
Citation: Fang, J.; Li, G.; Xu, W.; Liu,

W.; Chen, G.; Zhu, Y.; Luo, Y.; Luo, X.;

Zhou, B. Exploring Abnormal Brain

Functional Connectivity in Healthy

Adults, Depressive Disorder, and

Generalized Anxiety Disorder

through EEG Signals: A Machine

Learning Approach for Triple

Classification. Brain Sci. 2024, 14, 245.

https://doi.org/10.3390/

brainsci14030245

Academic Editors: Heide Klumpp

and Robert Emmett Kelly

Received: 25 January 2024

Revised: 18 February 2024

Accepted: 28 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Exploring Abnormal Brain Functional Connectivity in Healthy
Adults, Depressive Disorder, and Generalized Anxiety Disorder
through EEG Signals: A Machine Learning Approach for
Triple Classification
Jiaqi Fang 1,†, Gang Li 2,† , Wanxiu Xu 1 , Wei Liu 3, Guibin Chen 3, Yixia Zhu 4, Youdong Luo 1, Xiaodong Luo 4,*
and Bin Zhou 2,*

1 College of Engineering, Zhejiang Normal University, Jinhua 321004, China; fjq0971@zjnu.edu.cn (J.F.);
xwx@zjnu.edu.cn (W.X.); lyd@zjnu.cn (Y.L.)

2 College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China; ligang@zjnu.cn
3 College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China;

liuwei@zjnu.edu.cn (W.L.); cgbcvip@zjnu.edu.cn (G.C.)
4 The Second Hospital of Jinhua, Jinhua 321016, China; zyxjhey@163.com
* Correspondence: lxdjhey@163.com (X.L.); binzhou2023@zjnu.edu.cn (B.Z.)
† These authors contributed equally to this work.

Abstract: Depressive disorder (DD) and generalized anxiety disorder (GAD), two prominent mental
health conditions, are commonly diagnosed using subjective methods such as scales and interviews.
Previous research indicated that machine learning (ML) can enhance our understanding of their under-
lying mechanisms. This study seeks to investigate the mechanisms of DD, GAD, and healthy controls
(HC) while constructing a diagnostic framework for triple classifications. Specifically, the experiment
involved collecting electroencephalogram (EEG) signals from 42 DD patients, 45 GAD patients, and
38 HC adults. The Phase Lag Index (PLI) was employed to quantify brain functional connectivity
and analyze differences in functional connectivity among three groups. This study also explored the
impact of time window feature computations on classification performance, including the XGBoost,
CatBoost, LightGBM, and ensemble models. In order to enhance classification performance, a feature
optimization algorithm based on Autogluon-Tabular was proposed. The results indicate that a 12 s
time window provides optimal classification performance for the three groups, achieving the highest
accuracy of 97.33% with the ensemble model. The analysis further reveals a significant reorganiza-
tion of the brain, with the most pronounced changes observed in the frontal lobe and beta rhythm.
These findings support the hypothesis of abnormal brain functional connectivity in DD and GAD,
contributing valuable insights into the neural mechanisms underlying DD and GAD.

Keywords: depression disorder; generalized anxiety disorder; electroencephalogram (EEG);
functional connectivity; machine learning

1. Introduction

Mental illnesses, particularly depressive disorder (DD) and generalized anxiety dis-
orders (GAD), have garnered widespread attention across various sectors due to their
escalating prevalence year after year. DD is mainly characterized by a significant and per-
sistent depressed mood, and some patients have self-injurious and suicidal behaviors [1].
GAD is a subtype of anxiety disorder (AD), characterized by unconscious, persistent ten-
sion and anxiety, accompanied by obvious fidgety somatic manifestations [2]. By 2020,
there were 193 million people living with DD and 374 million with AD worldwide [3].
Among these figures, over 58 million were estimated to be children and adolescents [4,5].
The clinical diagnosis of mental disorders is standardized by The Diagnostic and Statistical
Manual of Mental Disorders IV (DSM-IV) [6], which clearly states that DD and GAD are
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separate entities. However, discerning between DD and GAD remains challenging due to
their similarity in clinical symptoms [7,8]. Physicians often rely on a combination of self-
assessment scales (such as the Hamilton Anxiety Scale, Depression Scale, Beck Depression
Inventory, etc.) and clinical experience for patient diagnosis, which involves a significant
subjective element. Therefore, there is an urgent need for an objective diagnostic approach
to provide scientifically grounded diagnostic criteria.

