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Abstract: Anorexia nervosa is associated with impaired cognitive flexibility and central coherence,
i.e., the ability to provide an overview of complex information. Therefore, the aim of the present study
was to evaluate EEG features elicited from patients with anorexia nervosa and healthy controls during
mental tasks (valid and invalid Aristotelian syllogisms and paradoxes). Particularly, we examined
the combination of the most significant syllogisms with selected features (relative power of the time–
frequency domain and wavelet-estimated EEG-specific waves, Higuchi fractal dimension (HFD),
and information-oriented approximate entropy (AppEn)). We found that alpha, beta, gamma, theta
waves, and AppEn are the most suitable measures, which, when combined with specific syllogisms,
form a powerful tool for efficiently classifying healthy subjects and patients with AN. We assessed
the performance of triadic combinations of “feature–classifier–syllogism” via machine learning
techniques in correctly classifying new subjects in these two groups. The following triads attain
the best classifications: (a) “AppEn-invalid-ensemble BT classifier” (accuracy 83.3%), (b) “Higuchi
FD-valid-linear discriminant” (accuracy 75%), (c) “alpha amplitude-valid-SVM” (accuracy 83.3%),
(d) “alpha RP-paradox-ensemble BT” (accuracy 85%), (e) “beta RP-valid-ensemble” (accuracy 85%),
(f) “gamma RP-valid-SVM” (accuracy 85%), and (g) “theta RP-valid-KNN” (accuracy 80%). Our
findings suggest that anorexia nervosa has a specific information-processing style across reasoning
tasks in the brain as measured via EEG activity. Our findings also contribute to further supporting the
view that entropy-oriented, i.e., information-based features (the AppEn measure used in this study)
are promising diagnostic tools (biomarkers) in clinical applications related to medical classification
problems. Furthermore, the main EEG-specific frequency waves are extremely enhanced and become
powerful classification tools when combined with Aristotle’s syllogisms.

Keywords: approximate entropy; EEG features; machine learning classifiers; anorexia nervosa;
Aristotelian syllogisms; information processing; reasoning tasks
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1. Introduction
1.1. The Main Aim of the Work

Reasoning refers to the cognitive process of reaching a conclusion even when the
available information is incomplete [1]. Inductive reasoning includes the introduction of
predictions about novel situations or events based on experience and pre-existing knowl-
edge concerning the probability that a certain event occurs [2]. On the other hand, deductive
reasoning is considered a hallmark of higher cognition since it involves drawing specific
conclusions based on premises [1]. Theoretically, it should be expected that this type of rea-
soning depends on logical forms only, but research shows that reasoners become influenced
by the determinate content of the premises [3].

The process of reasoning is not based entirely on formal considerations; it is affected by
content or belief bias effects [4]. Researchers are interested in investigating the underlying
mechanisms of inductive and deductive reasoning and whether these mechanisms are
common or separate [2].

Despite the fact that the process of reasoning does not lack biases, the relevant cognitive
mechanisms remain to be clarified. There is supporting evidence that when people are
asked to make decisions themselves or evaluate decisions made by others, they are aware
of their biased reasoning, as shown by a decreased level of confidence in their answers to
cognitive tasks [5].

Considering all the above, a fundamental query that arises is whether psychopathology
and/or personality traits are involved in the reasoning process and may impact syllogistic
performance [6]. In this context, there is growing interest as well as a variety of existing
data concerning different aspects of cognitive function in anorexia nervosa; however,
to our knowledge, the process of reasoning itself has not been explored in relation to
possible distinct brain activation patterns with the concomitant use of EEG recordings in
this population when facing reasoning tasks.

Increased diagnostic accuracy and a deeper mechanistic understanding of psychopathol-
ogy can be attained using nonlinear features extracted from EEG analyses [7]. The main
aim of the present work is to compare different descriptive features extracted from EEG
recordings using a variety of linear and nonlinear complexity measures in the context of a
classification problem. More specifically, EEG recordings from healthy subjects (controls)
and patients with anorexia nervosa (AN), a type of eating disorder (ED), reflect the per-
formance of the above subjects in their effort to “manage” the induced cognitive loads
from their exposure to cognitive tasks of varying difficulty, associated with the “peculiari-
ties” of Aristotelian valid, invalid, and paradoxical syllogisms, and optical illusions. The
extracted (EEG) features based on the estimated values of AppEn, HFD, and the relative
power of the alpha, beta, delta, and theta (wavelet-extracted) rhythms are then tested for
their discriminating capacity, using ANOVA and nonparametric tests. The best features
found are then used as input to a classification problem where the target feature is the
“group” factor (variable) that assigns subjects to the following two classes: control group or
AN group. Therefore, finding the optimum triad “feature–syllogism–classifier” becomes
the most crucial step in the process of detecting which feature works better with a given
syllogism and classifier for effectively classifying subjects in the correct groups of controls
and patients with AN.

The possible variability and differences in the average response values of the subjects
of the two groups when exposed to such mentally demanding tasks need to be examined in
association with possible neuroanatomical differences between the subjects. Therefore, this
consideration requires us to explore the involvement or coupling of the following factors:
(a) the reasoning strategies used by these groups in handling such demanding mental tasks;
(b) Aristotle’s types of syllogisms; (c) the complexity and variability of EEG signals of
healthy and “pathological” subjects, as the aforementioned features quantify them; and
finally (d) the primary cognitive processes (cognitive control, attention, working memory,
etc.) that are present during the tasks and more importantly how their associated changes,
as “captured” by the EEGs at a number of brain regions (channels), are reflected via the
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extracted features as, e.g., the AppEn and the relative power of alpha, theta, beta, delta,
and gamma rhythms.

The interplay between these concepts will provide useful information for building,
as accurately as possible, classification models (or classifiers) in successfully assigning
new subjects to the two groups. The clinical benefits of such powerful classifiers are,
therefore, profound.

1.2. The Structure of Aristotle’s Syllogism and Its Relation to Cognitive Processes—Reasoning
Starts with Premises, Which Can Be Statements, Perceptions, or Beliefs

At this point, we briefly describe the syllogistic reasoning task and Aristotelian clas-
sification that explain the cognitive loads the Aristotelian syllogisms impose on subjects
when they try to “handle” them during experiments. Syllogisms are constructed with two
premises and one conclusion. A characteristic illustration of reasoning is presented by the
following example:

All men are mortal
Socrates is a man
(then) Socrates is mortal
Reasoning is intended to derive reasonable conclusions from premises and is carried

out in working memory. Human performance on syllogistic reasoning is based on mental
representations, as the mental model theory (one of the earliest comprehensive psychologi-
cal theories of reasoning) postulates [8]. As the authors in this study assume, the difficulty
of syllogistic reasoning is a function of the number of mental models that must be constructed
to derive a logically valid conclusion. In addition, a task that requires more models to be
constructed to lead to a correct answer increases the probability of errors in the inference
process, possibly resulting in failure. As the mental model theory claims, the difficulty of
(or cognitive load exerted in) syllogisms is determined mainly by the number of models
and the Aristotelian figure (one of the four likely possibilities described in Section 2.3). The
mental model theory of reasoning incorporates the working memory capacity, an important
component of the cognitive process [9]. According to the Sample Mental Model (SMM), a
probabilistic approach in a mental representation [10], people “adopt” or sample six or seven
instances in working memory to derive a conclusion to a syllogism. Nevertheless, according to
Halford et al. [11], the limit of working memory capacity is three to five chunks (“fat pieces”)
reflecting a human’s capacity for attention and constraints the relational representations,
enabling inference making.

All the preceding information leads to the conclusion that the structure of Aristotelian
syllogisms, reflected by modes and figures, in combination with the difficulty of syllogistic
reasoning (determined by the number of mental models needed to be constructed before
reaching a valid conclusion) and the limited capacity of working memory (that forces the
ability to work inferences), may be considered as the sources of cognitive loads exerted
on subjects exposed to Aristotelian syllogisms, responsible for shaping the dynamics of
the EEGs recorded during relevant experiments. The sources of cognitive loads may be
located at and activated by different brain regions in different ways, depending on task
conditions or the subject’s “pathological” condition. It is challenging to investigate how
healthy (controls) and AN subjects “behave” when facing Aristotelian syllogisms since the
loads exerted on subjects of the two groups differ as described above. Aristotle’s deduction
method is probably the first to analyze logical reasoning or syllogism (also called valid
reasoning). In his famous work “ORGANON–Prior analytics” [12,13], a series of statements
(the “building blocks”) is presented in the process of reasoning that leads to a valid conclusion
with absolute certainty. The dual processing model for logical reasoning [14–16] is developed
to help understand how the brain functions when a subject is “engaged” in this type of
reasoning. A natural question that is generated is whether Aristotle’s syllogisms activate
the same or different mental processes in the brain. This is a current, still open, and
challenging question intending to shed light on the fundamental operation of reasoning in
its two extreme conditions.
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In this work, the center of our attention is an experiment called “Aristotle’s experiment”,
in which EEG signals of subjects from two groups (control, AN) are recorded while exposed
to the valid, invalid, and paradoxical types of reasoning. During the experiment, each
participant’s working memory (WM) was induced, as it is a critical cognitive activity to
retain information “alive” not just for memorizing purposes but also for other necessary
cognitive tasks like reasoning, problem-solving, decision-making, planning, etc.

One of the main objectives of this work is to discover whether different modes of
electro-physiological activity are activated when healthy subjects (controls) and patients
with AN (ED) are exposed to Aristotle’s syllogisms. The contribution of this study is that it
sheds light on how critical aspects of the reasoning process related to attention, perception,
and cognitive behavior differ between the groups of participants. The difference in EEG
signals in healthy participants exposed to valid syllogisms and paradoxes has been analyzed
before in the work of Papageorgiou et al. [1,17] and Papaodysseus et al. [18]. Recently, an
fMRI study by Belekou et al. [19] provided further evidence that valid and paradoxical
reasoning engages distinct brain activation patterns. Finally, the work of Papaioannou
et al. [20,21] is very relative to this study since it has similar objectives, at least with respect
to the reasoning strategies of subjects when they are exposed to Aristotelian syllogisms,
yet with differences in the groups of subjects analyzed (ASD and ADHD) and the EEG
extracted features used.

1.3. Literature Review on Related Work
1.3.1. Literature Review on Aspects of Cognitive Function, Linear and Nonlinear EEG
Features Extractions in AN

According to the Diagnostic and Statistical Manual of Mental Disorders, DSM-5
(5th ed.) of the American Psychiatric Association [22], Anorexia Nervosa (AN) is a psychiatric
disorder associated with severe restriction of energy intake, which results in significantly low body
weight, accompanied by a strong fear of gaining weight, and a perceptional distortion of one’s body
weight or appearance. For adolescent girls and young adults, AN is widely viewed as an
important etiology of high-rate physical and psychosocial morbidity. More specifically, AN
is a disorder with high rates of morbidity and mortality among women (it may be up to
4%) [22], while the crude rate of mortality due to all causes of AN is estimated at 5.9% [23].
The neural foundations of the etiology of AN are not well understood, and consequently,
the long-term prognosis of AN is weak, and its effective treatment is unfortunately limited.
Furthermore, anorexia nervosa is associated with difficulties in different aspects of cognitive
function, such as attention, processing speed, visual and verbal memory, and visuospatial
construction [24–28].

Intense research is currently in progress, focusing on the structural and functional
abnormalities of the brain in patients with AN, using a variety of tools and methods [23].
In their work, Su et al. [23] conducted a whole brain meta-analysis on voxel-based mor-
phometry (VBM) using rsfMRI, and they found that overall, patients with AN exhibited
decreased gray matter volume (GMV) in the bilateral median cingulate cortex and left
middle occipital gyrus, a result that contributes to a better understanding of the pathophysi-
ology of AN. Their multimodal meta-analysis of the neuroimaging studies in structural and
functional brain alterations in patients with AN is one of the most recent complete and very
informative reviews on this issue. The importance of examining brain findings in relation
to maladaptive behavior present in AN has been highlighted before, pointing out the need
for new techniques to better understand the neural mechanisms of the disorder [29].

One of the many possible other reasons that AN is hard to treat is that cognitive
flexibility is found to be impaired in these patients [30]. In Aristotle’s experiment of the
present study, cognitive flexibility is a crucial construct since, during the experiments, the
subjects are facing “harsh” cognitive loads emanating from the structural complexity of
Aristotelian syllogisms. Thus, the study of Sato et al. [30] is very relevant to our study since
they examined the brain activity of patients with AN during a task computing cognitive
flexibility. While their task was the Wisconsin Card Sorting Test (WCST) (one of the most



Brain Sci. 2024, 14, 251 5 of 51

widely used neurocognitive measures of cognitive flexibility and problem-solving), our
task consisted of Aristotle’s valid and invalid syllogisms and paradoxes. Sato et al. [30]
found that patients with AN performed significantly poorer than controls (their correct
rates on WCST were poorer), exhibiting weak activity in the right ventrolateral prefrontal cortex
and bilateral para-hippocampal cortex on set-shifting [31] in relation to controls. A positive
correlation between correct rate and ventrolateral prefrontal activity in response to the
set-shifting was found in healthy subjects, whereas patients failed. Thus, patients with AN
showed impaired cognitive flexibility due to ventrolateral prefrontal and para-hippocampal
cortex dysfunction.

In order to provide a review of the available literature associated with the functional
neuroimaging (SPECT, PET) of AN and outline the possible role of neurobiological factors
in its pathogenesis, Pietrini et al. [32] performed a systematic review of the literature,
mainly from PubMed database (from 1950 to 2009). Their main conclusion is that the most
consistent alterations in AN cerebral activity seemed to involve the dorsolateral prefrontal
cortex, the inferior parietal lobule, the anterior cingulate cortex, and the caudate nucleus.
Therefore, different neural systems may be affected, such as the frontal visual system, the attention
network, the arousal and emotional processing systems, the reward processing network, and the
network for the body form or appearance.

Patients with AN also exhibit the so-called “Brain fog”, a mild cognitive impairment,
with symptoms such as impaired cognition, reduced concentration, and short- and long-
term memory loss, while tasks that involve mental activity take longer. Kaufmann et al. [33]
investigated structural changes in AN using T1-weighted magnetic resonance images with
surface-based morphometry. Compared to controls, patients with AN showed globally
decreased cortical thickness and subcortical volumes at baseline, i.e., findings indicating
that structural brain alterations in adults with severe AN recover independently of the
duration of illness during weight-restoration therapy. Food craving regulation in patients
with AN, from its clinical and neurophysiological correlation to their emotions, is the aim
of the paper by Mallorquí-Bagué et al. [34]. They examined how difficulties in emotion
and craving regulation have been linked to the eating symptomatology of AN. Both pa-
tients with AN and healthy controls (HC) were involved in the process of completing a
computerized task during EEG recording and were instructed to down-regulate negative
emotions or food cravings. The subjects completed self-report measures of emotional
regulation and food addiction, and the EEG signals P300 and Late Positive Potential (LPP)
ERPs were analyzed. The main conclusion is that the AN group, in comparison to the
HC group, displayed greater food addiction, greater use of maladaptive strategies, and
emotional dysregulation.

