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Abstract: Pediatric traumatic brain injury (TBI) often induces significant disability in patients, includ-
ing long-term motor deficits. Early detection of injury severity is key in determining a prognosis
and creating appropriate intervention and rehabilitation plans. However, conventional magnetic
resonance imaging (MRI) scans, such as T2 Weighted (T2W) sequences, do not reliably assess the
extent of microstructural white matter injury. Diffusion tensor imaging (DTI) tractography enables
three-dimensional reconstruction of specific white matter tracts throughout the brain in order to
detect white matter injury based on anisotropic diffusion. The objective of this study was to employ
DTI tractography to detect acute changes to white matter integrity within the intersecting fibers of
key motor-related brain regions following TBI. Piglets were assigned to either the sham craniectomy
group (sham; n = 6) or the controlled cortical impact TBI group (TBI; n = 6). Gait and MRI were
collected at seven days post-surgery (DPS). T2W sequences confirmed a localized injury predomi-
nately in the ipsilateral hemisphere in TBI animals. TBI animals, relative to sham animals, showed
an increased apparent diffusion coefficient (ADC) and decreased fractional anisotropy (FA) in fiber
bundles associated with key brain regions involved in motor function. TBI animals exhibited gait
deficits, including stride and step length, compared to sham animals. Together these data demonstrate
acute reductions in the white matter integrity, measured by DTI tractography, of fibers intersecting
key brain regions that strongly corresponded with acute motor deficits in a pediatric piglet TBI
model. These results provide the foundation for the further development of DTI-based biomarkers to
evaluate motor outcomes following TBI.

Keywords: pediatric TBI; diffusion tensor imaging; motor function; piglet model

1. Introduction

Pediatric traumatic brain injury (TBI) is one of the most common neurological injuries
in children. Recently, the Centers for Disease Control and Prevention reported TBI resulted
in 640,000 emergency department visits, 18,000 hospital stays, and 1500 deaths per year
among children under 14 years old [1]. The pediatric population is uniquely affected by
TBI as it often interrupts and irrevocably alters ongoing neural development, leading to
long-term motor deficits, such as reduced balance and coordination [2–4]. Furthermore,
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decreased white matter integrity in specific structures (i.e., the pyramidal tract) is strongly
correlated with poor gait and motor performance following pediatric TBI [4–8]. Therefore,
early detection and evaluation of affected white matter within specific brain regions is
critical in developing appropriate interventional plans that lead to improved long-term
outcomes [9].

Magnetic resonance imaging (MRI) is a commonly used neuroimaging technique
that reliably identifies cerebral lesioning, edema, hemorrhage, and other pathophysiolog-
ical changes resulting from TBI [10]. In translational animal models, recent research has
shown that increased lesion volumes are highly correlated with reduced step length, stride
length, and poor outcomes following TBI [11,12]. Moreover, in a pig model of brain injury,
motor-related brain structures most impacted by a stroke were shown to be predictive of
functional deficits, as measured by gait and behavior assessments [13]. Though conven-
tional MRI scans (e.g., T2 Weighted) are commonly used neuroimaging tools following
injury, this approach lacks the sensitivity needed to reliably detect microstructural white
matter injury [14]. This injury mechanism is critically important to consider as axonal injury
is a common cause of motor deficits following TBI [5,7]. Thus, more sensitive assessments
of white matter damage are essential to better predict TBI outcome, especially regarding
motor function.

Diffusion tensor imaging (DTI) enables specific assessment of microstructural white
matter integrity by measuring the movement of water molecules in the brain [15]. Further-
more, DTI tractography allows for three-dimensional (3D) reconstruction and characteriza-
tion of microstructural injury to specific fiber tracts [16–18]. This technique collects data
based on the premise that healthy, intact axons limit the free movement of water molecules
to primarily travel parallel to the axon, in part due to the high degrees of myelination
of white matter. Therefore, the anisotropy, or directionality of diffusion, of white matter
fiber tracts can be investigated throughout the brain following TBI to evaluate the presence
of axonal injury that is undetectable utilizing conventional MRI sequences [19]. DTI has
been implicated as a particularly valuable tool in assessing white matter damage following
pediatric TBI as it is sensitive to developmental changes (i.e., the level of axon myelination
for a given age) [9,20]. Fractional anisotropy (FA) is a common DTI measure that quantifies
the degree of anisotropy of water diffusion, while apparent diffusion coefficient (ADC)
measures the overall magnitude of water diffusion. Lower FA and higher ADC values are
associated with loss of white matter integrity [21]. These measures have been shown to be
reliable indicators of microstructural changes to fiber tracts following TBI.