An electroencephalogram (EEG), a noninvasive approach for capturing bio-electro-
physiological signals, is increasingly applied in both research and clinical contexts related
to psychiatric disorders such as DD and GAD. This predilection is ascribed to its notable
advantages, including high temporal resolution, relatively affordable implementation, and
safety, with no associated radiation risk [9,10]. In EEG signals, there are often numerous
artifacts. In previous studies [11–13], we utilized an independent component analysis
(ICA) combined with manual artifact removal to achieve satisfactory results. Additionally,
traditional methods of EEG analysis involve linear analysis [14], nonlinear analysis [15],
and brain functional connectivity analysis [16]. Among these, the Phase Lag Index (PLI)
represents a prevalent method for analyzing brain functional connectivity, and its strength
lies in its minimal sensitivity to volume conduction effects. It has been confirmed as an
effective method for distinguishing mental disorders such as DD and GAD through the
calculation of EEG features [11,12,17]. The research on Qi reveals that PLI, in comparison to
linear and nonlinear features, exhibits superior classification performance [13]. Moreover,
the frequency band activities in EEG serve as reflective indicators of the subject’s mental
state [18]. For instance, aberrant activity in the beta band is often associated with states
of anxiety and depression [19]. Guo et al.’s study highlights the increased abnormality
in long-range functional connections in the beta band within the frontal region of DD
patients, manifested as asymmetry in the frontal lobe structures [20]. Additionally, research
on anxiety disorders similarly reveals a significant reorganization of brain functional
connectivity in the frontal region within the beta band [5,21,22]. Patients diagnosed with
DD and GAD exhibit significantly different patterns of brain reorganization, highlighting
notable individual variability in their neural responses. The validation of these observed
patterns requires extensive research experiments, as they play a crucial role in investigating
the underlying mechanisms.

Machine learning (ML) is frequently employed in conjunction with EEG features for
the intelligent classification of mental illnesses [23–25]. Ensemble learning, a type of ML,
achieves enhanced learning performance by constructing multiple learners. Notably, three
gradient boosting ensemble methods, light gradient boosting machine (LightGBM) [26],
extreme gradient boosting (XGBoost) [27], and categorical boosting (CatBoost) [28], have
demonstrated efficiency and accuracy as classifiers in supervised ML tasks [29]. A recent
study showed that XGBoost demonstrated superior classification performance with an
accuracy of 99% for both DD and GAD groups, outperforming LightGBM (98%) and RF
(95%) under identical experimental conditions [9]. Sau and Bhakta trained RF (89%), which
had a better prediction than random tree (85%) [24]. Similar studies achieved 97% [21],
89% [23], and 82.6% [24] accuracy in categorizing AD and HC groups, respectively. Different
studies reported using completely different experimental data, and it is difficult to evaluate
their results. However, the results of all these studies point out that ML is feasible and
effective for the diagnosis of DD, GAD, and HC.

This study innovatively proposes a data-driven diagnostic approach for understand-
ing the mechanisms of GAD and DD. Specifically, we utilize PLI features and introduce
an innovative ensemble feature optimization algorithm based on Autogluon-Tabular. By
analyzing the optimal feature subset, we build brain functional networks to examine the
differences in brain functionality between GAD, DD, and HC. Additionally, this study
revealing the impact of computing features over different time window lengths on classi-
fication performance. We anticipate enhancing the model’s classification accuracy while
elucidating potential underlying mechanisms.
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2. Materials and Methods
2.1. Participants and Materials

EEG data were obtained from Huzhou Third Hospital, including 38 individuals in
good health, 45 individuals with GAD, and 42 individuals with DD. All participants were
clinically diagnosed by physicians before data collection, meeting the clinical criteria for
AD and DD as the DSM-IV. They were also assessed using the Hamilton Anxiety Scale
(HAMA) and Hamilton Depression Scale (HAMD) [30]. Criteria for inclusion involved
GAD participants having HAMA > 14, HAMD < 7, and DD participants having HAMA < 7,
HAMD > 17. Importantly, there was no comorbidity between the two groups. Through
a statistical analysis, it was ensured that gender and age were independent, as shown in
Table 1. According to statistics, the GAD group has an average HAMA value of 25.09 ± 9.00,
and the DD group has an average HAMD value of 24.95 ± 7.06.

Table 1. Demographic characteristics of the HC, GAD, and DD.

Features HC GAD DD p

Number 38 45 42 -
Age (year) 38.16 ± 12.36 41.47 ± 9.38 44.55 ± 12.30 0.051

Gender (male/female) 12/26 13/32 10/32 0.74

Additionally, participants were required to meet specific criteria, including right-
handedness, the absence of other mental disorders (such as epilepsy or bipolar disorder),
and no physical brain abnormalities. To prepare for the data collection experiment, partici-
pants were instructed to ensure that they had adequate sleep and abstained from alcohol,
smoking, and high-caffeine beverages on the preceding day.