The quantification of cognitive deficits in severe AN before and after medical stabi-
lization was the main aim of the study by Rylander et al. [35]. The primary outcome of
their study was the alteration in test scores on the Repeatable Battery for the Assessment of
Neuropsychological Status (RBANS) at baseline and after medical stabilization. The main
conclusion is that baseline deficits in cognition were not documented in this sample of
women with severe AN. No differences were found in core aspects of cognitive function in
patients with long-lasting AN, who exhibited better concentration and grammatical reason-
ing accuracy in relation to healthy controls [36]. On the other hand, given the notion that
information processing in AN is characterized by cognitive biases that affect patients’ be-
havior, Tenconi et al. [37] found that impaired ability to integrate disconfirmatory evidence
in the reasoning process of patients with AN is not correlated with clinical characteristics.
Differences in the performance of patients reported before when examining visuospatial
processing have been attributed to information processing bias in AN determined by the
requirements of each test. The finding of a bias toward local information processing at the
level of detail in a demanding visual search task is in accordance with the psychopathology
of the disorder, reflecting difficulties in central coherence [38]. Impaired cognitive flexibility
and weak central coherence (i.e., the ability to overview complex information) are intended
as maintenance factors in AN and targeted in specialized therapies [39].
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The study of Collantoni et al. [40] aimed to explore inhibitory control capacity and
its functional connectivity correlates in patients with AN. As it is known, inhibitory control
(an executive function that allows behavior to be adapted according to environmental
conditions) has been examined using the Stop-Signal paradigm. Compared to the healthy
controls, AN patients have exhibited difficulty in response inhibition as well as a disruption
of the functional connectivity of the VAC neural network (ventral attention circuit), which is
involved in behavioral response in case of an unexpected stimulus. This malfunctioning of
the VAC present in patients with AN indicates impairment of bottom-up signal filtering,
which might be involved in difficulties in adapting behavioral responses to external stimuli
(as in our case, the effort that patients with AN exert in handling difficult cognitive tasks, i.e.,
demanding Aristotelian logic). Moreover, recent data from an ERP study by Yue et al. [41]
report demand-related alterations in fronto-central N2 latencies, further supporting the
hypothesis of an abnormal inhibitory control process in AN.

The complexity of the etiology of AN, i.e., of the stages from vulnerability to illness,
is well and thoroughly described by Kaye et al. [42]. Additionally, Connan et al. [43]
incorporated different factors in their work to “establish” a concrete neuro-developmental
theoretical framework for the causes-etiology of AN.

1.3.2. Feature Extraction and Selection Methods Used in EEG Classification Problems

In classification schemes, a variety of feature extraction and selection methods are
used and are time- and- frequency-oriented. Acharya et al. [44] applied a nonlinear and
wavelet-based feature technique for detecting epileptic EEGs automatically. These methods,
based on time or frequency or both approaches, extract features from EEG that are input in
classification models, the main target of which is to attain the highest possible performance
in classifying subjects into healthy and pathological classes (a short description of the
classification assessment criteria is provided in 2.8).

Time domain features include Permutation Entropy (PE), Approximate Entropy (AppEn)
(used in this work), as well as nonlinear features as Lyapunov Exponents (LyapEx) [45–50],
Correlation Dimension (CorrDim) [51], Higuchi Fractal Dimension or Curve (HFD), also
used in this study [52–54], Hurst Exponent [55,56], and Hjorth parameters [57,58].

An example of using an Entropy feature in the analysis of signals (time series) recorded
from patients with AN is described in the work of Jelinek et al. [59], in which the objective
was to detect changes in heart rate variability (HRV) in response to orthostatic challenge.
They concluded that the Sample Entropy (SampEn) and Higuchi FD features extracted from
HRV signals are more sensitive in identifying sympathetic and parasympathetic changes
connected to orthostatic challenges in patients with AN. SampEn was also used in a very
recent (2023) paper by De la Cuz et al. [60] in analyzing the dynamic changes in the central
autonomic network (CAN) of patients with AN. The authors have found that patients
exhibit higher complexity in the functional connectivity (FC) time series, recorded via fMRI,
thus providing evidence that core regions of the CAN involved in cardiac regulation are
functionally affected in AN. Two important papers regarding the strength and “suitability”
of various Entropy and Complexity measures are the works of Ferenets et al. [61] and
Ahmadi et al. [62]. We used these sources to compare and comment on the “conflicting”
results of HFD and AppEn on Anorexia data, as described in the Sections 3 and 4.

One of the main objectives of this paper is the computation of two nonlinear measures,
the HFD and AppEn, based on EEG recorded from healthy participants and patients with
AN, to quantify their overall brain complexity during a cognitive task experiment and use
these extracted features as input to various classifiers to categorize healthy controls and
patients with AN. Both HFD and AppEn provide quantitative assessments of complexity
and have been extensively used in EEG analysis (see the References Section). The main
reasons for their choice are: (a) they have been proposed as powerful indicators in several
recently published papers in the EEG analysis of various disorders (ASD, ADHD, etc.) and
in Eating Disorders as in AN, (b) their calculation is straightforward and computationally
efficient, and (c) the algorithms give reliable and consistent results (see Sections 2.4 and 2.5),



Brain Sci. 2024, 14, 251 7 of 51

so they can be applied in real-time patient monitoring. In conclusion, we stress the necessity
of interpreting complexity measures in the context of the specific analysis and features of
the EEG time series under examination (as in our case, EEG taken from patients with AN).

1.3.3. Measurement of Brain’s Responses during Demanding Cognitive Tasks—The α, β, δ,
θ Specific Frequency Bands (Rhythms)

Changing levels of cognitive stimuli (e.g., due to exposure of subjects to an Aristotelian
syllogism) induce neuronal responses that EEGs can effectively measure. The measure-
ments of cognitive load (the load of working memory-WM during a demanding cognitive
task) have been extensively reviewed during the last 20 years. EEG signals are composed
of several frequency bands, called Rhythms or Waves, such as delta-δ (0.5–4 Hz), theta-θ
(4–7 Hz), alpha-α (8–13 Hz), beta-β (13–30 Hz), and gamma-γ (>30 Hz). The alpha rhythms
in the human EEG signals are the most prominent and dominant, playing different roles in
different mental assessments.

During resting states, the Power Spectral Density (PSD) of alpha waves remains
synchronized, while during a (cognitive) task, it is increasingly desynchronized [63]. The same
authors found in another work that alpha and beta waves play a major role in quantifying
a cognitive load, with the properties of delta rhythm being capable of discriminating the
hidden separate mental states. The study of brain dynamics during cognitive tasks (as in
our case, Aristotle’s syllogisms), using different approaches, has become the main target
of several research papers [64]. They stress the idea that alpha waves have been found to
discriminate between the various cognitive loads at different brain states. Using Detrended
Fluctuation Analysis (DFA), a “detector” of long-range correlations in a signal, Karkare
et al. [65] tested their existence in EEGs taken from artists and not artists when they were
performing perception and mental imagery tasks. They found that low-frequency waves,
such as the alpha, are the primary signal to reflect the brain’s cognitive processing. Do alpha
or beta waves play a similar role in our case, i.e., during Aristotle’s syllogisms? And if yes, how do
their dynamics change with the group of subjects (AN and Control)? The reader will find the
answers at the end of this study.

Frequency domain features are based on the EEG signal’s power (energy), absolute or
relative, or on their ratio. In this study, we consider the relative energy, computed within
the context of the wavelet analysis (described in Section 3.6), of each separate rhythm
(α, β, θ, etc.) with respect to the total energy, i.e., the sum of energies of all individual
rhythms. For each participant’s (in our experiment) 14 channels of EEG data, the extracted
descriptive feature vectors include the relative of normalized rhythm energy δ/E, α/E,
β/E, γ/E and θ/E, where E is the energy of the total rhythm.

A work that is very relative to our work, at least with respect to the extracted EEG
rhythm relative power (via wavelet analysis), is the work of Amin et al. [66]. The authors
examined the dynamics of complex cognitive tasks using four classifiers, among which
SVM provided the highest accuracy, 98%.

A combination of the extracted frequency- and time-domain-based features, using
Stockwell transformation [67], is proposed by Hariharan et al. [68] to analyze baseline (at
rest) and mental tasks related to letter and multiplication of numbers. K-means Nearest
Neighborhood (KNN), linear discriminant analysis (LDA), and SVM are the classifiers used,
exhibiting 84% to 98% accuracy. Empirical Mode Decomposition (EMD), another powerful
tool based on the time-frequency combination, was applied by Noshadi et al. [69] to extract
EEG rhythms for assessing various demanding cognitive loads. The authors report good
performances of the SVM and KNN classifiers.

1.3.4. EEG Rhythms α, β, δ, θ Specifically in AN

Although there are different aspects considering the neurophysiology of AN, to the
best of our knowledge, there are few studies associating EEG rhythms with AN pathology.
Since in this work, we examine the response of patients with AN in cognitive loads “imposed”
on them by Aristotelian syllogisms, it is natural to search for relevant works that deal with



Brain Sci. 2024, 14, 251 8 of 51

cognitive difficulties that patients with AN face [70,71]. These patients also may often ex-
hibit other personality and emotional characteristics like neuroticism, rigidity, introversion,
and obsessive-compulsiveness [72,73]. Low-shifting abilities in AN are reported by Wu
et al. [74], and weak central coherence is reported by Lang et al. [75] and Lopez et al. [76].
Taking into consideration that the Aristotelian syllogisms are expected to exert cognitive
loads that require a great effort from the participants (both healthy controls and patients
with AN), any subsequent cognitive difficulties will be reflected as differences in the brain
activity between the subjects of these two groups, in possibly different EEG electrode (chan-
nel) locations. Thus, although many patients exhibit normal EEGs [77], it is logical to expect
that a significant number of patients with AN may exhibit irregular background activity
or even pronounced atypical EEG patterns of spike discharges. Crisp et al. [78] provide
a control study of the dynamic behavior of patients with AN. Therefore, a quantitative
analysis of these EEGs is welcomed to detect any differences in brain activity in localized
regions by using linear and nonlinear quantitative features extracted from cleaned EEGs, which
are considered to have strong discriminatory power, the ability to capture effectively “hidden”
and underlying differences in the brain activations of the two groups.

In this work, six such features are used: four EEG rhythms of specific frequency bands,
the alpha (8–13 Hz), beta (13–30 Hz), delta (1–4 Hz), and theta (4–8 Hz), as well as two
nonlinear dynamics-oriented features (Higuchi fractal Dimension, HFD, and Approxi-
mate Entropy, AppEn). The traditional summary features were included to compare and
demonstrate their complete failure in revealing differences.

Regarding how EEG rhythms α, β, δ, θ “behave” in patients with AN,
Rodriguez et al. [79] have reported reduced alpha rhythm amplitude in posterior regions,
while Hatch et al. [80] and Toth et al. [81] have also reported reduced alpha rhythm amplitude
in anterior regions and across frontal, temporal and parietal areas, respectively.

The results for the theta rhythm vary significantly: patients with AN increased posterior
theta [80] and normal theta amplitudes [79] have been reported when they are in relaxed
wakefulness. In this condition, (out)patients are rarely found to exhibit slow delta activity
(a more severe brain malfunction). Increased theta amplitude was documented in frontal
regions in patients with AN compared to healthy controls in a relaxed condition with closed
eyes. This finding, accompanied by reduced relative alpha and delta amplitudes found
among patients with AN, could possibly be related to increased attention/arousal [82].

To the best of our knowledge, no studies exist regarding the amplitude dynamics
of α, β, δ, θ rhythms in patients with AN participating in a very demanding cognitive
experiment like the one described in this study.

2. Materials and Methods
2.1. The Workflow

Figure 1 depicts the workflow adopted in this work. Raw EEG data (in xxxx.edf format
suitable for using the EELAB tool, a powerful tool operating in MATLAB environment,
for analyzing EEGs) are available and recorded from subjects of the two groups separately
for each syllogism. Removal of artifacts and noise is performed at the stage of EEG
preprocessing, and clean data is used to compute the extracted descriptive features (AppEn,
HFD, etc.). A multivariate analysis of variance MANOVA is performed to assess the
suitability of each feature for further analysis. From this stage, the most suitable feature is
chosen based on its capacity to effectively and accurately separate the subjects of the two
groups, Control and AN, using the results of the multivariate and between-subjects tests of
the MANOVA. In Appendix A we provide information on the matrixes that contain the
values of the extracted features. Then, all features are entered into various classification
models or classifiers, and their classification performance is evaluated based on several
quantitative and visual tools. The final stage examines the potential of combining the
most significant syllogisms with the best-selected features (in our case, specific EEG waves
and AppEn) and the best-found classifier (presenting the higher accuracy), with possible
application in clinical practice for classifying healthy subjects and patients with AN.
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2.2. Participants and EEG Recordings

Sixty-one adult volunteers participated in this study. The group of anorexia nervosa
comprised 31 patients with a mean age of 29.97 years (SD = 9.47) from the Eating Dis-
order Unit of the 1st and 2nd Department of Psychiatry, Medical School, National and
Kapodistrian University of Athens. The group of patients consisted of 28 women and 3 men
(mean ± SD age of 29.07 ± 9.54 years and 38.33 ± 1.15 years respectively). The mean Body
Mass Index (BMI) of patients was 14.72 (SD = 2.03). An AN diagnosis was made through a
clinical interview conducted by an experienced psychiatrist, according to the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) [22]. Inclusion criteria
were: (a) age <50 years, and (b) patients not on any medication.

The control group comprised 30 healthy subjects (mean age = 31.03 years, SD = 7.15), of
which 25 were women and 5 men (mean ± SD age of 30.52 ± 6.96 years and 33.60 ± 8.35 years
respectively), with a mean BMI of 21.50 (SD = 1.48). Eating disorders or other psychiatric
disorders were excluded by clinical interview.

The sample of patients and healthy controls was homogeneous in age, as confirmed by
an independent-sample t-test (t (59) = −0.495, p = 0.623). BMI differed significantly between
groups (p < 0.001), as expected. No significant differences in educational background
between groups were documented (p = 0.084).

All participants had normal or corrected vision, spoke Greek as their native language,
and had no history of neurological disorders. They signed an informed consent form after
being widely informed about the procedure. The study was approved by the Scientific
Council and received ethical approval by the Institutional Bioethics Committee and was
conducted in collaboration with the First Department of Psychiatry, Medical School and
the University Mental Health, Neurosciences, and Precision Medicine Research Institute
“Costas Stefanis” (U.M.H.R.I).

In our study, the Emotiv EPOC device has provided considerable benefits compared
with other multichannel equipment: (i) the setting up time of the Emotiv EPOC system
is substantially shorter compared to an expensive EEG system, (ii) additionally, previous
research estimating the reliability of the Emotiv EPOC EEG device provides evidence
indicating its capacity to measure consistently EEG signals [83,84]. The EEG signals were
recorded from 14 Ag/AgCI electrodes mounted on an elastic cap, in accordance with the
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international 10–20 System (see Figure 2 and Table 1) [20]. The sampling frequency was
128 Hz, and electrode impedance was kept continuously below 5 K Ω. The EEG activity
was referenced to the mean of the left and right ear lobes by an online setup. The ground
electrode was placed on the mastoid. For each participant, the continuous EEG signals
were high pass filtered at 1 Hz to remove DC offsets and various drifts. Then, the signals
were low-pass filtered at 45 Hz. Using the EEGLAB 2020.0’s version [85] plug-in functions,
“clean-raw data” were examined for bad channels, also using a visual inspection of the
resulting bad electrodes; the electrodes then exhibiting abnormal time course were excluded
and interpolated. The EEG signals were re-referenced to the whole scalp common mean
EEG value. An Independent Component Analysis (ICA) of the continuous data and the
MARA-SASICA tools [86,87] was performed to correct eye blinks and saccades. Both
software tools automatically labeled artefactual components as candidates for rejection.
The average number of rejected components was larger in the case of patients with AN
than in the case of healthy controls. After cap fitting, good conductivity was confirmed
with Emotiv software(Emotiv EPOC+, Emotiv Inc. USA) through wet saline electrodes [88].
From an initial group of 31 patients, only twelve (12) were kept for further analysis (feature
extraction from their EEGs) since the EEGs of the remaining 18 subjects were excluded due
to many artifacts and other “noises”, possibly due to excessive motions of patients and
the subsequent large EEG signals’ amplitudes. One patient was excluded due to missing
EEG data. The reduced number of patients with AN is, however, adequate for statistical
comparisons and in accordance with other studies found in the literature. Figure 3 depicts
the main stages of the workflow of EEG preprocessing followed in this work.
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Table 1. Channel index, name, and location [20].