DTI tractography with regional specificity has shown efficacy in detecting microstruc-
tural white matter fiber tract damage. Multiple clinical studies have demonstrated inter-
ruptions to the pyramidal motor white matter tract (consisting of fibers from the primary
motor cortex, premotor cortex, somatosensory areas, and basal ganglia, among others) and
white matter in other motor-related brain structures in pediatric and adult patients who
presented motor weakness or gait disturbances after TBI [5–8,22–24]. Ressel et al. were the
first to report that mean FA of the ipsilateral pyramidal tract demonstrated proficiency in
predicting motor scores of Functional Independence Measurement in children following
TBI [25]. A recent preclinical TBI rodent study determined subacute decreased FA in the
perilesional cortex and ipsilateral hippocampus may be a promising predictive biomarker
for chronic functional deficits, including impaired learning and a reduction in distance
moved as measured by Morris Water Maze and open field performance, respectively [26].
However, to date, no group has performed comprehensive, regionally specific DTI tractog-
raphy analysis to determine the impact of a unilateral TBI on ADC and FA as well as the
subsequent effect on gait deficits in a pediatric piglet TBI model.

Due to key parallels with humans in brain anatomy and physiology, the porcine TBI
model is a robust and predictive animal model [27]. Pig and human brains possess a
high level of gyrification as opposed to the lissencephalic rodent brain, thus resulting in
greater heterogeneity of TBI. The presence of sulci transfers the external force away from
the cortex and into the base of the sulci as opposed to an even force distribution as observed
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in lissencephalic brains [28–30]. Pig and human brains are comprised of >60% white
matter, while commonly used rodent brains are comprised of <12% white matter [31,32].
Reduced vascularization and increased anisotropy in white matter often leaves it more
susceptible to injury as compared to grey matter; therefore, pigs are likely to develop white
matter injuries that are more similar to humans [27]. Brain connectivity between humans
and pigs is also comparable, thus allowing for a more direct comparison of functional
neural networks [33–35]. Furthermore, the piglet brain shows a more similar progression
of neural development, maturation, and myelination to human adolescents compared
to rodent models; consequently, it allows for an age-dependent response to injury that
is more appropriate for modeling pediatric TBI [36,37]. Our research team has recently
demonstrated that the piglet TBI model shows gait deficits comparable to pediatric TBI
patients, including loss of coordination and reduced motor control [11,38–40]. These key
similarities in human and porcine neural and functional responses to TBI make the pig a
valuable tool in assessing novel neuroimaging sensitivity to white matter integrity post-TBI.

The purpose of this study was to employ DTI tractography to detect acute changes
in the white matter integrity of key motor-related regions of interest and to determine
functional deficits in a pediatric piglet TBI model. For the first time, this study provides
evidence that DTI tractography is a sensitive tool that can detect microstructural changes in
the white matter integrity of specific motor-related structures following moderate–severe
TBI in a piglet model. Furthermore, this study establishes a possible connection between
the changes in white matter integrity, as measured by ADC and FA values, of specific
motor-related structures and gait deficits in a piglet TBI model. These findings suggest
DTI analysis may be an advantageous tool in detecting the loss of white matter integrity in
specific motor-related structures following a pediatric TBI.

2. Materials and Methods
2.1. Animals and Housing

Four-week-old male castrated Yorkshire crossbreed pigs (n = 12) were used as experi-
mental animals in this study. TBI was induced in six (TBI; n = 6) piglets, while the remaining
six underwent sham craniectomy surgery (sham; n = 6). The required sample size was
based on our previous study data and was calculated by paired t-tests using two-tailed
tests, α = 0.05, and a desired 80% power of detection with an effect size of 1.15. Piglets were
housed in Public Health Service (PHS) and Association for Accreditation of Laboratory
Animal Care (AAALAC) approved facilities maintained at room temperature (27 ◦C) with
a 12 h light/dark cycle. Pigs were provided ad lib water access and fed standard pig starter
I diets. Furthermore, pigs received daily enrichment through human contact and toys.