2.2. EEG Data Acquisition and Preprocessing

Nicolet EEG TS215605 equipment (Nicolet Instruments, Madison, WI, USA) was
utilized for this experiment, which took place in a peaceful and warm environment. Par-
ticipants were instructed to keep their eyes closed, maintain a comfortable posture, and
avoid falling asleep. the equipment captured EEG data from 16 electrodes, as shown in
Figure 1, with the left and right earlobes serving as reference points. This setup allowed the
simultaneous collection of both horizontal and vertical ophthalmoplegia to differentiate
ocular artifacts. The sampling frequency of the EEG signal was 250 HZ, and the impedance
value of each electrode was guaranteed to be less than 5 KΩ during the experiment. The
experiment collected 10 min of EEG data from each participant.
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An EEG data preprocessing experiment was designed to enhance data quality by
eliminating artifacts, including ocular and muscle-related interference. The pre-processing
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primarily involved band-pass filtering (4–30 Hz) to remove noise interference, baseline drift
correction, down-sampling to 125 Hz to reduce computational load, and the application
of ICA to remove artifact components. To explore the influence of feature computation
with varying time window lengths on the results, the experiment employed sliding time
windows ranging from 2 to 16 s, without any overlay. As shown in Table 2, the sample sizes
for each group were determined based on the division of data into different time window
lengths. Additionally, the experiment utilized band-pass filtering to extract four specific
frequency bands of interest—Theta (4–8 Hz), Alpha1 (8–10 Hz), Alpha2 (10–13 Hz), and
Beta (13–30 Hz).

Table 2. Different sample sizes for each group (HC, GAD, and DD) based on varying time win-
dow lengths.

Time Window (s) HC GAD DD

2 8506 10,902 9425
4 4163 5371 4632
6 2628 3319 2853
8 1971 2592 2228
10 1530 2048 1747
12 1301 1604 1360
14 880 1122 961
16 873 1077 906

2.3. Feature Extraction

The PLI was employed to calculate the degree of phase synchronization between
time series signals, which is proven to be effective in characterizing changes in functional
networks. In this study, it is utilized as a metric to describe functional connectivity, where
larger PLI values indicate a higher degree of phase synchronization between signals from
two channels.

Two-channel EEG time series signals are denoted as S1(t) and S2(t). The PLI calculation
is as follows. First, its instantaneous phase is calculated, as shown in Formula (1). It
transforms the time domain signal into a time–frequency domain signal. Next, the phase
difference is calculated using Formula (2). This involves calculating the magnitude and
phase of the complex signal, derived from the phase information at each time point. Finally,
the PLI value is obtained by Formula (3).

Zi(t) = Si(t) + jHT(Si(t)) (1)

∆φ(t) = arg
(

Z1(t) ∗ Z2(t)
|Z1(t)| ∗ |Z2(t)|

)
(2)

PLI = |⟨sign(∆φ(t))⟩| =
∣∣∣∣∣ 1

N

N

∑
n=1

sign(∆φ(t))

∣∣∣∣∣ (3)

In this context, Zi(t) represents the EEG time domain signal, ∆φ(t) denotes the phase
difference between two sets of time domain signals, and sign refers to the sign function.

For each sample within a single frequency band, a total of 16 × (16 − 1)/2 = 120 PLI
features were extracted. Since each sample consists of 4 frequency bands, this results in a
total extraction of 4 × 120 = 480 PLI features per sample.

2.4. Machine Learning

The tree model based on a decision tree has been widely used in the field of disease
detection and has shown excellent detection performance. In particular, the gradient
boosting decision tree (GBDT), as a machine learning model, achieves the purpose of
constructing an optimal model by iteratively training a weak classifier (decision tree). This
method has many advantages, such as effective training and anti-overfitting. In this study,
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three improved models (LightGBM, XGBoost, and CatBoost) based on the GBDT model
and an ensemble model were used.

(1) LightGBM supports efficient parallel training, offering faster training speeds, lower
memory consumption, improved accuracy, and the ability to handle massive data efficiently.
It also supports distributed computing, making it suitable for processing large datasets.

(2) XGBoost significantly improves its efficiency, accuracy, and robustness in predictive
modeling by integrating parallel computation, optimizing the loss function using second-
order derivatives, and introducing L1 and L2 regularization techniques.

(3) CatBoost addresses issues such as gradient bias and prediction shift, reducing the
occurrence of overfitting and thereby enhancing the algorithm’s accuracy and generaliza-
tion capability. It is also suitable for processing handling categorical features.