Channel Index Channel Name Location

1 AF3 Anterio-frontal, left

2 F7 Frontal-temporal, left

3 F3 Frontal, left

4 FC5 Frontal-central, left

5 T7 Temporal, left

6 P7 Parietal, left

7 01 Occipital, left

8 02 Occipital, right

9 P8 Parietal, right

10 T8 Temporal, right

11 FC6 Frontal-central, right

12 F4 Frontal, right

13 F8 Frontal-temporal, right

14 AF4 Anterio-frontal, right

2.3. Cognitive Tasks Description in Aristotle’s Experiment

Using EEG signals, we aim to isolate the brain regions involved in Aristotelian syl-
logisms and differentiate their engagement during the different types examined: valid,
invalid, and paradox. In addition, we will try to answer how this differentiation is ac-
counted for in the case of two groups of subjects (Control, AN).

The sentences or prepositions in the syllogisms examined were presented visually
(on a computer screen) to dissociate brain regions related to syllogism processing from
those related to sensory processes and low-level reasoning. This is an essential stage in
the analysis process, considering that isolating substrates associated with these high-level
syllogisms (activating cross-modal cognitive systems) is difficult. In our experiment, the
syllogism statements consisted of categorical types, including different types of deductive
arguments (valid, invalid) and paradoxical reasoning. Participants were asked to reach a
conclusion from the premises following the instructions explained by the instructor and
indicate whether the given statement was “Right” or “Wrong” (see below).

Aristotle’s experiment is based on the study of reasoning or syllogism process depend-
ing on logical rules and considers the reasoning process (how do we conclude) and the
decision-making process. The process starts with assumptions (hypotheses) that ideally
lead to a valid conclusion.

If S and P are used to denote the subject and predicate of the conclusion, then, there
must be some third entity involved in the two premises to draw an inference. This addi-
tional entity is called the middle term (M).

All men are mortal. (MaP)
Socrates is a man. (SaM)
Socrates is mortal. (SaP)

Thus, each proposition or statement belongs to a group of four forms or
patterns [10,12,13,89]. Eliminating the particular in this way sets the stage for examin-
ing the abstract patterns of reasoning.

(All S is P)
(Some S is P)

Aristotle’s contribution is significant because he abstracted a general pattern from
such examples. This step is similar to the step of replacing numbers with algebraic symbols
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such as the letters x, y, and z [89]. The gap between the subject and the predicate of each
proposition can be filled with any one of the four letters a, e, i, or o, giving abbreviated
forms that clarify the abstract patterns of propositions that Aristotle was looking at. In this
framework, it should be noted that one of Aristotle’s major accomplishments was to find
all the valid ones [10,89].

These patterns give 4 × 4 × 4 × 4 = 256 possible syllogisms. From all possible patterns,
not all are valid. Aristotle first discovered the list of valid syllogisms, while the rest of the
syllogisms are invalid [89]. The four forms or patterns mentioned above are called figures.
Only 19 syllogisms have a logical conclusion (they are valid), even though the validity of a
syllogism is a relatively controversial concept [10].

According to the model of a dual process theory of reasoning, it has been claimed that
the presence of two different cognitive systems underlies reasoning: system I (heuristic
system) is considered older, fast, and automatic, tending to solve problems by using prior
knowledge and beliefs, while system II (analytic system) is considered evolutionarily newer,
slower and allows reasoning based on logical rules within the limits of working memory
resources [14,90]. In type I, we are aware only of the result (conclusion), while type II
includes both the procedure and the result. Usually, there is an interaction between the
two types of reasoning. Previous evidence suggests different neurobiological substrates for
these two systems of reasoning [90,91]. The first system is considered to activate mainly
fronto-temporal areas, while the second system engages working memory and parieto-
occipital areas [1]. Inductive and deductive reasoning processes could be directed by both
these systems, yet in different parts, the first depending more on aspects such as previous
knowledge (system I), while the last is considered to include the logical validity of an
argument (system II) [92].

The question that often arises is whether different types of syllogisms engage different
cognitive mechanisms. Aristotle’s experiment is a process consisting of four stages. Valid
and invalid syllogisms are used, together with paradoxes and illusions-visual paradoxes
(not considered in this study).

More specifically, the participants were exposed to three different sets of syllogisms
(valid, invalid, and logical paradoxes), each one containing 39 syllogisms [1,21], as well as
to a set of 39 optical illusions [93]. A further explanation of the types of syllogisms used in
our study can be retrieved from previous works that followed different approaches using
the same task [1,18,19,21].

The subjects under test were comfortably seated 1m away from a computer screen.
Instructions about the procedure were presented to them before their exposition of the
experiment so that they could be familiar with the process and its requirements. Then,
syllogisms or arguments started to appear on the screen in sets of 39, every one of which
was accompanied by a question “right”, or “wrong”. The time duration of each slide was
proportional to the number of letters in the syllogisms, and a blank slide continuously
replaced the slide. Immediately after, the next stimulus appeared. Each participant was
driven to carefully read each statement, followed by the question “Right or Wrong?” and
give a response, after two presentations of a warning stimulus, to a) whether the syllogism
presented is right or wrong and b) the percent (%) of certainty for the response provided
(from 0% not at all certain, to 100% absolutely certain).

Answers to each of the valid syllogisms are considered right if the subject considers
them right, while answers to invalid syllogisms are considered right if the subject considers
them wrong. Answers to paradoxical syllogisms depend on the subjective critical point of
view, and therefore, the meaning of a wrong answer is not dogmatic [19]. Each subject’s
answer is accompanied by the percent (%) of certainty given, which reflects the certainty in
the answer provided. An indicative example of valid, invalid, and paradoxical syllogism
used in Aristotle’s experiment is shown in Table 2. A complete description of the syllogisms
used in the experiment is available in a previous work by Papageorgiou et al. [1].
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Table 2. Examples of valid, invalid, and paradoxical syllogism.

Syllogism

Valid Paradox

All humans are mortal.
All Greeks are humans.
All Greeks are mortal.

Achilles and the tortoise decided to race. The tortoise started 100 m ahead of Achilles as the
latter is 100 times faster than the tortoise. Therefore, when Achilles will have advanced

100 m the tortoise will be 1 m ahead of him. When Achilles covers this 1 m, the tortoise will
be 1/100 m ahead of him. When Achilles covers this 1/100 m the tortoise will be 1/10,000 m

ahead etc. Therefore, the tortoise will always be ahead of Achilles.

Invalid

Some photographers are humans.
Some doctors are not humans.

Hence, no doctor is photographer.

In parallel with the process described before, the emotional condition of each tested
subject (intensity, control of the emotions experienced that moment and mood) is recorded,
according to the Self-Assessment Manikin (SAM), a technique that directly assesses the
pleasure, arousal, and dominance associated with emotional reaction in response to a
variety of stimuli [20,94]. Also, EEG signals of alpha, beta, delta, and theta frequency bands
(and their sub-bands), are simultaneously recorded using a wireless system of 14 electrodes
(EMOTIV PRO, see Table 1 above).

2.4. Approximate and Sample Entropy AppEn

According to information theory, entropy is considered an “uncertainty measure” of a
given system. High entropy corresponds to no information flow, thus characterizing a sys-
tem as random, while low entropy corresponds to deterministic systems. The approximate
entropy (AppEn) [95], which is bounded, is utilized in the framework of this work. It is
derived as follows:

Let u be a time series u(1), u(2), ..., u(N), of N observations. Given a non-negative
number m, m ≤ N, we formulate m-blocks of subsequences:

x(i) ≡ (u(i), u(i + 1), . . . , u(i + m − 1))

The distance between 2 blocks can be calculated as:

d(x(i), x(j)) ≡ (|u(i + k − 1)− u(j + k − 1)|)

which gives the maximum point-wise distance.
Given r ∈ R, for a given block x(i), we calculate the percentage of blocks x(j) with

distance r, which we call Cm
i (r).

Using the Heaviside Θ function, which counts how many times the distance exceeds
the given threshold r, we define:

Cm
i (r) =

1
N − m + 1

N−m+1

∑
j=1

Θ(r − d(x(i), x(j))) (1)

Φm(r) =
1

N − m + 1

N−m+1

∑
i=1

logCm
i (r) (2)

Finally, AppEn is defined as:

AppEn(m, r, N)(u) = Φm(r)− Φm+1(r), m ≥ 0 (3)

ApEn(0, r, N)(u) = −Φ1(r) (4)



Brain Sci. 2024, 14, 251 14 of 51

AppEn(m, r, N) is always a well-defined function. From Equation (1), when a percent-
age of the block is <1, the distance from itself d(xi, xi) is always measurable. It follows that,
Cm

i (r) ≥ 1 and consequently, the logarithm of Cm
i (r) is always defined.

The AppEn measures the degree to which different segments of the series follow
similar patterns.

−AppEn(m, r, N)(u) = Φm+1(r)− Φm(r)
1

N−m

N−m
∑

i=1
logCm+1

i (r)− 1
N−m+1

N−m+1
∑

i=1
logCm

i (r)

≈ 1
N−m

N−m
∑

i=1

(
logCm+1

i (r)− logCm
i (r)

)
1

N−m

N−m
∑

i=1
log
(

Cm+1
i (r)
Cm

i (r)

) (5)

The last line in Equation (5), is the average logarithm, for all m-blocks, of the conditional
probability |u(j + m)− u(i + m)| < r given |u(j + k)− u(i + k)| < r for all k = 0, 1, . . . , m − 1,
thus the approximate entropy estimates the logarithmic probability that sequences of
patterns which are close for m observations will remain close. In this sense, the AppEn
measures persistence, correlation, and regularity. Higher values indicate lower persistence
and independence between the observations, while lower values of approximate entropy
correspond to higher persistence, autocorrelation, and regularity. If Cm+1

i (r) = Cm
i (r), the

approximate entropy is 0, which corresponds to a weak serial correlation.
Another useful form of the AppEn comes from Equation (3), for m = 1, so

AppEn(m = 1, r, N) can be the expected log-likelihood value of two blocks that remain
close to each other when they are expanded by one data point. Assuming stationarity of the
stochastic process, the number of steps in calculating AppEn (m = 1, r, N) is significantly
reduced as follows:

AppEn(1, r, N)(u) = Φ1−Φ2 =
1

N − 1

N−1

∑
i=1

log

(
C2

i (r)
C1

i (r)

)
= −E

(
log

(
C2

i (r)
C1

i (r)

))
, ( f orN → ∞) (6)

The threshold r can be seen as the parameter that differentiates the measured distances
(as stated by Takens), while the embedding dimension m is the number of adjacent points.
Thus, AppEn measures the degree to which different segments of the time series follow
similar patterns.

For a random process, AppEn → log
(

r√
3

)
for all m [95], while for a purely deter-

ministic process, AppEn → 0 . We can, therefore, rescale so that 0 ≤ AppEn ≤ 1, where 1
defines a purely random process, which is the characteristic of an efficient market.

0 ≤ AppEn ≤ 1(a f terrescaling)

A modification of the AppEn has been recently proposed [96], called Sample Entropy,
SaEn, which has the advantage of being less dependent on the length of the time series and
exhibits relative consistency over a broader range of possible r, m ∧ N. On the basis of K2
entropy, Richman and Moorman defined the parameter:

SaEn(m, r) =
(
−log

Um+1(r)
Um(r)

)
(7a)

which is estimated by the statistic:

SaEn(m, r, N) = −log
Um+1(r)

Um(r)
, N → ∞ (7b)
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The differences between the previously defined Cm+1(r) and Um+1(r) (similarly be-
tween Cm(r) and Um(r)), are due to (a) defining the distance between two vectors as the
maximum absolute difference between their components, (b) vectors are not compared to
themselves, and finally, (c) for a time series of length N, only the first N-m vectors of length
m, Um(i), are considered by taking care of defining also the vector Um+1(i) of length m + 1,
when 1 ≤ i ≤ N − m.

SaEn is exactly equal to the negative of the natural logarithm of the conditional
probability that m data sequences that are very close in proximity will also remain close
to each other when one more point is added to the sequence. A detailed algorithm for
calculating SaEn is given by Costa et al. [97]. Now let nm

i (r) represent the number of
vectors xm(j) that are close to the vector xm(i) i.e., the number of vectors that satisfy
d(x(i), x(j)) ≤ r, where d is the distance. Then we note that:

ApEpn(m, r, N) ∼=
1

N − m

N−m

∑
i=1

log
nm

i

nm+1
i

(8)

and

SaEn(m, r, N) = log
∑N−m

i=1 n′m
i

∑N−m
i=1 n′m+1

i

(9)

where n′m
i differs from nm

i to the extent that for SaEn, self-matches are not counted (i ̸= j)
and 1 ≤ i ≤ N − m.

A smaller value of sample entropy indicates a lower level of complexity or more
self-similarity in a data series. SaEn is largely independent of record length and displays
relative consistency under circumstances where AppEn does not [96].

The AppEn approximates the Renyi entropy of order q = 1 (corresponding to Shannon
entropy) and SaEn the Renyi entropy for q = 2. The SaEn has the advantage of being an
unbiased estimator [98].

Both SaEn and AppEn measure the degree of randomness (or the degree of orderliness,
inversely). However, it is pointed out that there is no direct relationship between regularity,
as measured by entropy-based metrics, and complexity. An increase in complexity is
usually but not always associated with an increase in entropy. Entropy-based metrics
are maximized for random sequences, although it is generally accepted that both regular
or perfectly ordered and complete irregular or disordered systems process no complex
structures. A meaningful complexity measure of a brain signal, therefore, should vanish
for these two extreme states. The Approximate and Sample Entropy can contemplate the
existing nonlinear dynamics in Brain EEG signals and are also considered as alternative
volatility measures to quantify the degree of randomness or determinism of these signals. By
adopting the entropy concept as an alternative measure of volatility, the assumption of the
i.i.d process is not needed.

2.5. Higuchi Fractal Dimension (HFD) Measure

Complexity is quantified via an index based on the fractal dimension, FD, that reflects
how the measure of the length of a curve L(k) varies in relation to the scale k used as a unit
of measurement. There are various approximation techniques for estimating the fractal
dimension [99]. One of the most often employed methods in EEG analysis is Higuchi’s
algorithm [52] in estimating the fractal dimension D [53,54]. In Higuchi’s time-domain
approach, the estimation of FD of a signal (time series) is based on the log[L(k)] versus log(k)
curve of the time series, computed as follows:

(a) Let an EEG epoch is s = {s(1), s(2), . . ., s(N)} of length N, then for each epoch’s sample i,
we compute the absolute differences between values s(i) and s(I − k) (i.e., the samples
at distance k), for k = 1, . . ., kmax.

(b) We multiply each absolute difference by a normalization coefficient taking into con-
sideration the different numbers of samples that are contained for each value of k. The
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coefficient is computed based on the starting point m = 1,. . ., k as well as on N, the
total number of data points of an epoch.

(c) Thus, the Lm(k) is estimated as:

Lm(k) =
1
k

where q = int[(N − m)/k], and L(k) is computed as follows:

L(k) =
1
k ∑k

m=1 Lm(k) (10)

Let lk indicates the log[L(k)] versus log(k) curve. Let now klin defines the upper range
of the linear region of lk, then by definition, if L(k) is proportional to kD for k = 1, . . ., klin,
then the curve is fractal with dimension D. Thus, as the signal irregularity increases, Higuchi’s
fractal dimension D increases, too. So, the nonlinear part of the lk curve (k > klin) corresponds
to an oscillatory behavior with features depending on the periodicity of the signal itself [54].

2.5.1. Interpreting and Comparing AppEn and HFD

These two nonlinear measures are used in EEG analysis to quantify their complexity
or irregularity; however, they approach complexity assessment from a different perspective.
Regarding HFD, this is based on the concept of fractals, i.e., complex geometric patterns
exhibiting self-similarity across different scales. HFD measures a signal’s “roughness” by
quantifying the (phase) space-filling capacity of the signal’s trajectory. Therefore, HFD
measures the signal’s complexity on the base of its fractal characteristics. A high fractal
dimension (measured, e.g., by correlation dimension) reflects a more complex or irregular
signal, while a low one corresponds to a more regular or predictable signal.

On the other hand, AppEn measures the regularity or predictability of a time series by
quantifying the probability that similar patterns will repeat in the time series, considering
both the amplitude and the temporal structure as criteria of pattern similarity. Its numerical
value reflects the regularity or complexity of the time series. High AppEn corresponds to
higher levels of irregularity and complexity, while low AppEn suggests more regular and
predictable patterns in the time series.

