently reported that chronic
hydrocodone exposure induces downregulation of GLT-1 and xCT expression in the meso-
corticolimbic brain region, and that ceftriaxone treatment attenuates hydrocodone-induced
downregulation of GLT-1 and xCT expression [16]. These findings are consistent with our
current results showing downregulation of GLT-1 and xCT in the NAc following exposure
to hydrocodone overdose. Importantly, ceftriaxone treatment restored GLT-1 and xCT
expression in the NAc. Therefore, the current and previous findings suggest that chronic
exposure to hydrocodone overdose may lead to dysregulation of glutamate homeostasis
in the brain and that this effect can be attenuated by ceftriaxone treatment. Alternatively,
we investigated the effects of hydrocodone and ceftriaxone on the expression of mGluR5
in the NAc. mGluR5 is highly expressed in the brain and is involved in mediating the po-
tentiating effects of opioids [36–38]. Previous studies from our laboratory and others have
revealed an increase in mGluR5 expression in the mesocorticolimbic brain regions during
chronic exposure to hydrocodone and in morphine place preference paradigms [16,39].
Our results showed that mGluR5 increased in the NAc following exposure to hydrocodone
overdose. Hydrocodone-induced upregulation of mGluR5 expression was attenuated with
ceftriaxone treatment. Glutamate acts on mGluR, which is coupled to intracellular second
messengers via G proteins, guanine nucleotide regulatory, or phosphorylation of MAP
kinase [40,41]. Activation of mGluR5 may result in cellular depolarization and increased
neuronal excitability. mGluR5 is positively coupled to phosphatidylinositol (PI) hydrolysis,
leading to the activation of protein kinase C and increasing intracellular calcium ions
Ca2+ [42–44]. The increase in intracellular calcium ions may induce the production of nitric
oxide (NO) through Ca2+/calmodulin activation of nNOS, and high NO concentration can
trigger numerous downstream neurotoxic cascades. It has been shown in studies by others
and us that nNOS activity (phosphorylated nNOS resulting in a higher p-nNOS/nNOS
ratio) increases following cue-induced reinstatement of amphetamine, cocaine seeking, and
chronic ethanol exposure in the NAc of mice and rats [45–47]. These studies support our
finding that the p-nNOS/nNOS ratio increased in the NAc after exposure to hydrocodone
overdose. Importantly, ceftriaxone treatment reversed the effects of hydrocodone-induced
upregulation of the p-nNOS/nNOS ratio.

This study demonstrated that exposure to hydrocodone overdose is accompanied
by a decreased phosphorylation of ERK in the NAc and that this effect was attenuated
with ceftriaxone treatment. This is consistent with previous findings from our laboratory
showing that ceftriaxone attenuates hydrocodone-induced downregulation of p-ERK ex-
pression in the mesocorticolimbic brain regions [16]. ERK is involved in the regulation
of GLT-1 transcription through the initiation of nuclear transcription factor-κβ (NF-κβ)
and cAMP response element-binding protein (CREB). Notably, nNOS-derived NO can also
regulate synaptic plasticity by inducing the ERK signaling pathway [48]. A prior study
indicated that the inhibition of the ERK signaling pathway is due to the generation of free
radicals upon the activation of nNOS in vitro [49]. These studies supported our findings
that downregulation of GLT-1 expression is associated with increased nNOS activity and
decreased ERK expression in the NAc of mice exposed to hydrocodone overdose.

Furthermore, this study investigated the RAGE signaling pathways with exposure
to hydrocodone overdose and ceftriaxone treatment. The RAGE is known to induce
neuroinflammation through activation of the NF-κB signaling pathway [50–52]. Our current
analysis showed that exposure to hydrocodone overdose increased RAGE expression
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in the NAc, indicating the role of inflammatory factors in opioid overdose events and
further validating the induction of brain inflammation. Interestingly, ceftriaxone attenuated
hydrocodone-induced increases in RAGE expression. Studies from other laboratories
confirmed our findings, demonstrating that pharmacological inhibition of RAGE attenuated
neuroinflammation in the brain [53–55].

We propose here that activation of the mGluR5-nNOS-ERK pathway reduces GLT-
1 expression, leading to excessive extracellular glutamate concentrations in the brain,
thereby increasing neuroexcitotoxicity (Figure 6). Glutamate also binds to the N-methyl-d-
aspartate receptor (NMDAR) and activates the enzyme nNOS to produce NO. Increased
NO expression inhibits ERK production and inactivates the downstream signaling pathway
of ERK (Figure 6). Furthermore, hydrocodone upregulates RAGE expression, leading to
neuroinflammation.
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Figure 6. Schematic representation summarizing the effects of exposure to hydrocodone overdose
on the mGluR5-nNOS-ERK pathway and GLT-1, xCT, and RAGE expression in the NAc. Exposure
to hydrocodone overdose may increase synaptic glutamate release, resulting in an increase in ex-
tracellular glutamate concentrations. Under a hyper-glutamatergic state, mGluR5 and NMDAR
are overstimulated, thereby increasing intracellular calcium and subsequently upregulating nNOS
activity. Activation of nNOS activity can lead to inhibition of the downstream ERK signaling pathway.
Additionally, exposure to hydrocodone overdose is associated with an increase in the inflammatory
response, such as upregulation of RAGE. Ceftriaxone treatment attenuates hydrocodone-induced
mGluR5-nNOS-ERK pathway activation, glutamatergic system dysregulation, and RAGE upreg-
ulation. (Blue arrows indicate the downstream pathways; Red arrows indicate upregulation or
downregulation of all target proteins or markers).

5. Conclusions

Exposure to hydrocodone overdose induces hyperlocomotion activity in mice. Ceftri-
axone treatment successfully attenuates hydrocodone-induced hyperlocomotion activity.
In addition, exposure to hydrocodone overdose decreases GLT-1 and xCT expression in
the NAc, thereby disrupting glutamate homeostasis. Increased extracellular glutamate
concentrations at the synaptic cleft may overstimulate mGluR5 and increase nNOS activity.
As observed in this study, activation of nNOS activity can lead to inhibition of the ERK
signaling pathway. Furthermore, exposure to hydrocodone overdose increases RAGE ex-
pression, thereby inducing neuroinflammation in the brain. However, ceftriaxone treatment
attenuates hydrocodone-induced upregulation of mGluR5, NOS activity, and RAGE, as
well as hydrocodone-induced downregulation of GLT-1, xCT, and ERK expression. Future
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studies are warranted to investigate the beneficial effects of other novel synthetic beta-
lactams (non-antibiotics), and longer exposure of doses of hydrocodone on opioid-induced
hyperlocomotion activity, dysregulation of glutamatergic systems, and neuroinflammation.
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