(4) Furthermore, a shallow stacked ensemble of the above three models is performed
using Autogluon [31]. This ensemble model takes as inputs not only the predictions of
the previous layer of models, but also the raw data features themselves (the input vectors
are the data features connected to the predictions of the lower layer of models), and the
final stacked layer applies the ensemble choice to aggregate the predictions of the stacked
models in a weighted manner, as shown in Figure 2.
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2.5. Feature Selection

Feature selection, also known as feature optimization, is a common approach for di-
mensionality reduction in ML. It involves a reduction in data dimensions to enhance model
performance, generalization capabilities, and algorithm efficiency. This study innovatively
proposes a feature selection framework suitable for ensemble learning, referred to as the
Multi-Model Joint Feature Selection Algorithm. The purpose of this algorithm framework is
to identify feature subsets that perform well across three base models (LightGBM, Catboost,
and Xgboost), as well as the ensemble model, for subsequent mechanism analysis. The
algorithm framework consists of two processes: feature ranking and subset selection.

The specific process is as follows. Firstly, feature ranking involves analyzing the
importance of each feature using a specific algorithm, sorting them based on their contri-
butions to the model performance. Specifically, k-fold cross-validation is used to partition
the data set (where k − 1 fold is the training set, and 1 fold is the test set). Additionally,
10% of the training set was reserved as a validation set. For each base model, a classifier
was trained using the training dataset, and model parameters were optimized using the
validation set. Feature importance was then determined using the testing set data and the
feature_importance method available in Python for tree model ensembles. Subsequently,
based on the feature importance values, different feature weights were assigned, and all
features were sorted to obtain a set of features ranked in descending order of importance. A
higher weight indicates a greater importance of the feature in the model’s decision-making
process. To enhance generalization ability, the experiment further employed repeated p
times of k-fold cross-validation, and the descending feature matrices of the three base
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models were concatenated for subsequent subset selection. The calculation formula is
represented as Formula (4):

Index = concat
(

ILightGBM, ICatboost, IXgboost

)
(4)

where ILightGBM, ICatboost and IXgboost are the index results of multiple training and rank-
ing iterations for LightGBM, Catboost and Xgboost. Index represents the concatenated
results of the ranking outcomes from the three base models. ILightGBM, ICatboost, IXgboost ∈
R(p∗k)×d f eature , Index ∈ R(3∗p∗k)×d f eature . Here, p is set to 100, k is 5, and d f eature is the number
of features (which is 480 in this study).

Next, subset selection aims to construct the optimal feature subset to extract key
functional connectivity features for further mechanistic analysis. Based on the sorted
feature ranking results, features are arranged in frequency order to capture the most
frequently occurring features. These features are then selected as elements of the optimal
feature subset. Specifically, for the feature ranking, Index, obtained from multiple trainings,
we select the top n columns one by one, each containing the n most frequent features, to
construct feature subsets. We trained all subsets using the data partitioning method in
feature ranking (p set to 5, k set to 5) and obtained results, selecting the best-performing
feature subset in the ensemble model as the optimal feature subset. This method aims
to capture potentially stable and significantly predictive feature subsets by considering
the relative importance of features across multiple training iterations and their frequent
occurrence across the entire dataset.

2.6. Parameter Optimization

In the field of ML based on tree models, hyperparameters are critical factors influencing
model performance and generalization ability. Different combinations of parameters can
lead to vastly different training results, making the selection of hyperparameters crucial.
Appropriately tuning hyperparameters can significantly reduce the risk of overfitting
or underfitting, thereby enhancing the model’s predictive accuracy and robustness [32].
Therefore, in this study, we employ Bayesian optimization, an efficient method aimed at
discovering the optimal hyperparameter combinations to optimize model performance.

This process involves three pivotal components: defining the objective function, setting
the hyperparameter search space, and specifying the number of search iterations. Firstly,
we chose F1-macro as the optimization target, a comprehensive performance metric suitable
for multi-class classification problems. Secondly, we referred to the Autogluon automatic
ML framework [31] to set various critical hyperparameters search space. Lastly, we set the
maximum number of searches to 30 to thoroughly explore hyperparameter combinations
within a limited time. The parameter optimization ranges for LightGBM, XGBoost, and
CatBoost are shown in Table 3.

Table 3. Optimization variables and ranges of LightGBM, XGBoost, and CatBoost.