Thus, in conclusion, regarding the interpretation of the two measures, higher HFD
indicates higher complexity or irregularity, while higher AppEn also reflects higher com-
plexity or irregularity but approaches complexity from different perspectives. A crucial
question is whether there are cases in which these two measures generate conflicting results,
a fact that we have encountered in this paper, assessing the complexity of healthy controls
and patients with AN by using both measures.

The answer to the above-mentioned crucial question is that these two measures may
yield opposite results due to the different aspects of complexity these two features capture
and their underlying assumptions in their structure. Table 3 provides scenarios where
conflicts may occur:

Table 3. Scenarios that may yield “conflicting” results about a signal’s complexity by HFD and AppEn.

EEG Signal Characteristics HFD AppEn

1. Non-fractal but irregular: Irregular and complex but
lacking self-similarity Low High

2. Fractal but predictable: Clear fractal properties,
Predictable patterns High Low

3.
Sensitivity to different types of complexity:
-strong spatial self-similarity
-lacking temporal irregularity

High Low
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In scenario 1, the signal exhibits irregularity or complexity but lacks the character-
istic self-similarity associated with fractals. Thus, HFD may yield a low value (lower
complexity), while AppEn may still be high due to the signal’s irregularity.

In scenario 2, the signal exhibits clear fractal properties (e.g., via correlation dimension),
thus indicating high HFD, but at the same time, the signal follows predictable patterns without
much irregularity. Thus, AppEn may yield a low value (lower complexity) despite the high
fractal dimension.

Finally, in scenario 3, we recall that HFD emphasizes the spatial and self-similarity
characteristics of complexity, while AppEn is associated with temporal irregularity and
predictability. Thus, certain types of complexity may be more pronounced (prevailing) in
one measure in comparison to the other. Thus, HFD may be high in a signal with strong
spatial self-similarity but lacking temporal irregularity, while AppEn is constantly low.

In this paper, considering two measures of complexity allows us to make compre-
hensive analysis and to integrate their “different and seemingly conflicting” findings to
shed light on the underlying dynamics of the signals. An example of a deep but mainly
technical-mathematical comparison of HFD, AppEn, and other complexity measures is the
work of Ferenets et al. [61], who assessed the depth of sedation. In our paper, we have used
the same values of the parameters involved in HFD and AppEn, as in the work of Ferenets
et al. (actually, for AppEn, m = embedding dimension = 2, rf = 0.2×(sd), and Max interval
time = Kmax = 8, for HFD). In general, our findings of HFD and AppEn for the EEG signals
taken from healthy controls and patients with AN are in accordance with the findings of the
paper of Ferenets et al. regarding the values of the parameters used in our two measures.

2.6. Wavelet Extracted EEG Power Rhythms (Waves, or Frequency Sub-Bands) as EEG Feature
Potential Biomarker

In this work, we applied wavelet analysis to extract specific information from our raw
EEGs. We extract EEG power rhythms or waves of specific frequency sub-bands that are
associated with specific brain functions. It is an analysis in both the time and frequency
domain. In this paper, Daubechies wavelet (DW) is chosen due to several advantages
described by Gowri and Raj [100].

Ylow[n] =
∞

∑
k=−∞

s[k] ∗ g[n − k] (11)

Yhigh[n] =
∞

∑
k=−∞

s[k] ∗ h[n − k] (12)

where s[k], g[n], and h[n] indicate the input signal, and impulse response of low-pass and high-
pass filters, respectively. The output of the filter Ylow and Yhigh must then be down-sampled
by 2, as follows [101]. The required sampling frequency fs must also decreased to half since
fs ≥ 2 fmax according to the sampling or Nyquist theorem [102] and because the maximum
frequency fmax decreases due to filtering. Following down-sampling, the sample length
decreases to half, and the scale is doubled. In this work, DWT (Discrete Wavelet Analysis)
is performed using MATLAB R2018b environment. In this paper, the sampling frequency
is 128 Hz, and DWT decomposes the EEG signals of all channels into several frequency
sub-bands via DW. Figure 4 shows each decomposition level, and each frequency sub-band
represents different brain waves, i.e., electrical activities that reflect specific brain functions
such as emotion, reasoning, behavior, etc. The primary brain rhythms or waves are shown
in the figure (alpha, beta, theta, delta, and gamma). Delta rhythm (0–4 Hz) is a loud and slow
wave that occurs during dreamless sleep and meditation. When the subject is in an alert
state of consciousness, an Alpha wave (8–16 Hz) occurs. Theta wave (4–8 Hz) occurs during
sleep in the presence of dreams as well as in a meditative state [103]. Beta wave (16–32 Hz)
is often enforced during drowsiness and is considered to be related to the functions of
the sensorimotor cortex. Excess of beta activity is considered abnormal. Gamma waves
(32–64 Hz) are the fastest of all brain waves, occurring in parallel processing of the brain
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and can be captured in a calm mind [103]. We do not examine gamma waves in this work.
EEG signal is decomposed into approximation and detail coefficients, and each one of them
is further decomposed to obtain the desired level of decomposition, which, in our case, is
three levels, and the features are extracted from detail (D1 to D4) and approximation A4
(see Figure 4).
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Figure 4. Wavelet EEG decomposition process for extracting its rhythms (frequency sub-bands alpha,
beta, etc.).

The power of each frequency band was calculated by averaging the power values
within the above bands (rhythms), and electrode and band-specific time-course were
calculated for each participant.

The absolute power is associated with how much brain power is available and represents
the electrical power in each band of EEG. It is compared to all other individuals in the
data set to determine whether the results are typical or atypical. The voltage produced
by the brain is measured at each of the channels and is used in detecting whether enough
brainpower within a specific frequency range is present at each recording channel. The
relative power can be realized as the power in one frequency band compared to all other
bands or the distributed total amount of power at each brain location. It is used to determine
whether a specific frequency (e.g., alpha) is overpowering other vital brain frequencies or if
the power is low. In this paper, we have also computed the relative power of α, β, γ, δ, θ
rhythms as separate extracted features for each group of subjects and each syllogism. For
example, the relative power of alpha is estimated as follows:

Alpha Relative Power = Alpha Power/(Total power), where Total Power = Alpha
power + Beta power + Delta power + Theta power + Gamma power

2.7. Classification and Used Classifiers

This section provides a short description of classifiers and an evaluation of their
performance to make this work as self-contained as possible. All the classification models
developed in this work are implemented in MATLAB’s (vers. 2018b) classification Learner
app (CLA) toolbox, which supports:

- Decision trees: Deep tree, medium tree, and shallow tree;
- Support vector machines: Linear SVM, fine Gaussian SVM, medium Gaussian SVM,

coarse Gaussian SVM, quadratic SVM, and cubic SVM;
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- Nearest neighbor classifiers: Fine kNN, medium kNN, coarse kNN, cosine kNN, cubic
kNN, and weighted kNN;

- Ensemble classifiers: Boosted trees (AdaBoost, RUSBoost), bagged trees, subspace kNN,
and sub-space discriminant.

With CLA, we assess classifier performance using confusion matrices, ROC curves, or
scatter plots, compare model accuracy using the misclassification rate on the validation
set, improve model accuracy with advanced options and feature selection, export the best
model to the workspace to make predictions on new data and finally we can generate
MATLAB code to train classifiers on new data. We compared the performance of several
classifiers with their default parameter values to discriminate between patients with AN
and healthy controls. Before entering the classifiers, all extracted features were normalized
by subtracting sample means and dividing by sample standard deviation, rendering the
inputs to have zero means and unit standard deviation. To enhance the effectiveness of
their discriminatory capacity of the classifiers, a dimensionality reduction was performed
via Principal Component Analysis (PCA) [104], which has the effect of decorating the
features. Only the three (3) PCs were kept for further analysis, corresponding to the three
largest eigenvalues of the sample covariance matrix. The percentage of the total explained
variance by the first three PCs is estimated as the ratio between sums of variances of the
3 PCs and original variables (in our case of the 14 EEG channels). Some of the most
important and widely used classifiers (automatically chosen to be the aforementioned
toolbox) are the following:

Naïve Bayes (NB) classifier [105,106]: Using Bayes’ theorem [107], NB is a maximum a
posteriori classifier, generating the class ci with the highest probability, given the observed
feature values, in our case, the AppEn and HFD and the EEG rhythms. The product of pos-
terior Gaussian probabilities [108] is used to estimate the posterior probability conditioned
by the set of attributes {x1, . . . , xk} (assumed independent).

Logistic regression, LR [106,109]: For this classifier, a linear combination of features and
logistic regression function is used to estimate the class of the class conditional probability,
and the model coefficients are computed via the LogitBoost algorithm [110].

Multi-layer perceptron (MLP) is a generalization of logistic regression enforced by
incorporating an extra processing layer [106]. The class is estimated via thresholding the
value of its output processing unit [110,111], which uses a non-linear transfer function on
the linear combination of the generated outputs of hidden neurons, each one of which
applies a transfer function to a linear combination of the inputs. The coefficients of the used
MLPs with ⌈k + 1/2⌉ hidden neurons were computed by a backpropagation algorithm
with default values of the toolbox of learning rate, momentum, and number of training
epochs [111].

Support vector machines (SVM): A powerful approach to predictive modeling based
on error-based learning [106]. They are trained in a slightly different way than regression
models. The main advantages of SVM are that they are robust to overfitting and perform
extremely good in very high-dimensional problems. The classification of this classifier is
done by partitioning a feature space via a decision boundary that is linear in the transformed
space, defined by the kernel function, and uniquely determined by a subset of data–support
vectors [104]. The maximization of the distance between the decision boundary and the
support vectors, performed by SVMs, determines a maximal margin classifier. A variety of
kernel functions is used in the toolbox, chosen optimally for the given data. In general, by
construction, SVMs maximize classifier margin and, hence, probably minimize overfitting.

Decision trees (DT) [106,112]: In this model, the feature space is recursively partitioned
in those regions that correspond to classes, selecting that feature that generates the highest
level of information gain. The partition process follows specific rules, and the process
ends if a predefined minimal number of samples per node of a decision tree is reached
(usually 2 samples/node). The complexity of the DT model may be reduced via estimating
classification error in the pruning stage [113], thus improving its generalization capacity.
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Random forests (RF): This model performs classification by combining classes pre-
dicted by ensemble members, utilizing an ensemble of unpruned trees [106,114]. For
partitioning, the algorithm considers a random subset of the features in each node of a tree.
In this work, parameters as members of the used ensembles and random features for each
split are the default values chosen by the CLA.

Evaluation of Classifier’s Performance

Classification accuracy was evaluated through a cross-validation procedure in which
the dataset was split into K subsets of approximately equal size K-1 subsets were used
to fit a classification model, and the remaining subset was used to evaluate the classifier.
This procedure was repeated K times such that a classifier was evaluated in each subset.
In this study, we used K = 10 [115,116]. The classification accuracy was assessed through
overall accuracy—the percentage of correctly classified samples—and using the area under
the ROC curve (AUC). The overall accuracy of useful classifiers in two-class problems
ranges from 50% to 100%. The ROC curve is created by plotting the true positive rate
(the proportion of samples with AN that are detected as such) vs. the false positive rate
(the ratio of the total number of controls incorrectly detected as with AN and the total
number of controls). AUC ranges from 0.5 (for a classifier that randomly guesses a class)
to 1 (for an ideal classifier) [117]. In machine learning, model complexity (of the classifier,
not of the signal) is defined as the ability of a classifier to distinguish among classes that
are separated by multivarious surfaces. Here, model complexity was measured using the
Vapnik-Chevronenkis (VC) dimension. Burges [118] indicates that the models with a small
number of parameters may have larger VC dimensions and complexity. According to
statistical learning theory [113], the classification accuracy on test data (measured by a ten-
fold cross-validation method in this study) 14 decreases with a factor directly proportional
to the VC dimension of the model and inversely proportional to the size of the training data
set. Among the classification methods considered in this paper, the multilayer perceptron
and decision tree have VC dimensions that increase with the number of features utilized
for classification.

2.8. Assessing the Performance of Classifiers: The ROC (Receiver Operating Curve), the CM
(Confusion Matrix), and the Parallel Coordinates (PC) Tools

In order to assess the ability of the two features-complexity measures (AppEn and
Higuchi FD) and of the four EEG rhythms α, β, δ, θ) to discriminate patients with AN
from control subjects at various (or possibly all) electrodes, we use various tools as the
Confusion Matrix (CM) and receiver operating characteristic (ROC) plots [119,120]. We
used Matlab’s functions that automatically select different thresholds or cut-off points of
the complexity measures values and compute their sensitivity/specificity pair. Sensitivity is
the true positive rate TPR-the proportion of patients with a diagnosis of AN who test positive
(for example, AppEn value lower than the cut-off point), whereas specificity is the true
negative rate TNR-representing the percentage of Control-healthy subjects that are correctly
recognized (e.g., AppEn value higher than the cut-off point). Accuracy refers to a related
measure, quantifying the total number of subjects (patients with AN and control subjects)
that are accurately classified. According to the specifications of the ROC functions, they
select the optimum threshold as the cut-off point in which the highest accuracy (minimal
false negative and false positive results) is obtained. This highest accuracy is determined
graphically from the ROC curve and is the closest value to the left top point (100% sensitivity,
100% specificity).

A rough guide to classify the precision of a diagnostic test is related to the area under
the ROC curve, AUC. Values ranging from 0.90 to 1 indicate the precision of the diagnostic
test to be excellent, good for values between 0.80 and 0.90, fair if the results are in the
range 0.70–0.79, poor when the value of the AUC is between 0.60 and 0.69, and bad for
AUC values between 0.50 and 0.59. All results regarding the classification performance
assessment described above are provided in Section 3.7.
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3. Results
3.1. Statistical Analysis AppEn and HFD Features

Statistical analysis was performed by SPSS Statistics, version 20.0, SPSS Inc. Before
proceeding to ANOVA analysis of the extracted linear and nonlinear features extracted
from the EEGs, the Kolmogorov–Smirnov (KS) and Shapiro–Wilk (SW) tests of Normality
were used. A value of p < 0.05 (two-tailed) was considered statistically significant.

The main findings of this analysis are that almost all extracted features except the
Higuchi FD and all syllogisms were found to be not normally distributed. Therefore,
nonparametric methods are implemented to detect the discriminating performance of all
linear and nonlinear features before proceeding further to their classification capabilities.
Tables S1 and S2 (Supplementary Material) present the descriptive statistics of the Grand Mean
(across all channels) of the AppEn extracted data per group and per gender, respectively.

In the Kolmogorov–Smirnov (KS) and Shapiro–Wilk (SW) normality tests
(Tables S3 and S4, Supplementary Material), we tested the null hypothesis (both per group
and per gender) that the data come from a normal distribution process. Our results showed
that the mean value of AE for valid syllogisms for the group of controls is not normally
distributed (KS = 0.293, df = 28, p = 0.000 and SW = 0.743, df = 28, p = 0.000), while for the
AN group, it is normally distributed (KS = 0.231, df = 12, p = 0.078 and SW = 0.884, df = 12,
p = 0.000). Similar results hold for the mean value of AE for invalid and paradox syllogisms.
Therefore, we can conclude that there is not enough evidence that the mean AE values for
patients with AN are non-normal, while the opposite holds for controls.

Figures S1 and S2 (Supplementary Material) depict the box plots of the grand mean
values (across all channels) of AppEn (AE) to compare their distributions between the
two groups and gender. As it is shown, the median lines of the box plot of the AN group
(irrespective of syllogism) lie outside of the box plots of controls for each syllogism, an
indication that there is likely to be a difference in mean between the two groups. Similar
information is provided in Figure S2 but for gender differences. From the Interquartile
range (IQR), the AE values of controls are more dispersed than those of AN patients and
are more dispersed between females and males. We observe that the number of outliers in
the group of controls is larger than that in the AN group. The mean AE values for paradox
syllogisms of the AN group are left skewed, while valid and invalid are symmetric, a result
that also holds for controls.