This study was performed in accordance with the National Institutes of Health (NIH)
Guide for the Care and Use of Laboratory Animals. All procedures were reviewed and
approved by the University of Georgia Institutional Animal Care and Use Committee
(Animal Use Protocol: A2019-07-007-A25).

2.2. Controlled Cortical Impact

A moderate–severe controlled cortical impact (CCI) was administered as previously
described [38,39,41]. Briefly, pigs were initially anesthetized with an intramuscular injection
of xylazine (0.2 mg/kg, AnaSed, VETone, Boise, ID, USA) and midazolam (2 mg/kg,
Covetrus NA, Portland, ME, USA), followed by an intravenous administration of propofol
(0.5 mg/kg to effect, PropoFlo, Zoetis, Parsnippany, NJ, USA). Once corneal and noxious
reflex was absent, pigs were intubated and maintained on 2–4% inhalant isoflurane (Abbot
Laboratories, Chicago, IL, USA) in oxygen. Ophthalmic ointment (Dechra, Overland Park,
KS, USA) was applied to avoid drying of or damage to the eyes. Body temperature was
monitored via rectal thermometer and maintained via forced air heating system; heart rate
and respiration were monitored routinely by trained personnel before, during, and after
surgery until pigs were ambulatory. After sterile preparation of the skin overlaying the
cranium, a 4 cm skin incision was made to expose the skull. A periosteal block (2 mg/kg,
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Nocita, Elanco, Greenfield, IN, USA) was applied and an approximately 20 mm diameter
craniectomy was performed 3 mm rostral to the left anterior junction of the coronal and
sagittal sutures. Pigs were then secured in a CCI device and a moderate–severe TBI was
induced over the left motor cortex with a 15 mm diameter blunt impactor tip (velocity:
4 m/s, depth: 9 mm, dwell time: 400 ms). Sham pigs received a craniectomy only. The TBI
site was flushed well with normal saline and the skin was reopposed with polyglactin 910
suture (Coated Vicryl, ETHICON, Raritan, NJ, USA). After surgery, all pigs were monitored
until vitals returned to normal, every 4 h for 24 h, and twice daily for the remainder of
the study.

2.3. Magnetic Resonance Imaging

All pigs (n = 12) underwent MRI at 7 days post-surgery (DPS) using a GE 32-channel
fixed-site Discovery MR750 3.0 Tesla magnet and 8-channel knee coil. The following three
sequences were acquired using the respective parameters:

• 3D Fast SPoiled GRadient echo (FSPGR) T1-Weighted (T1W) (FA = 9◦, number of
echoes = 1, TI = 900 ms, receiver bandwidth = 31.25 kHz, FOV = 12.8 × 12.8 × 6.4 cm,
slice thickness = 1 mm, and a matrix size of 256 × 256 × 112);

• Fast Spin Echo (FSE) T2W (TR = 5.3 s, TE = 124 ms, echo train length = 17, receiver bandwidth
= 20.83 kHz, FOV = 12.8 × 12.8 cm, matrix size of 384 × 224, slice thickness = 3 mm);

• Spin Echo (SE) DTI EPI (TR = 10.0 s, TE = min-full, FOV = 12.8 × 12.8 × 6.4 cm, a matrix
size of 64 × 64 × 32, 3 b = 0 images, 30 diffusion weighted images, b = 1000 s/mm2).

All pigs were sedated using the same protocol as craniectomy surgery and maintained
with mild anesthesia using isoflurane in oxygen (1.5%, Abbot Laboratories) for the duration
of the scan.

2.4. Data Processing

Lesion volume was calculated from coronal T2W sequences using Osirix Software
(Version 12.5.2). Hypointense and hyperintense areas in ipsilateral tissue slices were
manually traced. Computer generated lesion volumes were then calculated and reported
for sham and TBI animals.

Digital Imaging and Communications in Medicine (DICOM) images of anatomi-
cal T1W and DTI series were converted into Neuroimaging Informatics Technology Ini-
tiative (NIfTI) format using the “dcm2niix” software MRIcroGL version 20 July 2022
(v1.2.20220720) [42]. Brain masks were manually drawn slice-by-slice in 3D Slicer version 4
(slicer.org) [43].