Model Parameter Description

LightGBM
num_leaves Uniformint [16,96]

min_data_in_leaf Uniformint [2,60]
feature_fraction Uniform [0.75,1]

learning_rate loguniform [log(5 × 10−3),log(0.1)]

XGBoost

depth Uniformint [3,10]
min_child_weight Uniformint [1,5]
colsample_bytree Uniform [0.5,1.0]

learning_rate Loguniform [log(5 × 10−3),log(0.1)]

CatBoost
max_depth Uniformint [5,8]
l2_leaf_reg Uniform [1,5]

learning_rate Loguniform [log(5 × 10−3),log(0.1)]
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2.7. Evaluating Indicator

In this study, we evaluate the performance of the model in a multi-classification
task using a range of metrics, including accuracy, F1-macro, Gmean-macro, and kappa.
Accuracy represents the proportion of correctly predicted samples out of the total samples.
F1-macro is the macro-average of the F1 score, where the F1 score is the harmonic mean of
precision and recall. Gmean-macro is the macro-average of the geometric mean, designed to
comprehensively consider the classifier’s performance for each class. Kappa is a metric used
to measure the consistency between a classifier and random classification. These metrics,
with values ranging from 0 to 1, tend toward 1 as the model’s performance improves, and
their computation processes are outlined below.

Accuracy =
TPHC + TPGAD + TPDD

All samples
(5)

where TP stand for true positives (correctly predicted positives). Here, TPHC represents
the number of correctly predicted samples in the HC group, TPGAD represents the number
of correctly predicted samples in the GAD group, and TPDD represents the number of
correctly predicted samples in the DD group, and ‘All samples’ represents the total number
of samples.

F1-macro =
F11 + F12 + · · ·+ F1N

N
(6)

Among them, N is the number of categories, and F11, F12, . . . F1N represent the F1
score for each category.

Gmean-macro =

√
1
N ∑N

i=1 Precisioni × Recalli (7)

Among them, N is the total number of categories, and Precisioni represents the preci-
sion of the i-th category, Recalli represents the recall rate of the i-th category.

kappa =
Po − Pe

1 − Pe
(8)

Among them, Po is the observed consistency of classification, which is also the accuracy
of classification. Pe is the expected consistency of classification, and the specific calculation
method is as follows:

Pe =
TPHC + TPGAD + TPDD

All samples2 (9)

3. Results

Figure 3 shows the performance comparison of the LightGBM, XGBoost, CatBoost, and
ensemble models across various scenarios of time window feature computation. We can
see that as the length of the time window increases, the performance of the model shows
an increasing trend and the model obtains the best performance at 12 s, as shown in Table 4.
Among the models, the ensemble model obtained the best classification performance
(accuracy of 96.89%, F1-macro score of 96.86%, Gmean-macro of 95.26%, and Kappa value
of 97.65%.) compared with LightGBM, XGBoost, and CatBoost models. As a result, all
subsequent analyses in this study were conducted based on feature computation using a
12 s time window.

Figure 4 shows the feature-selecting results based on the ensemble model. The results
show that when the optimal number of feature subsets is 235, the model achieves the best
classification performance (accuracy of 97.33%, F1-macro score of 97.30%, Gmean-macro of
95.98%, and Kappa value of 97.96%, as shown in Table 5). Figure 5 illustrates the distribution
of key functional connections (theta:54, alpha1:35, alpha2:61, and beta:85). Figure 6 provides
a statistical overview of the connection strength of key functional connections across
different brain regions for theta, alpha1, alpha2, and beta rhythms. The results indicate that
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the most distinctive functional connections are observed in the beta band among the HC,
GAD, and DD groups. Combined with Figures 4–6, the results indicate a greater quantity of
functional connections in the high-frequency range, especially beta rhythms, demonstrating
a significant correlation with the frontal area.
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Table 4. Performance metrics of models segmented at 12 s intervals.

Models Accuracy F1-Macro Gmean-Macro Kappa

Lightgbm 96.44 ± 0.53 96.40 ± 0.50 94.63 ± 0.80 97.26 ± 0.42
Xgboost 95.38 ± 0.53 95.31 ± 0.52 93.04 ± 0.80 96.45 ± 0.41
Catboost 96.72 ± 0.68 96.69 ± 0.70 95.05 ± 1.02 97.50 ± 0.54
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Note: values are mean ± standard deviation; bold indicates highest classification performance.
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Table 5. Triple classification accuracy results of the LightGBM, XGBoost, CatBoost and ensemble
models for saved key PLI features of the DD, GAD and HC groups under different rhythms. The *,
**, and *** indicate statistical analyses conducted using one-way analysis of variance on the output
results of the four models (* represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001).