Tables S5 and S6 (Supplementary Material) present the descriptive statistics of the
Grand Mean (across all channels) of the HFD extracted data per group and per gender,
respectively. We observe that the average of the Grand Mean of HFD data of patients with AN,
in all syllogisms, is larger than that of controls, enhancing the widely held view that EEGs
of patients are more complex than that of controls. Also, females show larger values of
average Grand Mean of HFD than males in all syllogisms. (These findings are further
supported by the box plots of Figures S3 and S4 in Supplementary Material).

The normality tests of HFD per group and gender (Tables S7 and S8, respectively,
Supplementary Material) indicate that the mean values of HFD for both groups and gender
are normally distributed (e.g., in the test of data for group and valid syllogism, KS = 0.116,
df = 28, p = 0.200 for controls and KS = 0.116, df = 12, p = 0.200 for AN). Similar results hold
for invalid and paradox syllogisms. Thus, an ANOVA can be applied to detect differences
between the mean values of HFD of the two groups (see Section 3.3).

3.2. Statistical and Correlational Results of Behavioral Data
3.2.1. Correctness:

Independent samples t-tests were performed to detect differences in correctness be-
tween the two groups. For the valid case, the tests showed no significant differences in
% correctness (correct answers/39 × 100) between the two groups (F = 0.277, p = 0.601).
Specifically, the average % of correct responses for the healthy controls was 75.3 (+ or −10.9)
%, whereas for the AN group was 72.47 (+ or −12.98). Similarly, no significant differences
were found between the two groups in the case of invalid (F = 0.014, p = 0.905) and of
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paradox (F = 0.177, p = 0.675). (Figure S5 in Supplementary Material shows a box plot of
the distribution of % correctness per syllogism and group).

3.2.2. Degree of Confidence (DoC):

No significant differences in the level of confidence (%) in the responses of the subjects
of the two groups are found in valid, invalid, and paradox syllogisms (p = 0.198, 0.708,
0.160), respectively) (Figure S6 in Supplementary Material shows the distribution of DoC
across syllogisms and groups).

3.2.3. Correlation Analysis of Behavioral and AppEn/Higuchi FD Values

We performed a Spearman ranks bivariate correlation between Behavioral variables
and AppEn (Tables S9–S14, Supplementary Material) and HFD (Tables S15–S20, Supple-
mentary Material) extracted features to detect possible linear relationships.

3.2.4. Correlations of Behavioral Data (% Degree of Confidence-DoC and % Correctness)
with AppEn and HFD (Spearman’s Rho, Nonparametric)

We observe that (Tables S21–S24, Supplementary Material) in the case of valid syl-
logism and for patients with AN, the % correctness is positively correlated (ρ = 0.629,
p-value = 0.028) with % DoC of these subjects, i.e., the higher % of correct answers is
associated with higher DoC.

3.2.5. Independent Samples t-Tests of Behavioral Data (% Degree of Confidence, DoC and
% Correctness)

We also performed independent samples t-tests to behavioral data % DoC and %
Correctness to detect differences between the two groups (Table S25, Supplementary
Material). In the valid case, partial significant differences were found in the % DoC
(t = 1.615, df = 38, p = 0.057) and % Correctness (t = 1.595, df = 38, p = 0.059). Their mean
values (83.7% and 75.36%, respectively) are higher in healthy controls than in patients with
AN (77% and 69%, respectively).

3.3. MANOVA of Extracted Higuchi Fractal Dimension (HFD) Feature

As we observe in the following two tables, from the multivariate tests (Table 4), the
Combined Dependent Variable (CDV) formed by all 14 channel values of the Higuchi FD,
there is a group effect (i.e., the average of CDV is different in the two groups only for the
valid syllogism (Pillais Trace value, PTV, 0.573, F = 2.395, p = 0.028, partial eta squared,
pes = 0.573). The partial eta squared (pes) values are all >0.14 (14%), indicating a statistically
significant (large) group effect (pes reflects the proportion of variance in the CDV that is
accounted for by the factor group. From the output of Levene’s test (not shown here),
p > 0.05 for all channels, so for most of the channels, there is equality in variance, a result
further enhancing the reliability of the analysis.

Table 4. Multivariate Tests of HFD estimations.

MANOVA Multivariate Tests of HIGUCHI Estimations

Effect: Group, Pillais Trace

Syllogism Value F Sig. (p-Value) Partial Eta Squared

Valid 0.573 2.395 0.028 0.573

invalid 0.320 0.840 0.624 0.320

Paradox 0.428 1.335 0.256 0.428

The tests between subjects (i.e., channels in our case) effects (Table 5), show that the
two groups, Control and AN, differ significantly in terms of the mean HFD at channels
AF3 (p = 0.018), F7 (p = 0.0540), F3 (p = 0.077), O1 (p = 0.024) O2 (p = 0.031), F4(p = 0.007)
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and AF4(p = 0.001), if (alpha-value or p-value) is not Bonferroni adjusted (p < 0.0035, since
Bonferroni adjusted alpha level = 0.05/14 channels, due to multiple comparisons). Only
channel AF4 (Anterio-Frontal, right), in the valid syllogism, satisfies this condition, while the rest
of the channels have no contribution to the total variance of the CDV in all syllogisms (all
have p > 0.0035). Also, from partial eta squared values, it is shown that the largest amount
of variance is accounted for by the “group” factor at channel AF4 in the valid case (~27%).

Table 5. Test between subjects.

HIGUCHI FD Analysis. MANOVA Results. Tests between Subjects Effects. F, p-Values, Partial
Eta Squared (Using the Bonferroni Adjusted Alpha Value (p < 0.0035))

CHANNEL Valid Invalid Paradox

F, p-Value, η2 F, p-Value, η2 F, p-Value, η2

AF3 6.082, 0.018, 0.138 1.547, 0.221, 0.039 0.964, 0.332, 0.025

F7 4.50, 0.040, 0.106 1.363, 0.250, 0.035 0.736, 0.396, 0.016

F3 3.303, 0.077, 0.080 0.242, 0.625, 0.006 0.299, 0.588, 0.008

FC5 5.422, 0.025, 0.125 0.238, 0.628, 0.006 0.135, 0.715, 0.004

T7 0.746, 0.393, 0.019 0.010, 0.922, 0.000 0.014, 0.906, 0.000

P7 2.840, 0.100, 0.070 0.156, 0.695, 0.004 0.376, 0.544, 0.010

O1 5.566, 0, 024, 0.128 0.710, 0.374, 0.021 0.186, 0.669, 0.005

O2 5.029, 0.031, 0.117 0.244, 0.624, 0.006 0.136, 0.712, 0.004

P8 3.136, 0.085, 0.076 0.172, 0.681, 0.004 0.148, 0.702, 0.004

T8 1.039, 0.315, 0.027 0.522, 0.474, 0.014 1.899, 0.176, 0.048

FC6 2.294, 0.138, 0.057 0.330, 0.596, 0.009 0.003, 0.957, 0.000

F4 8.227, 0.007, 0.178 0.199, 0.658, 0.005 0.156, 0.695, 0.004

F8 5.413, 0.025, 0.125 1.791, 0.189, 0.045 0.231, 0.634, 0.006

AF4 13.776, 0.001, 0.266 3.300, 0.077, 0.080 4.379, 0.043, 0.103

Similar results can be obtained by using separate One-Way ANOVA for each syllogism,
as shown in Tables 6–8. The main observations are that (a) Ch1, Ch2, Ch4, Ch7, and Ch12 to
Ch14 are the brain regions that present significant differences in HFD estimates in the valid
case, and only in Ch14 in the paradox case, (b) consistently, the mean HFD values in the
majority of patients with AN and in almost all channels, are higher in comparison to the
healthy controls, enhancing further the widely held view that patients exhibit higher level
of complexity in their recorded EEGs. Table 9 shows the results obtained by the One-Way
ANOVA of Grand mean values of HFD across all 14 channels.

3.4. Nonparametric Tests of Extracted AppEn Feature

Due to the not normally distributed data of the AppEn feature data across subjects,
nonparametric tests were performed to detect differences between the two groups. Initially,
the null hypothesis was that the medians, range, and distribution of the AppEn values
at each channel and for each group were the same across the group variable. Various
tests such as the Independent Samples Median Test (ISMT), Kruskal–Wallis (KW), and
Kolmogorov–Smirnov (KS) were employed, using the SPSS ver.20 statistical toolbox. As
an example, the rejection of the null for the medians at channel 3 (ch_3, F3), in the case of
valid syllogism, was attained via the ISMT. In the table below, we list the results of the KW
nonparametric tests performed for each syllogism (the complete SPSS output tables are
provided in the Supplementary Material, Tables S26–S28).
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Table 6. Mean (SE) and One-way ANOVA of HFD, valid syllogism.

HFD, One-Way ANOVA, Syllogism: Valid

Channel Healthy Controls
Mean (SE)

AN
Mean (SE) F-Stats p-Value

Ch1 1.647 (0.021) 1.737 (0.026) 6.082 0.018 *

Ch2 1.658 (0.019) 1.730 (0.022) 4.541 0.040 *

Ch3 1.683 (0.022) 1.754 (0.028) 3.303 0.077

Ch4 1.690 (0.021) 1.774 (0.025) 5.422 0.025 *

Ch5 1.730 (0.025) 1.768 (0.027) 0.746 0.393

Ch6 1.701 (0.023) 1.769 (0.025) 2.840 0.100

Ch7 1.665 (0.022) 1.753 (0.024) 5.566 0.024 *

Ch8 1.655 (0.019) 1.733 (0.027) 5.029 0.031

Ch9 1.696 (0.018) 1.758 (0.030) 3.136 0.085

Ch10 1.719 (0.022) 1.759 (0.031) 1.039 0.315

Ch11 1.684 (0.022) 1.744 (0.030) 2.294 0.138

Ch12 1.675 (0.020) 1.773 (0.022) 8.227 0.007 *

Ch13 1.674 (0.023) 1.767 (0.028) 5.413 0.025 *

Ch14 1.625 (0.018) 1.746 (0.025) 13.77 0.001 **
Note: * p < 0.05, ** p < 0.01.

Table 7. Mean (SE) and One-way ANOVA of HFD, invalid syllogism.

HFD, One-Way ANOVA, Syllogism: Invalid

Channel Healthy Controls
Mean (SE)

AN
Mean (SE) F-Stats p-Value

Ch1 1.671 (0.017) 1.716 (0.036) 1.547 0.221

Ch2 1.676 (0.017) 1.715 (0.034) 1.363 0.250

Ch3 1.700 (0.017) 1.718 (0.034) 0.242 0.625

Ch4 1.706 (0.018) 1.725 (0.037) 0.238 0.628

Ch5 1.755 (0.020) 1.759 (0.035) 0.010 0.922

Ch6 1.732 (0.017) 1.745 (0.030) 0.156 0.695

Ch7 1.694 (0.019) 1.728 (0.033) 0.810 0.374

Ch8 1.697 (0.016) 1.714 (0.037) 0.244 0.624

Ch9 1.720 (0.019) 1.734 (0.041) 0.172 0.681

Ch10 1.747 (0.020) 1.717 (0.040) 0.522 0.474

Ch11 1.705 (0.018) 1.727 (0.037) 0.330 0.569

Ch12 1.698 (0.018) 1.713 (0.027) 0.199 0.658

Ch13 1.695 (0.017) 1.739 (0.029) 1.791 0.189

Ch14 1.648 (0.017) 1.709 (0.031) 3.300 0.077

From the tables, in the valid case, statistically significant differences in the AppEn
values between the two groups are exhibited in F3, T7, P7, O1, O2, P8, T8, FC6, F4, and F8,
while in the invalid case, this happened in all channels. In paradox syllogism, F3, FC5, T7,
P7, O1, O2, P8, T8, F4 and F8.
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Table 8. Mean (SE) and One-way ANOVA of HFD, paradox syllogism.

HFD, One-Way ANOVA, Syllogism: Paradox

Channel Healthy Controls
Mean (SE)

AN
Mean (SE) F-Stats p-Value

Ch1 1.678 (0.018) 1.713 (0.034) 0.964 0.332

Ch2 1.687 (0.018) 1.716 (0.026) 0.736 0.396

Ch3 1.713 (0.018) 1.732 (0.029) 0.299 0.588

Ch4 1.729 (0.016) 1.742 (0.034) 0.135 0.715

Ch5 1.763 (0.018) 1.759 (0.032) 0.014 0.906

Ch6 1.731 (0.017) 1.751 (0.025) 0.376 0.544

Ch7 1.705 (0.019) 1.720 (0.025) 0.186 0.669

Ch8 1.692 (0.017) 1.680 (0.030) 0.138 0.712

Ch9 1.733 (0.018) 1.719 (0.032) 0.148 0.702

Ch10 1.767 (0.018) 1.716 (0.036) 1.899 0.176

Ch11 1.718 (0.020) 1.716 (0.034) 0.003 0.957

Ch12 1.723 (0.017) 1.736 (0.033) 0.156 0.695

Ch13 1.719 (0.018) 1.736 (0.034) 0.231 0.634

Ch14 1.657 (0.017) 1.723 (0.025) 4.379 0.043 *
Note: * p < 0.05

Table 9. One-Way ANOVA of Grand Mean values (across all 14 channels) of HFD.

HFD, One-Way ANOVA, All Channels

Sum of Squares df Mean Square F Sig.

Mean valid Higuchi
Between groups
Within groups

Total

0.049
0.354
0.403

1
38
39

0.049
0.009 5.219 0.028

Mean invalid Higuchi
Between groups
Within groups

Total

0.004
0.318
0.323

1
38
39

0.004
0.008 0.510 0.479

Mean paradox Higuchi
Between groups
Within groups

Total

0.001
0.287
0.288

1
38
39

0.001
0.008 0.114 0.737

From Table 10 we observe that invalid syllogism produces cognitive loads that activate
all 14 brain regions, while valid and paradox 10 regions. (The results of the non-parametric
Kruskal–Wallis test for the Grand mean values of AppEn are shown in Table S29, Supple-
mentary Material). For the Grand mean AppEn values, in the valid syllogism, there was a
significant effect of the group variable (Controls vs. AN) (χ2 = 8.028, df = 1, p < 0.05), also in
the invalid (χ2 = 15.4, df = 1, p < 0.05), as well as in the paradox (χ2 = 6.9, df = 1, p < 0.05).

Figure 5 presents the box plots of AppEn data for all channels per group, with the
pronounced result that in the AN group (ED), the medians in each channel are smaller than in
the controls in the case of valid syllogism. An interesting finding (in conflict with the results
given by HFD data) is also that the medians of the Grand Mean AppEn values in patients
with AN are smaller than in controls, reflecting a lower-level complexity in the overall brain
activation of patients, compared to that of controls (Figure S7 Supplementary Material).
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Table 10. Channels that exhibit significant (s) or not significant (ns) differences in AppEn estimates
between the two groups.

Channel Index Channel Name Valid Invalid Paradox

1 AF3 ns s ns

2 F7 ns s ns

3 F3 s s s

4 FC5 ns s s

5 T7 s s s

6 P7 s s s

7 O1 s s s

8 O2 s s s

9 P8 s s s

10 T8 s s s

11 FC6 s s ns

12 F4 s s s

13 F8 s s s

14 AF4 ns s ns
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Figure 6 pictorially summarizes all previous results, providing information on the
brain regions on which the subjects of the two groups exhibit significant differences in the
values of HFD and AppEn.
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3.5. Nonparametric Tests of EEG Extracted Power Rhythms Feature

In Tables S30–S41 (Supplementary Material), we show the results of the Kruskal–Wallis
nonparametric tests for the extracted, via wavelet analysis, EEG rhythms alpha, beta, delta,
and theta, for the valid, invalid, and paradox type of syllogism, to detect any statistically
significant differences in mean between the two groups.

Regarding the alpha rhythm, in the case of valid syllogism, there is no significant effect
of alpha rhythm (all p-values or sig. are large), so alpha rhythm does not differ in the
two groups, i.e., it cannot discriminate patients with AN from healthy subjects (as shown
in Table S30, Supplementary Material). In the invalid syllogism, only in channel ch9 (P8)
is a significant effect, while in paradox syllogism, alpha rhythm has significant effects in
channels ch2(F7) (X2 = 3.99, df = 1, p = 0.046), ch10(T8)(X2 = 3.976, df = 1, p = 0.046),
ch11(FC6) (X2 = 4.420, df = 1, p = 0.036) and ch14(AF4) (X2 = 4.244, df = 1, p = 0.039) (Tables
S31 and S32, Supplementary Material).