One pig from the sham group was selected as the template pig based on visual inspec-
tions of the DTI and T1W data, taking into consideration distortion and artifacts. Each
remaining pig’s DTI volumes were spatially normalized to the template pig using the
first volumes of each pig that had no diffusion gradients (b = 0) applied. Spatial normal-
ization was accomplished using Statistical Parametric Mapping’s (SPM) Old Normalize
algorithm (SPM12, Institute of Neurology, University College London) [44]. The calculated
transformation was applied to the rest of the prior motion-corrected volumes and the filed
information of that corresponding pig. The superset was created by concatenating all of
the pig’s corresponding DTI volumes at each voxel.

A porcine brain atlas [45] was then spatially normalized to each T1W, which was
aligned with the DTI images. First, a spatial transformation was calculated between the pig
brain atlas’ associated T1W anatomical image and each pig’s masked T1W image using the
Old Normalize SPM algorithm. Then the calculated spatial transformation was applied
to the atlas. Spatial transformations consisted of a 12-parameter affine transformation
followed by a nonlinear deformation transformation in stereotaxic coordinates [46,47].

Individual brain structure masks were created, as previously described [13], from
the porcine brain atlas template for the following structures: whole hemispheres, primary
motor cortex, premotor cortex, primary somatosensory cortex, somatosensory association
cortex, caudate, putamen, and globus pallidus.
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White matter tractography was evaluated using MedInria software (version 3.0).
Individual brain structure masks were imported and overlaid with final tractography
results in MedInria’s Region of Interest (ROI) box function in the diffusion workspace.
All fibers that intersected an individual brain structure ROI, such as the primary motor
cortex or hippocampus, were displayed and measured. The resulting fibers were only those
that intersected each grey matter brain structure and were then evaluated for ADC and
FA values.

2.5. Gait Analysis

Before weaning, piglets were acclimated to the gait track by freely roaming along the
mat in littermate groups for approximately 15 min per day for five consecutive days, then
were individually acclimated to the mat for the following five days. Upon weaning, at
three weeks of age, pigs were trained to travel across the gait track in a consistent, two beat
trot. Individual piglet training took place for 15 min per day for five consecutive days in
which consistency was reinforced with littermate social interaction at the end of the gait
mat as positive reinforcement. Gait was collected at 7 DPS and piglets were approximately
five weeks of age. During the collection time point, pigs traveled across the gait track until
five usable trials were collected or for a maximum period of 15 min.

Individual gait trials were selected for analysis if they showed less than 10% variability
in stride cycle velocity throughout the trial. Furthermore, for a trial to be included in
analysis, it had to have an average stride cycle velocity that fell within 20% of the mean
velocity for its respective collection day. Data were recorded using a GAITFour electronic,
pressure-sensitive mat (CIR Systems, Inc., Franklin, NJ, USA) that was 7.01 m long and
0.85 m wide. The mat contains a 6.10 m × 0.61 m active area with a total of 23,040 sensors.
Gait was then semi-automatically analyzed using GAITFour Software (version 4.9) to
provide quantitative measurements for each limb. To account for individual pig variation,
all measurements were normalized to pre-surgery values. Parameters analyzed for each
limb included:

• Stride Length: Distance between successive ground contact of the same hoof.
• Step Length: Distance between corresponding successive points of contact of opposing

hooves.
• Step Time: Time from initial contact of a hoof to the initial contact of the opposite hoof.

2.6. Statistical Analysis

All MRI and gait data were analyzed using Minitab® Statistical Software (Version
21.1.1.0, State College, PA, USA). One-tailed two sample t-tests were used to compare
treatment groups. All data are presented as mean ± standard error of the mean (SEM).
p-values of p < 0.05 were considered statistically significant and p < 0.10 were considered
trending. All data are available upon request to the corresponding author.

3. Results
3.1. T2W Sequences Detect Significant Ipsilateral Lesioning following TBI

To evaluate TBI severity, T2W sequences were analyzed at 7 DPS. As expected, ipsi-
lateral (IL) lesion volumes were significant in TBI animals as compared to sham animals
(6.92 ± 1.06 vs. 0.02 ± 0.02 cm3, respectively; p < 0.001 Figure 1C) post-surgery. Visually,
lesioning was not detected in the contralateral (CL) hemisphere (Figure 1A,B). These data
indicate substantial neural injury in the ipsilateral hemisphere only by structural T2W
MRI analysis.