Rhythm Model Accuracy F1-Macro Gmean-Macro Kappa

All

Lightgbm 96.73 ± 0.55 96.70 ± 0.57 95.07 ± 0.83 97.50 ± 0.43
Xgboost 96.40 ± 0.57 96.37 ± 0.59 95.08 ± 0.86 97.01 ± 0.46
Catboost 95.53 ± 0.71 95.49 ± 0.71 93.26 ± 1.07 96.58 ± 0.53
Ensemble 97.33 ± 0.55 *** 97.30 ± 0.58 *** 95.98 ± 0.84 *** 97.96 ± 0.43 ***

Theta

Ligthgbm 77.48 ± 1.15 77.40 ± 1.16 66.05 ± 1.74 82.82 ± 0.91
Xgboost 77.35 ± 1.42 77.29 ± 1.43 66.87 ± 2.14 82.27 ± 1.10
Catboost 76.90 ± 1.43 76.82 ± 1.46 65.16 ± 2.16 82.36 ± 1.12
Ensemble 78.63 ± 1.37 *** 78.56 ± 1.40 *** 67.79 ± 2.07 *** 83.71 ± 1.07 ***

Alpha1
Ligthgbm 73.62 ± 1.30 73.56 ± 1.29 60.14 ± 1.97 79.74 ± 1.02
Xgboost 73.64 ± 1.17 73.59 ± 1.16 60.70 ± 1.76 79.55 ± 0.89
Catboost 73.33 ± 1.17 73.24 ± 1.17 59.72 ± 1.76 79.51 ± 0.90
Ensemble 74.46 ± 1.26 * 74.40 ± 1.26 * 61.42 ± 1.89 * 80.39 ± 0.97 **

Alpha2
Ligthgbm 85.54 ± 1.03 85.43 ± 1.03 78.20 ± 1.55 88.97 ± 0.79
Xgboost 85.18 ± 1.23 85.07 ± 1.22 78.15 ± 1.87 88.44 ± 0.95
Catboost 84.36 ± 1.07 84.24 ± 1.09 76.42 ± 1.62 88.06 ± 0.83
Ensemble 86.14 ± 1.10 *** 86.03 ± 1.10 *** 79.10 ± 1.66 *** 89.41 ± 0.85 ***

Beta

Ligthgbm 94.58 ± 0.87 94.56 ± 0.87 91.84 ± 1.31 95.92 ± 0.66
Xgboost 94.40 ± 0.77 94.38 ± 0.77 92.08 ± 1.15 95.54 ± 0.58
Catboost 93.52 ± 0.96 93.49 ± 0.95 90.24 ± 1.44 95.10 ± 0.71
Ensemble 95.20 ± 0.85 *** 95.18 ± 0.85 *** 92.77 ± 1.27 *** 96.39 ± 0.63 ***

Note: values are mean ± standard deviation; bold indicates highest classification performance.
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Figure 5. The distribution of differential key functional connections within the theta, alpha1, alpha2,
and beta rhythms among the HC, GAD, and DD groups. These distinctions are derived from an
optimal feature subset (235 edges in total), where the number of four rhythms is 54, 35, 61, and
85, respectively.

Table 5 displays the results of triple classification based on distinct rhythm-specific key
functional connectivity features. The *, **, and *** in the table indicate statistical analyses
conducted using a one-way analysis of variance on the output results of the four models (*
represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001). Notably, the ensemble
model exhibits superior performance in the beta band, achieving an accuracy of 95.20%
and an overall accuracy of 97.33% across all key functional connectivity features. This
underscores the enhanced discriminative capability of beta band key functional connectivity
features in distinguishing among the DD, GAD, and HC groups. The elevated accuracy
further emphasizes the effectiveness of ensemble models in diagnosing DD, GAD, and HC.

Figure 7 depicts the mean values, standard deviations, and statistical differences
of output metrics between each sub-model (LightGBM, Catboost and Xgboost) and the
ensemble model. Table 5 outlines the results of the one-way analysis of variance, with
Figure 7 illustrating the post hoc analysis using multiple comparisons to determine the
statistical differences between the sub-models and the ensemble model. Statistical signif-
icance is denoted in the figure, where * represents p < 0.05, ** represents p < 0.01, and
*** represents p < 0.001. The ensemble model demonstrates a significant improvement in
performance compared to the three individual sub-models, further validating its efficacy
for the classification task in this experiment.
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Furthermore, a post hoc analysis was conducted using multiple comparisons to assess the statistical
differences between each sub-model (LightGBM, Catboost, and Xgboost) and the ensemble model,
where * represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001. (a) depicts the output
results when all rhythmic features are used as inputs. (b–e), respectively, illustrate the output results
when theta, alpha1, alpha2, and beta rhythmic features are used as inputs.