For the beta rhythm (Tables S33–S35, Supplementary Material), it has significant effect
on ch1(AF3), ch3(F3), ch4(FC5) and ch11(FC6) in the valid syllogism, Ch1(AF3) and ch6(P7)
in the invalid case, and ch8(O2) in paradox. Delta rhythm (Tables S36–S38, Supplementary
Material) has no significant effect on all channels for almost all syllogisms except ch5(T7) in
the paradox case.

Theta rhythm (Tables S39–S41, Supplementary Material) has a significant effect, for
invalid syllogism, on ch2(F7), ch11(FC6), and ch14(AF4), and no significant effects at all for
the valid and paradox cases.

Table 11 shows the brain regions (channels) at which there are significant differences in
the values of EEG-specific bands (rhythms) between the healthy controls and patients with
AN. We observe that significant differences in alpha (α) band between the two groups are
located at frontal-temporal, frontal-central, anterior-frontal, and right-temporal regions in
the case of paradox syllogisms and right parietal in invalid syllogism. Significant differences
in Beta (β) are at all frontal regions in the valid syllogism, at the left anterior-frontal and left
parietal invalid cases, and at right occipital in paradox cases. Differences in delta (δ) band
are concentrated only at the left temporal in the paradox case. Finally, frontal-temporal,
frontal-central, and anterior-frontal are the brain regions of the two groups that exhibit
significant differences in theta band (θ) when the participants face invalid syllogisms.
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Table 11. Channels at which there are significant differences in the amplitude values of EEG specific
bands (rhythms) between the healthy controls and patients with AN.

Alpha (α)
(8–13 Hz)

Beta (β)
(13–30 Hz)

Delta (δ)
(1–4 Hz)

Theta (θ)
(4–8 Hz)

Valid - AF3, F3
FC5, FC6 - -

Invalid P8 AF3, P7 - F7, FC6, AF4

Paradox F7, T8
FC6, AF4 O2 T7 -

Figure 7 shows the plot of the channel spectra and associated topographical maps for
a representative patient with AN (#ED20), chosen arbitrarily. Each colored trace represents
the spectrum of the brain activity of one EEG channel (electrode). The leftmost scalp
map shows the scalp distribution of the power at 2.0 Hz (δ band), which in this data is
concentrated strongly on the F7 (temporal, left) and gradually, with less intensity, on the F7
(Frontal-temporal, left), as well as on F8 (Frontal-temporal), restricted on a smaller region.
In the same region and with similar intensity, band θ (6 Hz) activity is concentrated. Band
α (10 Hz) activity is pronounced in a broader area, consisting of O1, O2 (Occipital regions),
and P8 (Parietal, right), as well as on a smaller frontal region between anterior-frontal, left
and right, AF3 and AF4, with less intensity. Thus, band α activity dominates the occipital and
right parietal regions. Also, the entire lower scalp hemisphere, extended from T7 (strongly)
to O1, O2, and P8 (strongly) regions, is “heavily” dominated by band β1 (15Hz). The
temporal left region, T7, is activated strongly by the β2 band, while O1 and P8 are also β2
activated, but with lesser intensity.
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Figure 7. Channel spectra and topographical map: distribution of specific EEG spectra bands (δ, α, θ,
β1, β2) on the scalp of a patient with AN (ED20), chosen arbitrarily. The EEG signals in 14 channels
contain responses to all syllogisms and contain 50% of the total 334,464 data points (total 2613 s), i.e.,
1306 s (sampling rate fs = 128 Hz). The curves with different colors correspond to 14 channels.

In conclusion, and only for this randomly chosen patient with AN, bands α and β1
(10 and 15 Hz, respectively) activate strongly larger parts of the brain than other bands
when the patient is exposed to all Aristotle’s syllogisms, with emphasis on occipital and
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parietal (left and right) regions. Taking the average of the spectral curves of these bands, of
all subjects, different results of the average topographic map are expected for each group.

Figure 8 depicts the distribution of EEG power of specific spectra (maps) for the
healthy control subject #10 for all Aristotle’s syllogisms. In general, this figure, compared
to the previous one for a patient with AN, shows emphatically that the brain’s activity
in this case is concentrated on smaller regions, primarily in the part extended between
AF4 (Frontal-temporal, right), F4 *Frontal, right) and F8 (Frontal-temporal, right). No
concentration of activity of any specific spectra is exhibited on the left and occipital regions,
a very interesting observation. This finding, however, concerns only the healthy subject
under analysis, and it cannot be generalized at this stage of our analysis. However, the
difference between the two figures is apparent, i.e., the specific bands activate more brain
regions in the case of patients with AN than in the case of healthy control, a result that is
further enhanced by the AppEn and HFD complexity findings that are higher in the case of
patients with AN, when they face cognitive tasks of great difficulty such as syllogisms in the
Aristotle’s experiment.
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The results from non-parametric tests of amplitude and relative power values of EEG
rhythms are placed on a scalp map, as shown in Figure 9, to pictorially emphasize the brain
regions that are mostly activated when Aristotle’s experiment is performed. A classification
scheme of high accuracy can also be obtained by HFD-channels dyads, as shown in the
figure. If instead of HFD, we consider AppEn on a similar figure (not depicted here), this
feature will “occupy” all regions in the case of invalid syllogism.

3.6. Nonparametric Tests of EEG Extracted Rhythms–Relative Power

As we have already mentioned before, in Section 2.6, relative power is associated with
the question: Who is in charge here? RP can be realized as the power in one frequency band
compared to all other bands or the distributed total amount of power at each brain location. It is
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used to determine whether a specific frequency (e.g., alpha) is overpowering other vital brain
frequencies or if the power is low.
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Figure 9. Results of amplitude and relative power values of EEG rhythms (from nonparametric
tests) indicate the brain regions that were mostly activated during Aristotle’s experiment and differ
significantly between the two groups.

The variability of values is different between the four syllogism-induced workloads,
which were explored by statistical evaluation of the selected relative power of EEG rhythms
(features). We used one-way ANOVA for normally distributed features and Kruskall-Wallis
(KW) nonparametric tests for not normally distributed variables of the relative power of
EEG rhythms, individually for each syllogism and group, presenting statistical significance
at p-values < 0.05 (95% confidence interval). ANOVA and KW tests were performed on both
separate channel levels and on the level of Average Grand Mean of Relative Power, AGMRP
(average of all 14 Grand mean values, in each channel, for each subject).

3.6.1. Alpha Relative Power at Channels Level, Valid Syllogism

The relative power values at channels ch1, ch2, ch11 and ch13 were found to be (by
Kolmogorov-Smirnov test, KS) not normal, for both patients with AN and controls. An
ANOVA of these channels reveals that there are no significant effects of the group variable
(F(1,39) = 0.007, p = 0.870, F(1,39) = 0.035, p = 0.365), F(1,39) = 0.595, p = 0.445, F(1,39) = 0.346,
p = 0.560, for the channels mentioned respectively. The relative power at the rest of the
channels is not normally distributed, so a KW test was performed. The test (results are
given in supplementary material) also showed no significant effects of the group variable.
Thus, the values of alpha relative power at all channels for valid syllogism do not differ
significantly between the two groups. The average of Grand Mean Values (AGMV) of alpha
power was found to be not normal. No significant effects of the group variable were found,
using the KW test, for this syllogism (X2 = 1.075, df = 1, p = 0.300).

3.6.2. Alpha Relative Power for Invalid Syllogism

KS test showed that alpha relative power at ch6 and ch9 of the AN (ED) group is
not normal (KS = 0.247, df = 12, p = 0.042, for ch6 and KS = 0.200, df = 13, p = 0.039, for
ch9, respectively). ANOVA for the rest of the normal variables (corresponding to all other
channels) indicated no significant effect on the group. Also, the nonparametric KW test for
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variables corresponding to ch6 and ch9 also indicated no significant effect. Regarding the
average grand mean of the alpha relative power for this syllogism, the KS test showed that
both variables for patients with AN and controls are normal. The ANOVA effect showed
no significant effect (F = 0.030, p = 0.864).

3.6.3. Alpha Relative Power for Paradox Syllogism

Alpha RP at ch4, ch5, ch6, ch7, and ch11 were found normally distributed. Their
ANOVA showed no significant effect on the group. No significant effect of the group
was also found (by the KW test) in the alpha relative power at the rest of the channels
(not normally distributed). For the paradox, the average of Grand Means of this power
was found to be not normally distributed for controls and normally for patients with AN.
Therefore, the KW test indicated no significant effect (X2 = 0.380, df = 1, p = 0.538).

3.6.4. Beta Relative Power, Valid Syllogism

Due to the non-normality of both series in the Controls-AN pairs, a KW test was
applied to the beta relative power variables at ch1, ch3, ch4, ch7, ch12, and ch14. The results
shown below (Table 12) indicated a significant effect of the group variable (Beta relative
power feature discriminates effectively between the two groups). Also, the average of Beta
RP Grand Means values in the case of valid syllogism indicated significant effects of group
variable (X2 = 3.957, df = 1, p = 0.047), and in fact, its value for patients with AN (22.23%) is
larger than its value for controls (17.65%), indicating a higher level of complexity of the
patients’ “total” brain activation.

Table 12. Channels of significant group effects (p < 0.05), of average of Grand Mean values of Beta
relative power, for valid syllogism.

Channel X2 df p

1 (AF3) 4.654 1 0.031

3 (F3) 4.183 1 0.041

4 (FC5) 4.776 1 0.029

7 (O1) 4.069 1 0.044

12 (F4) 5.278 1 0.022

14 (AF4) 5.941 1 0.015

3.6.5. Beta Relative Power, Invalid and Paradox Syllogisms

KW tests applied to both these cases (due to not normally distributed variables)
showed no significant effects at either individual channels or brain “Total” activation
(average grand mean values) levels.

3.6.6. Gamma Relative Power

For the relative power of this rhythm, only at channel 14 (AF4), and for valid syllogism,
there was a significant effect (KW test, X2 = 4.298, df = 1, p = 0.038), as well as at channel 10
(T8) for paradox syllogism (X2 = 5.15, df = 1, p = 0.023). No significant effect was found for
all syllogisms’ average Grand Mean values.

3.6.7. Delta Relative Power

No significant group effects were found for all channels for all syllogisms. For
all syllogisms, no significant group effects were found for the average Delta relative
power variables.
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3.6.8. Theta Relative Power

The KW tests for the relative power of this rhythm, for the valid and invalid syllogisms,
indicated that there was a significant effect at the channels shown in the following tables.
In the case of paradox syllogism, no significant effects were found in any channel.

From Table 13a,b, thus, patients with AN and healthy controls exhibit their highest
differences in Theta rhythm relative power in all frontal brain regions in the cases of valid and
invalid syllogisms.

Table 13. Channels of significant group effects of Grand Mean values of Theta relative power for
(a) valid and (b) invalid cases.

(a)

Valid Case Ch3 (F3) Ch4 (FC5) Ch12 (F4) Ch14 (AF4)

X2 4.899 3.957 5.941 7.693

df 1 1 1 1

p 0.027 0.047 0.015 0.006

(b)

Invalid Case Ch1 (AF3) Ch4 (FC5) Ch11 (FC6) Ch13 (F8)

X2 4.268 3.680 5.031 4.770

df 1 1 1 1

p 0.039 0.055 (partial) 0.025 0.029

Also, significant effects were found for the average of Grand Mean values (Brain’s
“Total activity”) for the valid (X2 = 4.069, df = 1, p = 0.044) syllogisms.

Table 14a,b provide a summary of the analysis results on both separate channels and
“Brain’s total activity” levels for each syllogism. Bold letters indicate significant group effects
(where patients with AN and healthy controls differ significantly).

Considering all the above results on both levels of analysis (on each separate channel
and on AGMRP), we note that:

Based on “mainstream” statistical tools of ANOVA and KW nonparametric tests, no
significant group effects were found in all channels for Alpha, Delta, and Gamma relative
power; thus, these rhythms cannot detect differences in the brain regions, as well as they
are not suitable as inputs to a classification process, for grouping effectively and reliably,
AN and healthy controls.

Regarding the “total brain activity”, of patients with AN and healthy controls, based
also on ANOVA and KW tests:

- No significant group effects were found for the Alpha AGMRP, in all syllogisms;
- Significant group effects were found for the Beta AGMRP, in valid syllogisms;
- No significant group effects were found for the Delta AGMRP, in all syllogisms;
- No significant group effects were found for the Gamma AGMRP, in all syllogisms;
- Significant group effects were found for the Theta AGMRP, in valid syllogisms.

According to Table 12, for the valid case, Figure 10a,b, indicate that the beta relative
power values differ significantly at channels AF3, F3, FC5, O1, and F4. For example, of
controls at O1 and O2 occipital channels, the bars indicating % of beta relative power are
smaller than the bars in the AN (ED) group, indicating higher complexity at the occipital
regions of patients with AN. In general, the complexity of patients is higher than that of
controls in all channels shown in Tables 12 and 13 and pictorially in Figure 10a,b.
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Table 14. (a): Summary of all EEG Rhythms Relative power on channels and “Brain’s Total Activation”
(Average of Grand Means Relative Power, AGMRP) levels of analysis. Bold letters indicate significant
group effects (i.e., patients with AN and Healthy Controls groups differ significantly). (b): Summary
of all EEG Rhythms Average value of Grand Means Relative Power (AGMRP) (%) (Brain’s “Total
Activity”). Bold letters indicate significant group effects.

(a)

Valid Invalid Paradox

EEG
Wave RP

Channel
Level

Analysis

Brain’s
Total

Activation Analysis

Channel
Level

Analysis

Brain’s
Total

Activation Analysis

Channel
Level

Analysis

Brain’s
Total

Activation Analysis

alpha No No No No No No

beta

Yes
AF3, F3
FC5, O1
F4, AF4

Yes No No No No

gamma Yes
AF4 No No No No No

delta No No No No No No

theta
Yes

F3, FC5
F4, AF4

Yes

Yes
AF3,
FC5

FC6, F8

No No No

(b)

Alpha Beta Delta Gamma Theta

CTRL AN CTRL AN CTRL AN CTRL AN CTRL AN

Valid 18.013 17.864 17.658 22.23 31.96 27.90 10.54 13.73 21.81 18.25

Invalid 17.849 18.204 18.345 19.77 30.36 32.19 11.07 11.54 22.35 18.28

Paradox 17.65 19.11 19.11 18.54 30.09 32.00 12.91 11.08 20.20 19.33

3.7. Results of Classification
3.7.1. Classification Based on Higuchi and AppEn Features

Table 15a,b provides summary information of the classification results, using a va-
riety of classification models (classifiers) and AppEn and Higuchi FD as input descrip-
tive features, and “group” factor (Control, AN) as the target feature, with and without
Principal Components (PC), respectively. Table 16a,b (Section 3.7.2) provides the same
information but for the amplitude of EEG rhythms. The tables show the accuracy in %,
the Area Under (ROC) Curve, AUC, and the OOPROC (sensitivity, specificity) coordi-
nates. A first observation is that PC does not improve the classification and, in some cases,
deteriorates it.

The triad “feature-syllogism-classifier” constitutes all possible combinations examined
in the present research experiment, used to detect the best classification results. Therefore,
the best classification of subjects with AN is (a) “AppEn-Invalid-Enseble BT”, presenting an
accuracy of 83.3% (see Section 2.8). (b) “Alpha amplitude-Valid-SVM”, achieving a similar
accuracy of 83.3%.

3.7.2. Classification Based on the Extracted Features of Amplitude of EEG Rhythms

Table 16a,b provides a summary information of the classification results, using a
variety of classification models (classifiers) and the amplitude of EEG rhythms as input
descriptive features and “group” factor (Control, AN) as the target feature, with and
without Principal Components (PC).
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Table 15. Optimum triad “feature–Syllogism–Classifier”, rendering the higher accuracy of the
Higuchi FD and AppEn features of anorexia nervosa EEGs.