3.2. DTI Tractography Reveals Increased Diffusion in Fibers Intersecting Both Ipsilateral and
Contralateral Motor Function-Related Brain Structures

Hemispheric DTI analysis (Figure 2) revealed that the ADC values of TBI-injured
animals was greater than sham animals in the fibers intersecting the IL (p = 0.006, Figure 3A)
and CL (p = 0.014, Figure 3A) hemispheres. These data indicate that focal TBI localized to
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the ipsilateral hemisphere induced increased diffusion and white matter injury across both
hemispheres, which was undetected by visual inspection of conventional T2W MRI scans.
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Figure 1. Conventional T2W MRI detects significant lesioning localized predominantly to the
ipsilateral hemisphere. Representative T2W MRI images show a craniectomy site (gray arrow; (A))
in sham animals and a heterogenous lesion containing hypointense and hyperintense regions (red
arrow; (B)) in TBI animals (C). Data are presented as mean ± SEM. *** p < 0.001.
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Figure 2. DTI tractography of white matter tracts that intersect key motor-related structures following
TBI. Images depict directionality of white matter fibers of an ipsilateral sagittal view of a 3D T1W
reconstruction of a representative TBI-injured piglet brain at one day post-TBI ((A), arrow indicates
lesion at location of the primary motor cortex) with DTI tractography overlay ((B), arrow indicates
lesion). Ipsilateral ROI (red structures) and intersecting white matter tracts were evaluated. Key brain
regions involved in motor function included whole brain hemispheres (C), primary motor cortex
(D), premotor cortex (E), primary somatosensory cortex (F), somatosensory association cortex (G),
caudate (H), putamen (I), globus pallidus (J). Fiber tract colors are generated based on individual
fiber orientation (anteroposterior fibers, green; transverse fibers, red; craniocaudal fibers, blue).
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Figure 3. TBI leads to increased ADC and decreased FA in the white matter tracts that intersect brain
regions involved in motor activity. DTI tractography was used to measure changes in ADC and FA
in the intersecting white matter tracts through sensorimotor (A,C) and basal ganglia (B,D) regions
involved in motor activity at acute (7 days) time points in sham and TBI-injured animals. Data are
presented as mean ± SEM. * p < 0.05, # p < 0.10. CL, contralateral; GP, globus pallidus; hemi, whole
brain hemispheres; IL, ipsilateral; M1, primary motor cortex; PMC, premotor cortex; S1, primary
somatosensory cortex; Soma, somatosensory association cortex.

Key sensorimotor regions measured in this study were the primary motor cortex (M1),
premotor cortex (PMC), primary somatosensory cortex (S1), and somatosensory association
cortex (Soma; Figure 2). TBI animals demonstrated increased ADC in the fibers intersecting
the M1 (IL: p = 0.007, Figure 3A; CL: p = 0.008, Figure 3A), PMC (IL: p = 0.022, Figure 3A;
CL: p = 0.020, Figure 3A), S1 (IL: p = 0.002, Figure 3A; CL: p = 0.004, Figure 3A), and soma
(IL: p = 0.007, Figure 3A; CL: p = 0.005, Figure 3A) relative to sham animals.

In this study, basal ganglia structures were also evaluated for ADC measures. TBI
animals demonstrated increased ADC in the fibers intersecting the caudate (IL: p = 0.007,
Figure 3B; CL: p = 0.007, Figure 3B), putamen (IL: p = 0.007, Figure 3B; CL: p = 0.012,
Figure 3B), and globus pallidus (IL: p < 0.001, Figure 3B; CL: p = 0.009, Figure 3B) relative
to sham animals.

3.3. DTI Scans Indicate Decreased Fractional Anisotropy in the Intersecting Fibers of a Subset of
Motor Function-Related Structures

FA is a relative measure of the directionality or degree of anisotropy of diffusion. As
axons lose myelination from TBI, diffusion parallel to the fiber is decreased, therefore, FA
decreases in value. Similar to changes observed in white matter tract ADC, hemispheric
DTI analysis of FA showed altered values with TBI-injured animals demonstrating a lower
FA relative to sham animals in fibers intersecting the IL (p = 0.006, Figure 3C) and CL
(p = 0.020, Figure 3C) hemispheres. In addition, TBI animals showed a decreased FA in
the intersecting fibers of the M1 (CL: p = 0.070, Figure 3C), S1 (IL: p = 0.003, Figure 3C;
CL: p = 0.007, Figure 3C), and soma (IL: p = 0.020, Figure 3C) relative to sham animals.
Additionally, TBI animals showed a decreased FA in the intersecting fibers of the caudate
(IL: p = 0.020, Figure 3D; CL: p = 0.081, Figure 3D) and globus pallidus (CL: p = 0.081,
Figure 3D) relative to sham animals.