4. Discussion

This study proposes a diagnostic approach driven by PLI and ML to understand the
mechanisms of GAD and DD. In addition, this study also analyzed the impact of different
time window feature computations on classification performance. The main conclusions
are as follows. Firstly, using a 12 s time window feature calculation under the ensemble
model yielded optimal classification performance. Secondly, there was a significant re-
organization of brain functional connections in both the DD and GAD groups, with the
most prominent alterations identified in the beta frequency band, particularly within the
frontal region. Finally, this study innovatively proposes an ensemble learning model based
on Autogluon-Tabular, achieving a peak classification accuracy of 97.33%. Notably, the
beta frequency band (95.20%) demonstrates the optimal classification performance among
the four frequency bands (theta, 78.63%; alpha1, 74.46%; alpha2, 86.14%). This further
confirmed the feasibility of using ML to identify DD, GAD, and HC individuals. The
following provides a detailed analysis of the obtained results.

4.1. Appropriate Time Window Achieves Optimal Classification Performance

Limited research has explored the influence of time windows on the outcomes of
identifying DD and GAD, frequently resorting to fixed time window calculations guided
by experiential considerations. This study systematically analyzed, for the first time, the
impact of feature calculations in different time windows on the classification results of
DD and GAD. The results show that a 12 s time window yields optimal classification
performance, especially when combined with ensemble model, resulting in a peak accuracy
of 97.33%.

The discussion on time windows is more focused on relevant studies on emotion
recognition based on EEG [33,34]. Cai et al. [29] indicated that time windows of 4, 5, 6,
and 10 s achieve higher accuracy in emotion recognition. Other studies employ fixed time
window lengths for feature analysis. For instance, Lin et al. [35] applied a non-overlapping
1 s time window to calculate EEG spectrograms. Yu et al. [36] used a non-overlapping 2 s
time window to extract EEG features, and Zhuang et al. treated EEG data in a 5 s time
window as materials for empirical mode decomposition [37].

EEG is significantly influenced by emotions, reflected in EEG amplitude–frequency
fluctuations [36,38]. Generally, human emotions tend to last for 10 s or more [34]. A
longer time window represents less data input, reducing computational costs, while shorter
time windows capture transient changes in EEG at the expense of increased computa-
tional demands [33]. Choosing an appropriate time window length allows for the optimal
utilization of computational resources and time, resulting in improved classification perfor-
mance. Additionally, we have grounds to infer that the emotional states of individuals with
GAD and DD significantly influence the EEG changes. Therefore, a 12 s window reveals
greater differences.

Currently, there are no established standards or prior knowledge regarding the time
window scale for measuring EEG data. It is known that the calculation of different time
window features has a real impact on the results [33], so the discussion of the optimal
time window is very important. This study explores the optimal time window length for
functional connectivity features based on EEG to enhance the EEG-based identification
of DD and GAD. Due to the non-uniformity of our experimental data, the analysis and
discussions on time window lengths in this study are specific and need further exploration
with a larger dataset to validate these findings.
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4.2. General Patterns of Brain Reorganization among Three Groups

The functional organization of the brain determines its connectivity [39]. Recent
research mentions that mental illnesses result from abnormal brain connectivity, where
disruptions or even interruptions in the functional structure of the brain lead to disorders
such as DD and GAD [11,17]. Brain functional reorganization is closely associated with
abnormalities in brain functional connections [40]. Studies on EEG-related mental disorders
often employ analytical methods for functional connections to observe changes in brain
reorganization [39–41]. In this study, we utilized PLI to compute brain functional connec-
tions. By analyzing key functional connections, we aim to understand the pathological
mechanisms underlying DD and GAD.

The results indicate a significant reorganization of functional connections across the
entire brain, with a notable correlation in the frontal region and beta rhythms for the
DD, GAD, and HC groups [21,42]. This demonstrates abnormal functional connections in
patients with DD and GAD [11,21]. Research indicates that the brain functional networks
in both DD and GAD are deteriorating, with some brain regions undergoing compensatory
functional reorganization [41,43]. The prefrontal cortex is particularly affected by DD
and GAD compared to other brain regions [44]. The prefrontal cortex is responsible for
regulating emotion, decision-making, and memory production [42]. It has been suggested
that individuals with DD sacrifice connections between the frontal and parietal regions to
achieve long-distance connections [45]. Additionally, the brain functional reorganization
in GAD patients involves alterations in both the number [21] and the strength of connec-
tions [13]. The abnormal activation in the high-frequency beta band is indicative of anxiety
manifestations in both DD and GAD [11,17,21].