(a) Without PCA

Feature
(Measure) Syllogism Best Classification

Model Accuracy, % Area Under Curve
(AUC)

OOPROC
(Sensitivity, Specificity)

Higuchi FD Valid
SVM (Linear)

SVM (Medium Gaussian)
Ensemble (subspace Disc)

66.7
66.7
66.7

0.83
0.56
0.58

(0.33, 0.67)
(0.33, 0.67)
(0.50, 0.83)

AppEn Invalid Ensemble (Bagged Trees, BT) 83.3

(b) With PCA

Feature
(Measure) Syllogism Best Classification

Model Accuracy, % Area Under Curve
(AUC)

OOPROC
(Sensitivity, Specificity)

Higuchi FD Valid
Linear Discriminant (*)
Logistic Regression (*)

KNN (Fine) (*)

75
75
75

0.78
0.76
0.75

(0.33, 0.83)
(0.33, 0.83)
(0.33, 0.83)

AppEn Invalid Ensemble (Bagged Trees, BT) 83.3

Notes: * four (4) PCs were kept with variances: 86.7%, 4.6%, 3.3% and 2.7%.

Table 16. Optimum triad “feature–Syllogism–Classifier”, rendering the higher accuracy, using the
amplitude of EEG Rhythms.

(a) Without PCA

Rhythm Syllogism Best Classification Model Accuracy, % Area Under Curve
(AUC)

OOPROC
(Sensitivity, Specificity)

Alpha Valid SVM fine Gaus.
Linear Discriminant

83.3
66.7

0.59
0.69

(0.00, 0.50)
(0.38, 0.75)

Theta Invalid
SVM Cubic
KNN Fine

KNN weighted

75
75

66.7

0.69
0.75
0.58

(0.50, 1.00)
(0.50, 1.00)
(0.67, 1.00)

(b) With PCA

Rhythm Syllogism Best Classification Model Accuracy, % Area Under Curve
(AUC)

OOPROC
(Sensitivity, Specificity)

Alpha Valid SVM fine Gaus.
KNN

83.3
66.7

0.50
0.50

(0.00, 0.50)
(0.25, 0.50)

Theta Invalid
KNN

SVM Quadrat
SVM cubic

75
66.7
66.7

0.75
0.78
0.83

(0.50, 1.00)
(0.67, 1.00)
(0.67, 1.00)

We observe that the highest accuracy of 83.3% is achieved by using both AppEn
and Alpha rhythm input features for the invalid and valid syllogism, respectively, with
Ensemble Bagged Trees as the best classifier for the first triad and SVM for the second one.

We also point out that the accuracy attained by the Alpha rhythm feature and valid
syllogism is higher than that achieved by using Higuch FD, indicating the superiority of the
information-based feature of AppEn. The second higher accuracy, 75.6%, is achieved by an
Ensemble Bagged tree, using the power of the Alpha (Rhythm) Relative Power feature for
the valid case. We recall that alpha rhythm was found from Kruskal–Wallis nonparametric
tests (the equivalent to ANOVA for not normal data tests) (see Section 3.5) to provide
statistically significant values in channel ch9(P8) (invalid case) and ch2(F7), ch10(T8),
ch11(FC6) and ch14(AF4) (paradox case). This indicates that the “linear” nonparametric
tests are less capable of detecting differences between the two groups in the cases of valid
syllogism, than the powerful classification tool of Ensemble BT, which detects differences
with a 75.6% accuracy. The Kruskal-Wallis nonparametric tests and the Ensemble BT
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classifier indicate strongly that the dyad “valid syllogism-alpha rhythm” effectively detects
the differences between patients with AN and controls.

Regarding the good discriminatory performance of the triad “Theta-Invalid-KNN”,
it is in accordance with the findings of the Kruskal–Wallis nonparametric tests, in which
ch2(F7), ch11(FC6), ch14(AF4) for the invalid case, show significant values (effects). A
very interesting observation is that ch2(F7), ch11(FC6), and ch14(AF4) show significant
values in alpha and theta rhythms for paradox and invalid cases, respectively. Therefore,
the differences in the level of activation of the brain of the subjects, at these regions, of the
two groups (Control and AN) are high when they face the loads exerted by previously
mentioned Aristotelian syllogisms.

From the above results, we opted to concentrate on the AppEn and Theta rhythm
features that generate the highest accuracies in accurately classifying new information
regarding patients with AN. In Figure 11, the confusion matrix (CM) is shown, a tool for
assessing the performance of the “best” found model Ensemble BT, attaining an accuracy
of 83.3%, using AppEn as the input descriptive features for the invalid syllogism. Other
models have been found for the rest of the syllogism, attaining, however, less accuracy.
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Figure 11. Confusion matrix for assessment of the best-found model (Ensemble Bagged Trees), for
AppEn Rhythm, Invalid syllogism. The classification performance accuracy of the model is 83.3%.

The top row of the confusion matrix shows all subjects with true class ED (patients with
AN). The columns show the predicted classes. In the top row, 100% of the subjects with
AN are correctly classified, so 100% is the true positive rate (TPR) for correctly classified
subjects in this class, shown in the green cell in the True Positive Rate column. No other
subjects in the AN row are misclassified, i.e., incorrectly classified as Control. So, 0% is the
False Negative Rate (FNR) for incorrectly classified subjects in this group, shown in the red
cell (white here, because of zero) in the FNR column. Similarly, 33% of the true class ctrl
are incorrectly classified as AN, while 67% are correctly classified. Thus, TPR = 67% and
FNR = 33% in this case.

The Receiver Operating Curve (ROC) in Figure 12 shows true and false rates, using
AppEn values as input features again for the invalid syllogism, with AUC = 1.00. The AN
group is chosen here (arbitrarily) to be the positive class and HC the negative one. The red
marker on the plot shows the performance of the best classifier Ensemble BT, i.e., the (FPR,
TPR) = (0.33, 1.00) coordinates. Since FPR = 0.33, the Ensemble BT classifier incorrectly
assigns 0.33% of the observations to the AN class. Here also, TPR = 1.00, i.e., the model
correctly assigns 100% of the observations to the AN class. This is a perfect result with
no misclassified points and is a right angle to the top left of the plot. A poor result that is
no better than random is a line at 45 degrees. The Area Under Curve (AUC) number, here
AUC = 1.00, is a measure of the overall quality of the classifier. Larger AUC values indicate
better classifier performance. The fifth column of Tables 15 and 16 shows AUC values for
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all classifiers used in this paper. The result just found is in accordance with the CM for the
AN group (positive class).
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Figure 12. Receiver Operating Curve (ROC) was used to assess the performance of the “best” model
found: Ensemble BT, with AppEn feature, for the invalid syllogism. Here, AN is considered to be a
positive class.

3.7.3. Classification Results of Relative Power of EEG Rhythms

In the classification of relative power, the adopted feature selection method was
the default one of MATLAB’s vers. 2018b, classification learner app. Table 17 below
summarizes the results of the classification of healthy subjects and patients with AN based
on the feature EEG rhythms relative power, i.e., shows the best-found triads “EEG rhythms
relative power-syllogism-classifier”.

Table 17. Classification results of Relative Power of EEG rhythms (specific bands).

Valid Invalid Paradox

EEG Rhythm
(Wave) Model Accuracy

% Model Accuracy
% Model Accuracy

%

Alpha
Relative Power Fine Tree 75.6 no split

70.0 split

SVM Coarse
Logistic

regression

70 no split.
55 split

SVM Linear
Ensemble BT

75.6 no split
85 split

Beta
Relative Power

SVM
Ensemble

subspace Discr.

70.7 no split
85.0 split

SVM
SVM (cubic)

75.0 no split
70.0 split

SVM fine
Gaussian

SVM cubic

68.3 no split
75.0 split

Delta
Relative Power

Ensemble BT
Logistic

Regression

78.0 no split
60.0 split

SVM Fine
Gaussian
Ensemble

subspace KNN

70.0 no split
90.0
split

SVM Quadrat.
Ensemble BT

70.7 no split
75 split

Gamma
Relative Power

KNN (cubic)
SVM (linear)

73.2 no split
85.0 split

SVM Gaussian
SVM Cubic

70.0 no split
65.0 split

Linear Discr.
LD

Logistic Regr.

73.3 no split
65.0 split

Theta
Relative Power

SVM linear
KNN weighted

68.3 no split
80.0 split

SVM fine
Gaussian

SVM Coarse
Gaussian

70.0 no split
70.0 split

KNN weighted
SVM Quadratic

70.7 no split
75.0 split

By comparing the results of the classification given in Table 17, based on the relative
power of EEG rhythms, with the results of ANOVA and KW tests, given in Tables 12–14,
we observe that they are not consistent. In fact, although ANOVA and KW tests showed no
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significant group effects for the alpha relative power on both levels of analysis (separate
channels and “total brain activity”), the classification instead has revealed that alpha
rhythm, combined with some classifiers, provides classification models with very good
accuracy. More specifically, the triad “alpha RP-valid-fine tree”, has an accuracy of 75.6%,
the triad “alpha RP-invalid-SVM”, an accuracy of 70%, etc. This inconsistency in the results
of these two methods can be explained as follows: ANOVA estimates the mean value of
alpha RP of controls and AN by terms of variance of the confidence interval, while the
feature selection method, e.g., of a SVM scheme implemented, determines this feature’s
prominence by weights deriving from the internal structure of SVM, mapping feature
vectors in multidimensional space and estimating maximum hyperplane deviations [121].
Therefore, the two approaches work on a complementary basis; in fact, ANOVA and KW
tests are used as the first “rough” tool to detect the extracted feature’s effectiveness in
separating the subjects of the two groups.

4. Discussion
4.1. The findings from Our Study

The most important finding of this study is that the extraction of non-linear features
linked to the complexity of EEG signals can lead to high and potentially useful tools for
discrimination or separation of EEGs recorded from healthy control subjects and patients
diagnosed with anorexia nervosa. We propose that Aristotelian syllogisms (constructs
based on Aristotle’s logic designs) used in our experiment form a suitable “background” in
which such features operate efficiently towards this end. These syllogisms exert demanding
cognitive loads on the participants, producing intense activations in brain regions that
can be detected via “sophisticated” tools. In this context, Wang et al. [122], in their meta-
analysis of previous data related to neural substrates for deductive reasoning, highlighted
the need for applying new techniques to explore how different brain regions are activated
during this process.

In this work, we have used two features extracted from EEGs, originating from the
nonlinear dynamical systems theory, Higuchi’s Fractal Dimension (HFD) and approximate
entropy (AppEn), as well as the “mainstream” tool of EEG-specific frequency bands (alpha,
beta, delta, and theta). Consequently, we combined these features with each of the valid,
invalid, and paradox syllogisms, to form suitable dyads of “features-syllogism” used as
input to various machine learning classification techniques. These inputs are used further
in generating the triad “feature-syllogism-classifier”, exhibiting the highest classification
accuracy. In other words, properly selecting these triads makes an important classification
problem more tractable. To the best of our knowledge, we were the first to apply this type
of triad on the particular classification task of discriminating healthy controls and patients
with AN based on EEGs. We recapitulate at this point the most important findings of
this paper:

The mean HFD of healthy controls (valid case) is less than the mean HFD of patients
with AN (see Table 18), i.e., on average, the complexity in the brain activity of subjects with
AN is higher (in accordance with other results in the literature, that patients exhibit higher
complexity). In the case of invalid syllogisms, there is a significant effect of the group
variable (AN, Controls) for the AppEn. Actually, the mean AppEn of Controls (1.482)
is larger than that of AN (1.210) (F(1,38) = 14.512, p = 0.00). This indicates a significantly
higher level of complexity of the controls’ average brain activity. Furthermore, the mean
AppEn of healthy subjects in the invalid case is higher than the mean AppEn when they
face valid syllogisms. Conversely, the mean AppEn of patients with AN, when they face
invalid syllogism, is lower (an opposite result than in the valid case). In other words, when
healthy controls face invalid syllogisms, their EEG signals show higher AppEn values
than when they face valid syllogisms. On the contrary, patients with AN present EEG
signals with lower values of AppEn (hence with higher predictability) when they face
invalid syllogisms, in comparison with the condition of the valid type of syllogism. We
may conclude, therefore, that healthy controls and patients with AN present lower values
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of AppEn in relation to the different types of syllogisms presented (valid and invalid
syllogisms, respectively).

Table 18. Comparing AppEn and HFD results.

Grand Mean AppEn Grand Mean HFD

Group Valid Invalid Paradox Valid Invalid Paradox

Healthy Controls 1.371 1.482 1.389 1.679 1.703 1.715

AN Patients 1.259 1.210 1.283 1.755 1.726 1.726

Comparison AppEnAN < AppEnHC Same ** same HFDAN > HFDHC same same

Result * Not normal Not normal Not normal Normal Normal Normal

Note *: Normal = EEG Complexity in patients > EEG Complexity in healthy controls. **: same= as in the case
of valid

We observe that the average of the Grand Mean of HFD data for patients with AN,
in all syllogisms, is larger than that of healthy subjects, enhancing the widely held view
that patients’ EEGs are more complex than that of controls. However, the opposite occurs
for the Grand Mean of AppEn, where in all syllogisms, the AppEn of patients with AN
is smaller than that of healthy controls. This seemingly conflicting result is explained in
Section 2.5.1. The signals of patients with AN are, in fact, fractals but also predictable
with not much irregularity since AppEn is low despite the high fractal dimension (higher
HFD). Table 18 facilitates the clarification of seemingly conflicting results comparing HFD
and AppEn.

Also, females show larger values of average Grand Mean of HFD than males in
all syllogisms.

Regarding the descriptive statistics and correlations of behavioral data, no significant
differences were found in the % of correct answers given by healthy subjects and patients
with AN and in the level of confidence (%) for the given responses, in valid, invalid, and
paradox syllogisms.

The findings obtained from the correlation of behavioral data (emotional intensity,
emotional control, mood, and number of correct answers) with mean values (across all subjects)
of AppEn and HFD for all syllogisms showed that:

For healthy controls, the only significant positive correlation (0.421, p = 0.026) was
found between emotional control and mean AppEn in the case of paradox syllogism.

For patients with AN, the only significant and also positive correlation (0.635, p = 0.027)
was found between emotional control and mean AppEn in the case of invalid syllogism.

No significant correlations were found between mean HFD and behavioral data for
healthy controls in all syllogisms.

For patients with AN, a significant and negative correlation was found between
emotional intensity and mean HFD (−0.588, p = 0.045) in the invalid case. Additionally,
(partial) significant and negative correlation was found for patients with AN between
emotional control and mean HFD (−0.574, p = 0.051) in the paradox case.

Thus, emotional control is found to be sensitive to the mean complexity of the EEGs,
measured by AppEn (positively correlated), of both healthy participants and patients with
AN, for paradox and invalid cases, respectively. Higher levels of complexity of their EEGs
“generated” by the cognitive loads exerted by these two types of syllogisms reflect higher
levels of emotional control of both healthy participants and patients. On the contrary,
emotional control and intensity in patients with AN were found to be negatively correlated
with mean HFD, again for paradox and invalid cases, respectively. In this case, higher
levels of complexity of their EEGs “generated” by the cognitive loads exerted by these two
types of syllogisms correlate with lower levels of emotional control and emotional intensity
of AN patients.

Therefore, taking into consideration the conflicting results obtained from these two
measures (AppEn, HFD), we may conclude that, at this point, the failure of HFD in relation
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to AppEn emerges again since (as we have previously shown) EEG signals of AN patients
are indeed fractal, but at the same time also predictable, with low levels of irregularity
(low values of AppEn). Consequently, we can justify the lower level of emotional control
and intensity found in patients with AN despite the higher complexity of their EEGs as
measured by the HFD measure.

In the case of valid syllogism and for patients with AN, the % correctness is positively
correlated with the % DoC of these subjects, i.e., the higher % of correct answers is associated
with higher DoC. Regarding differences in the mean of % DoC and % Correctness between
the two groups, partial significant differences were found in the valid case. Their mean
values were found to be higher in healthy controls than in patients with AN.