3.4. Gait Analysis Reveals Motor Deficits in All Limbs following TBI

TBI and sham piglets underwent gait data collection at 7 DPS to determine acute
changes in motor function. Stride length is the distance between successive ground contact
of the same hoof (Figure 4A) and often decreases following pediatric TBI [48]. TBI animals
exhibited decreased stride length as compared to sham animals in all limbs (p < 0.05;
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Figure 4A). Step length measures the distance (Figure 4B) and step time measures the time
(Figure 4C) between corresponding successive points of contact of opposing hooves. Step
length often decreases while step time increases as TBI patients attempt to better stabilize
their gait by taking slower, shorter steps while ambulating [2,48]. TBI animals showed
a decrease in step length as compared to sham animals in the IL front. Furthermore, as
compared to sham animals, TBI animals exhibited decreased step time in the IL front
(p = 0.003, Figure 4C) and IL hind (p = 0.045, Figure 4C) limbs and a trending increased
step time in the CL front (p = 0.089, Figure 4C) and CL hind (p = 0.064, Figure 4C) limbs.
Together, these data demonstrate that TBI induced balance deficits and a less stable gait as
evidenced by faster ipsilateral/ left limb step time as compared to the contralateral/ right
limb counterpart of each diagonal pair. The step time of the less-affected ipsilateral limbs
was shortened to provide more ground contact in order to improve balance and support
during a gait cycle.
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Figure 4. TBI leads to acute functional gait deficits. Stride length is the distance between successive
ground contact of the same hoof (A). TBI animals exhibited an acute decrease in stride length. Step
length is the distance between corresponding successive points of contact of opposing hooves (B).
TBI animals exhibited an acute decreased step length. Step time is the time from initial contact of a
hoof to the initial contact of the opposite hoof (C). TBI animals demonstrated a decreased step time
in the ipsilateral front and hind limb as compared to sham animals. TBI animals demonstrated an
increased step time as compared to sham animals in the contralateral front and hind limbs. Gait
metric values post-surgery are normalized to pre-surgery metrics to account for individual variability.
Data are presented as mean ± SEM. * p < 0.05, # p < 0.10.

4. Discussion

In this study, we demonstrated significant changes in white matter integrity in the
intersecting fibers of ipsilateral and contralateral brain regions involved in motor control in a
piglet TBI model. DTI tractography of individual motor-related brain structures revealed an
increase in ADC and corresponding decrease in FA that were indicative of decreased white
matter integrity throughout the brain following a focal CCI TBI. These perturbations in motor
region white matter tract ADC and FA were associated with significant decreases in stride and
step length and increased step time, indicating a significant alteration in gait. These results
support previous research that has demonstrated that altered white matter integrity in the
pyramidal motor tract is associated with poor motor function [5–8,22–24]. In this study, it
was also demonstrated that unilateral TBI resulted in bilateral white matter brain injury. This
finding supported previous work in humans that showed unilateral TBI caused ipsilateral and
contralateral hemisphere white matter damage due to spreading axonal degeneration [49,50].
The results of this research provide evidence that the evaluation of ADC and FA parameters
in white matter fiber bundles intersecting key motor-related brain structures may serve as a
powerful neuroimaging tool to predict and evaluate motor deficits in pediatric TBI.

The sensorimotor system is a complex system of neural circuitry that works in coor-
dination to process and integrate sensory input and motor output signals with the goals
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of maintaining motor stability, curtailing disruptive neural feedback, and contributing to
long-term changes in neural systems for motor learning [51,52]. DTI analysis has demon-
strated associations between reduced white matter integrity in the pyramidal tract and
balance impairments, such as reduced postural control, following pediatric TBI [5,7]. The
pyramidal tract is the principal neural tract for motor function in the brain and is involved
in the motor function of distal extremities [53]. This tract comprises white matter tracts from
several brain regions, including the primary motor cortex and the somatosensory cortex.
Immediate and constant processing of sensory and motor signals are required for proper
gait coordination. Therefore, damaged fibers reduce the functionality of the sensorimotor
system, ultimately manifesting as gait deficits. In agreement with these studies, our study
found TBI animals exhibited decreased balance as demonstrated by step time deficits in the
limbs contralateral to injury as compared to their ipsilateral counterpart of the diagonal
pair. For example, the ipsilateral left front limb exhibited a shorter step time as compared
to the contralateral right hind limb, indicating the need for increased ground contact for
stabilization and balance in the less-affected ipsilateral limb. Therefore, the present study
highlighted the likelihood of an association between gait deficits and sensorimotor sig-
nal coordination within specific brain regions in the pyramidal tract required for normal
gait movement.