In summary, the abnormal connectivity in the frontal cortex can better explain the
functional reorganization of the brain in DD and GAD, providing support for future
research. However, it should be noted that the experimental paradigms and data used in
existing studies vary, making it challenging to conduct consistent comparative analyses.
Additionally, the patterns of brain reorganization in individuals with DD and GAD are not
entirely consistent [46,47]. There is a need for a standardized experimental paradigm and
comprehensive planning to understand the development and progression of changes in
brain function and connectivity. Despite these challenges, the current results offer valuable
insights into the neural mechanisms underlying DD and GAD.

4.3. The Feasibility of Machine Learning for Psychiatric Disorder Diagnosis

ML methods have been widely applied in medical diagnosis and treatment, playing a
significant role in addressing mental health disorders [48]. In this study, we innovatively
propose a feature selection algorithm aimed at identifying a subset of features that perform
well across three base models (LightGBM, XGBoost, and CatBoost), as well as an ensemble
model. The results demonstrate that the ensemble model using the optimal feature subset
as input achieves a highest accuracy of 97.33%. This surpasses the accuracy obtained
without feature selection (96.89%), highlighting the effectiveness of applying ML models
to classify DD, GAD, and HC groups, as well as underscoring the crucial role of feature
selection in eliminating redundancy. Furthermore, among the four rhythms, the accuracy
of the beta rhythm is significantly higher than the others, reaching 95.20% (theta: 78.63%;
alpha1: 74.46%; alpha2: 86.14%). This objectively reflects the specificity of the beta rhythm
in distinguishing DD, GAD, and HC groups.

While an increasing number of studies focus on diagnostic research for DD and
GAD [12], fewer studies are conducted on triple-classification diagnoses with DD, GAD,
and HC. More studies tend to analyze two-class scenarios (DD vs. HC, GAD vs. HC). Li
et al. utilized feature selection, achieving a classification accuracy of 98.54% ± 0.21% for
DD and HC [11]. Their conclusions also highlighted the specificity of the beta band in
distinguishing between DD and HC groups. In a binary classification study of GAD and
HC, Shen et al. achieved a classification accuracy of 97% [21]. Furthermore, regarding
the classification of mental disorders (including DD and AD) and HC groups, Xie et al.
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employed a combination of EEG and convolutional neural networks (CNN), achieving a
classification accuracy of 67.67% [43]. Qi et al. used XGBoost to classify the EEG features of
DD and GAD, achieving the highest classification accuracy of 99% [12]. The feature selec-
tion algorithm we proposed considers the relative importance of features across multiple
training iterations. It is designed to identify a subset of features that demonstrate both
stability and significant predictive performance. Through the integration of ensemble learn-
ing, our approach contributes to an additional improvement in classification performance.
Finally, we achieved the best triple-classification performance, reaching 97.33% accuracy.

However, due to the inconsistency in the experimental paradigm and research methods
of this study compared to other referenced studies, specific reasons for the observed
differences cannot be determined. It is crucial to establish a standardized experimental
paradigm, increase sample size, and develop efficient machine-learning-based methods
for processing EEG signals. This is particularly important for the automated assessment of
mental disorders such as DD and GAD.

4.4. Limitations

The limitations of this study should be acknowledged to provide a comprehensive
understanding of its findings and implications, primarily the fact that we included 42 DD
patients, 45 GAD patients, and 38 HC adults, which may be considered small and lacking
in generalizability. Secondly, the study did not account for the variations in progesterone
levels during the menstrual cycle in female participants, which could influence changes
in ACEI and EMG signals. Thirdly, the methodology employed in this study involved a
relatively simplistic approach using ICA combined with manual artifact removal. Future
studies could explore more sophisticated methods for artifact removal, such as ISA, to
enhance data quality and minimize potential confounding effects. Lastly, the study utilized
fixed EEG frequency bands, which may not fully account for individual variations in
frequency band definitions. Future research could benefit from employing individualized
frequency band definitions to better capture individual differences in brain activity. In
future studies, controlling for factors such as gender, the menstrual cycle and band selection
will be prioritized to enhance the robustness and generalizability of the findings.

5. Conclusions

This study innovatively proposes a data-driven diagnostic approach for understand-
ing the mechanisms of GAD and DD. The results indicate that a 12 s time window in our
experimental paradigm yields superior classification performance, confirming the impor-
tance of discussing optimal time windows. Furthermore, brain functional reorganization in
the beta band within the frontal region was observed in DD and GAD groups. Lastly, ML
serves as an adjunct method for aiding in the diagnosis of mental disorders. In our triple
classification study, the ensemble model demonstrated a robust performance at 96.89%,
notably improving to 97.33% after feature optimization. This underscores the necessity of
feature optimization when employing ML for diagnostic purposes.
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