From the MANOVA of HFD, for the Combined Dependent Variable (CDV) formed
by all 14 channel values of this measure, there is a group effect (i.e., the average of CDV is
different in the two groups only for the valid syllogism.

Also, from MANOVA, healthy controls and patients with AN differ significantly in
the valid syllogism in terms of the mean HFD at channels AF3, F7, F3 (frontal left), O1, O2
(occipital), F4 and AF4 (frontal right) (not Bonferroni adjusted) and only at channel AF4
(Anterio-Frontal, right), in the valid syllogism, when Bonferroni condition is satisfied.

MANOVA’s main findings also include: a) AF3, F7, FC5, T7, O1, and F4 to AF4 are
the brain regions that present significant differences in HFD estimates, in the valid case, and
only in AF14 in the paradox case, b) consistently, the mean HFD values in the majority of
patients with AN and in almost all channels, are higher compared to healthy controls, enhancing
further the widely held view that patients exhibit higher level of complexity in their
recorded EEGs.

Regarding the AppEn results, for the Grand mean AppEn values, there was a significant
effect of the group variable (differences between the two groups) in all syllogisms.

Also, for AppEn, in the valid case, statistically significant differences between the two
groups are exhibited in F3, T7, P7, O1, O2, P8, T8, FC6, F4, and F8, while in the invalid case,
this happened in all channels. In paradox syllogism, F3, FC5, T7, P7, O1, O2, P8, T8, F4
and F8. Also, we observe that invalid syllogism produces cognitive loads that activate all
14 brain regions, while valid and paradox 10 regions. This result further enhances our view
that AppEn is a more effective measure than HFD since it detects, on average, a larger
number of activated brain regions for most of the syllogisms.

4.2. The Contribution of Our Findings in the Existing Literature

Regarding the Rhythms results, as shown and commented on Table 11, we point out
here that our results are in accordance with the findings in other works, from which the
most relevant to us is the paper by Hatch et al. [80], although it should be noted that the
sample of patients with AN in that case consisted of adolescents. According to Demos [123]
and Blume et al. [124], oscillations in beta (β) band are linked to conscious precision, strong
focus, and enhanced ability in problem-solving. We also compare our results with those
described in a review paper by Blume et al. [124] and the work of Leonard et al. [125]. In
the last paper, EEG was derived at three stages, at a 1-min resting state, “eyes open” before,
during, and after a test meal. No differences were found in δ, θ, α, and β power between
the three conditions and, in comparison, between a group of patients with AN and healthy
controls. Therefore, the test-meal condition failed in discriminating the subjects of the
two groups, while in our work, the use of Aristotle’s syllogisms proved to be an efficient-
suitable background towards this end. Increased beta activity (in terms of frequency
analysis) in fronto-temporal and occipito-temporo-parietal areas was reported by Hilui
et al. [126] in their review of Binge-purge eating disorders (BP-ED), a finding considered by
the authors as indicative of dysfunctional brain network in individuals with this type of
ED. Furthermore, a recent study of deductive inferences (logically valid and invalid tasks
with the same content) in healthy participants showed two distinct beta-2 (β2, 19–30Hz)
activations in logically valid inferences in left temporal and central areas, proposing that
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the specific cortical features found could reflect a distinct neural process for this type of
inferences [127].

The results from our study are consistent with previous AN studies reporting reduced
alpha [77,79], as well as abnormalities in the beta band in AN [77]. In the paper of Hatch
et al. [80], it was found that in an “eyes open” condition, patients with AN (underweight)
exhibited significantly lower alpha power relative to controls in the frontal, central, and
temporal brain regions. Patients with AN also showed significantly higher beta in frontal
regions than controls. More specifically, even though more demanding cognitive tasks now
replace the “eyes open” condition, we observe (see Table 11) that significant differences in
alpha band values between the two groups are documented in frontal and temporal regions
in paradox and in the parietal region in the invalid case. Thus, a reduced alpha band in
patients with AN, compared to controls, is observed in frontal and temporal regions in the
case of paradox (of our experiment) and in the “eyes open” condition of the work by Hatch
et al. [80]. The invalid case adds new information: a reduced alpha band is documented
in patients with AN and the parietal region when facing this cognitive task in Aristotle’s
experiment. However, a lower relative alpha 1 (8–11 Hz) band in the parietal area in patients
with AN has been reported in the past by Toth et al. [81] in the condition of processing
gustatory stimuli. Our results for the beta band capture the same information as in the
paper of Hatch et al. [80], showing a higher beta band in frontal regions (valid and invalid
cases), but add new information that a higher beta band also occurs in occipital (paradox)
and left parietal (invalid case) in patients with AN. Therefore, the main contribution of our
work is that the Aristotelian cognitive tasks exert more loads on the participants, activating
more brain regions as reflected by significant differences of alpha and beta, delta, and theta
bands than in the case of more “naïve” tasks [80]. We emphasize here also that in our work,
the left temporal region for the delta band in paradox, as well as frontal (in invalid) regions
for theta band, showed significant differences, enhancing further the value of Aristotelian
cognitive tasks, in detecting more accurately and reliably all brain regions activated that
cannot be detected by using more naïve conditions.

We recall at this point that brain abnormalities in the frontal region, in both alpha and
beta bands are consistent with the executive function deficits found in AN, which, according
to different authors [80,128,129], are contingent on prefrontal and frontal brain functioning.
In addition to the above-mentioned subcortical disturbances, fMRI works in AN have
shown alterations to exist in prefrontal activity in AN relative to controls [130]. Alpha is
considered to manifest “relaxed wakefulness”, while beta “alert attentiveness” [80,131].
The reduced alpha/increased beta pattern has been reported to reveal a total increased
cortical activation [132].

Regarding changes in theta (θ) bands in healthy individuals and patients with AN,
we first recall that performance in inhibition tasks, executive functioning, and working
memory are linked to theta rhythms [123,124]. Theta band’s activity is considered not to be
related to appetitive learning in Binger-Eating-Disorder (BED) and Bulimia Nervosa (BN).
When subjects with normal weight were compared to those with obesity, the last group
was found to exhibit reduced theta (θ) power in frontal regions, indicating difficulties in
executive functioning. Our results showed that theta band’s values in healthy subjects
and patients with AN are significantly different in the invalid cases, and more specifically,
theta values are lower in patients with AN, evidence that they face difficulties in dealing
with these demanding cognitive loads (i.e., they are deficient in executive functioning).
Memory maintenance is also strongly linked to theta activity in frontal regions [133],
which, if enhanced, reveals a synchronous activity in these regions when the subjects are
involved in cognitively demanding tasks. It seems, therefore, natural to conclude that
increased theta activity in frontal regions of healthy subjects and reduced in patients with
AN (thus a significant difference), reveals a deficit in executive functions for patients with
AN, i.e., they cannot activate frontal regions needed to “manage” adequately demanding
cognitive loads. The discrepancies noted with previous studies that reported increased theta
activity in patients with AN [82,134] could be attributed to different stimuli/experimental
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conditions. In the study of Hestad et al. [82], EEG recording was examined in an “eyes-
closed” condition, while Spalatro et al. [134] explored basal EEG and reactivity to music
stimuli in patients with AN. Additionally, as has been stated before in a review of EEG
data in eating disorders by Jáuregui-Lobera [135], the elevated theta power in parietal-
occipital areas observed in AN during an “eyes-closed” condition is suggested to be a
stable characteristic that remains after refeeding [80].

Regarding the results of the relative power of EEG rhythms, no significant differences
were found between patients with AN and healthy controls in the values of alpha, delta,
and gamma waves in all syllogisms examined. On the level of analysis of “Total Brain
Activity”, no significant differences in the values of the relative power of alpha, delta, and
gamma were found between the two groups. In contrast, significant differences were found
in beta and theta waves. Thus, the relative power values of beta and theta (in the “Total
Brain Activity” level of analysis) are suitable for effective discrimination of the subjects of
the two groups but only for the valid syllogism.

We must note here that in this paper, we used HFD and AppEn, two nonlinear
measures that are able to detect differential aspects of the signal under analysis. More
specifically, while HFD examines the complexity in the time domain, AppEn an information-
oriented approach, can characterize the irregularity of a signal or its predictability (indicated
indirectly as complexity changes in a physical sense). Their results are not consistent since
HFD showed higher complexity in patients with anorexia nervosa when compared to
healthy subjects, while AppEn showed less complexity in patients with AN than in controls.
As explained in Section 2.5.1, Higuchi’s Fractal Dimension (HFD) and Approximate Entropy
(AppEn) are particularly well matched in a methodological sense [136], showing different
sensitivity for the frequency content of the signal. AppEn shows better performance in the
lower frequency band and HFD in higher frequencies of EEG.

In summary, differences in information processing of patients with AN in respect of
the brain EEG activity may become evident by the concomitant use of demanding cognitive
tasks (Aristotle’s syllogisms in our experiment) and entropy-oriented features (AppEn in
our case). Previous neuropsychological data in AN have shown that cognitive deficits are
manifested as core characteristics of the disorder but also can be remediated [137] and
consequently formed the basis for further studies in this field. Therefore, the documenta-
tion of possible specific information-processing styles in this eating disorder becomes of
great importance.

5. Conclusions

Compared to the above literature, we believe that our work has sufficient originality,
including the combination of two EEG extracted nonlinear features, AppEn and HFD, as
well as main EEGs specific frequency bands or rhythms (α,β,δ,θ), with a set of innovative
cognitive tasks (Aristotle’s syllogisms), and a variety of classification methods used in
machine learning (with and without principal component analysis–PCA) that prove to
produce efficient and very accurate classifiers. Additionally, our findings provide further
evidence for specific information-processing styles in anorexia nervosa, as documented
by the combination of the tools mentioned before. The importance of shedding light on
the reasoning process for this eating disorder has significant implications in targeting
psychotherapeutic approaches as well as specialized neurocognitive interventions.

6. Limitations

One limitation of our study is the small sample size, especially for the group of patients
with AN, since several EEGs were excluded from an initial group of subjects due to many
artifacts. In addition, considering that this is the first study in anorexia nervosa in which
the combination of specific EEG features with a set of innovative cognitive tasks (Aristotle’s
experiment) is applied, the interpretation of the results should be made with caution. The
findings from our study need to be replicated by future studies in this field, using larger
sample sizes.
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Future EEG studies in AN focusing on the reasoning process could help further shed
light on the underlying cognitive mechanisms for this population and the concomitant use
of innovative cognitive tasks with specific EEG features seems promising in this direction.

Furthermore, the discrimination between patients with AN and healthy controls
via machine learning techniques puts forward the importance of using these features as
possible powerful diagnostic tools in other psychiatric disorders.
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Appendix A

Table A1. (a) Extracted Approximate Entropy (AppEn) Descriptive features. (b) Extracted Higuchi
Fractal Dimension (HFD) Descriptive features. (c) Extracted EEG Rhythms (alpha, beta, gamma,
delta, theta) Descriptive features.

(a)

Extracted Approximate Entropy (AppEn) Descriptive Features
(Number of Data Analyzed: 2(Groups) × 31(Subjects) × 14(Channels) = 868) Target Feature

EEG Channels (electrodes)
Group

Participant Ch-1 Ch-2 . . . Ch-14

CON-1 AppEn(1,1) AppEn(1,2) . . . AppEn(1,14) CON
CON-2 AppEn(2,1) AppEn(2,2) . . . AppEn(2,14) CON

. . . . . . . . . . . .
CON-30 AppEn(21,1) AppEn(21,2) . . . AppEn(21,14) CON

ED-1 AppEn(1,1) AppEn(1,2) . . . AppEn(1,14) ED
ED-2 AppEn(2,1) AppEn(2,2) . . . AppEn(2,14) ED

. . . . . . . . . . . . . . . . . .
ED-31 AppEn(21,1) AppEn(21,2) . . . AppEn(21,14) ED
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Table A1. Cont.

(b)

Extracted Higuchi Fractal Dimension (HFD) Descriptive Features
(Number of data analyzed: 2(groups) × 31(subjects) × 14(channels) = 868) Target Feature

EEG Channels (electrodes)
Group

Participant Ch-1 Ch-2 . . . Ch-14

CON-1 HFD(1,1) HFD(1,2) . . . HFD(1,14) CON
CON-2 HFD(2,1) HFD(2,2) . . . HFD(2,14) CON

. . . . . . . . . . . .
CON-21 HFD(21,1) HFD(21,2) . . . HFD(21,14) CON

ED-1 HFD(1,1) HFD(1,2) . . . HFD(1,14) ED
ED-2 HFD(2,1) HFD(2,2) . . . HFD(2,14) ED

. . . . . . . . . . . . . . .
ED-21 HFD(21,1) HFD(21,2) . . . HFD(21,14) ED

(c)

Extracted EEG Rhythms (alpha, beta, gamma, delta, theta) Descriptive Features
Number of data analyzed: 2(groups) × 31(subjects) × 4(Rhythms) × 14(channels) = 3472 Target Feature

EEG Channels (electrodes)
Group

Participant Ch-1 Ch-2 . . . Ch-14

CON-1

α(1,1)
β(1,1)
δ(1,1)
θ(1,1)

α(1,2)
β(1,2)
δ(1,2)
θ(1,2)

. . .

α(1,14)
β(1,14)
δ(1,14)
θ(1,14)

CON

CON-2

α(2,1)
β(2,1)
δ(2,1)
θ(2,1)

α(2,2)
β(2,2)
δ(2,2)
θ(2,2)

. . .

α(2,14)
β(2,14)
δ(2,14)
θ(2,14)

CON

. . . . . . . . . . . .

CON-31

α(21,1)
β(21,1)
δ(21,1)
θ(21,1)

α(21,2)
β(21,2)
δ(21,2)
θ(21,2)

. . .

α(21,14)
β(21,14)
δ(21,14)
θ(21,14)

CON

ED-1

α(1,1)
β(1, 1)
δ(1, 1)
θ(1, 1)

α(1,2)
β(1,2)
δ(1,2)
θ(1,2)

. . .

α(1,14)
β(1,14)
δ(1,14)
θ(1,14)

ED

ED-2

α(2, 1)
β(2, 1)
δ(2, 1)
θ(2, 1)

α(2,2)
β(2,2)
δ(2,2)
θ(2,2)

. . .

α(2,14)
β(2,14)
δ(2,14)
θ(2,14)

ED

. . . . . . . . . . . . . . .

ED-31

α(21,1)
β(21,1)
δ(21,1)
θ(21,1)

α(21,2)
β(21,2)
δ(21,2)
θ(21,2)

. . .

α(21,14)
β(21,14)
δ(21,14)
θ(21,14)

ED
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Table A2. EEG rhythms in brain regions and associated cognitive activities found in literature.

Brain Rhythm (Wave) Frequency (HZ) Amplitude (µV) Brain Region Associated Cognitive Activity

Delta (δ) f <4 20–200
Frontal

Temporal
Occipital

Waking state
Deep sleep

Sleeping adults
Normal in infants

Theta (θ) 4 ≤ f ≤ 7 20–100 Temporal
Occipital

-Locomotion
-Sensory information

-Consciousness slips towards
drowsiness

-unconscious material
-deep meditation

-creative inspiration
-emotional studies

-drowsiness
-spatial memory processes

Common in children and young adults than
in older
adults

Alpha (α) 8 ≤ f ≤ 12 20–60 Occipital

-mental fatigue
-cognitive disorders

-no attention condition
-during dreaming

-awake but relaxed
-attenuation as signal of visual activity

-semantic memory processes to any type
of task

-during visually presented simulation

Beta (β) 13 ≤ f ≤ 29 2–30
Frontal
Central
Parietal

-active attention
-active thinking

-focus on external world
-solving concrete problems

-panic states
-is found in normal adults

-drowsiness
-sensory motor area

-light sleep
-REM sleep

Gamma (γ) 30 ≤ f ≤ 64

-Anterior
temporal
-posterial
temporal

-occipital sites

-Prominent during higher focus and
concentration

-imbalanced excitatory/inhibitory
Activity in autism group
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