In this study, it was also determined that significant changes in white matter tract
FA and ADC occurs in the contralateral hemisphere post-TBI, which supports findings
from previous studies. A T1W reconstruction and DTI tractography overlay enabled the
visualization of white matter tracts that intersect important brain regions associated with
motor function, including primary motor cortex, premotor cortex, primary somatosen-
sory cortex, somatosensory association cortex, caudate, putamen, and globus pallidus in
the piglet TBI brain (Figure 2). After injury, the ipsilateral hemisphere often undergoes
significant swelling that generates compressive forces on the contralateral hemisphere
leading to damage (e.g., countercoup effect). Moreover, the contralateral hemisphere is
exposed to inflammatory cytokines, reactive oxygen species, and other cytotoxic signaling
factors generated at the primary injury site through shared cerebral spinal fluid. TBI also
initiates progressive damage in which axonal degeneration spreads to the contralateral
hemisphere [49,50]; therefore, both the ipsilateral and contralateral hemispheres were ana-
lyzed. Pischiutta et al. showed that severe TBI in mice induced significantly decreased FA
in the contralateral corpus callosum and external capsule, which was corroborated by histo-
logical evaluation demonstrating axonal degeneration by silver staining [49]. These animals
also showed significant motor deficits in beam walk testing [52]. The mechanisms associ-
ated with progressive contralateral white matter degeneration are complex. Nevertheless,
it has been demonstrated that white matter degeneration in the contralateral hemisphere is,
in part, influenced by anterograde degeneration [54]. In this process, damaged axons can
lead to the death of the soma that is distal to the injury [54]. Future preclinical studies are
warranted to further elucidate specific pathophysiological events that contribute to distal
white matter degeneration and the development of treatments to limit this damage.

Potential study limitations include misalignment of white matter fibers between
collected images and the atlas, which can arise from TBI pathophysiology. TBI results in
lesioning, edema, and swelling that can alter the location of key brain structures being
evaluated. However, our research group has previously reported the successful use of
this registration pipeline in a comparable porcine ischemic stroke model to identify lesion
topology information [13], which supported including a structural injury component in
acute MRI assessment to improve preclinical prognostication. This current work expanded
upon the developed structural MRI topology approach by incorporating a DTI fiber tract
component. Another limitation of this study is the accurate differentiation of pure white
matter tracts from grey matter structures, which can again be altered due to changes in
structural location caused by TBI pathology, such as intracerebral swelling. However, the
identification of white matter tracts used herein is based on current best practices to account
for brain injury pathology in a preclinical neural injury model.
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5. Conclusions

For the first time, this study presents evidence that acute increases in ADC and de-
creases in FA, likely due to reductions in white matter integrity, occurred in intersecting
fibers of crucial brain regions responsible for motor control. Importantly, these white matter
tract perturbations corresponded with observed motor deficits in a pediatric piglet model
of TBI. These findings provide valuable data that encourage further exploration of DTI
to better understand the structural changes in the brain that result in motor deficits and
as potential injury and prognostic biomarkers for TBI-induced motor problems. Such
investigations could potentially enable early detection of microstructural injury that may
not be readily visualized on conventional structural MRI scans. This may permit more
individualized rehabilitation programs to be implemented at early time points post-TBI,
thus potentially improving long-term outcomes. The reported results, along with advance-
ments in the neural injury biomarker field, contribute to the increasing prevalence and
enhanced clinical utility of non-invasive biomarker imaging. Altogether, the assessment
of this neuroimaging modality in a clinically relevant, large animal model may facilitate
the translation of these assessments to clinical trials and strengthen the rigor of preclinical
testing for novel therapeutics.
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