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Abstract: Drug-resistant epilepsy (DRE) is often treated with surgery or neuromodulation. Specif-
ically, responsive neurostimulation (RNS) is a widely used therapy that is programmed to detect
abnormal brain activity and intervene with tailored stimulation. Despite the success of RNS, some
patients require further interventions. However, having an RNS device in situ is a hindrance to
the performance of neuroimaging techniques. Magnetoencephalography (MEG), a non-invasive
neurophysiologic and functional imaging technique, aids epilepsy assessment and surgery planning.
MEG performed post-RNS is complicated by signal distortions. This study proposes an independent
component analysis (ICA)-based approach to enhance MEG signal quality, facilitating improved
assessment for epilepsy patients with implanted RNS devices. Three epilepsy patients, two with RNS
implants and one without, underwent MEG scans. Preprocessing included temporal signal space
separation (tSSS) and an automated ICA-based approach with MNE-Python. Power spectral density
(PSD) and signal-to-noise ratio (SNR) were analyzed, and MEG dipole analysis was conducted using
single equivalent current dipole (SECD) modeling. The ICA-based noise removal preprocessing
method substantially improved the signal-to-noise ratio (SNR) for MEG data from epilepsy patients
with implanted RNS devices. Qualitative assessment confirmed enhanced signal readability and
improved MEG dipole analysis. ICA-based processing markedly enhanced MEG data quality in RNS
patients, emphasizing its clinical relevance.

Keywords: responsive neurostimulation (RNS); magnetoencephalography (MEG); drug-resistant
epilepsy (DRE); independent component analysis (ICA); ICA-based signal processing; MNE-python

1. Introduction

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked
seizures resulting from abnormal electrical activity in the brain [1]. While anti-seizure
medication (ASM) can effectively control seizures in most cases, approximately 30% of
patients experience drug-resistant epilepsy (DRE) [2]. This subset, failing to achieve seizure
control despite appropriate ASM treatment presents a significant clinical challenge [3,4].
Surgical intervention, aimed at accurately localizing and addressing the epileptogenic
zone(s), is an efficacious treatment for DRE [3–5]. The primary goal of epilepsy surgery is
the complete resection or disconnection of the epileptogenic zone while preserving eloquent
cortices, emphasizing the importance of precise localization and intervention [6].
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An adjuvant therapy for DRE patients is neuromodulation, including FDA-approved
devices such as vagus nerve stimulation (VNS) [7], deep brain stimulation (DBS), and
responsive neurostimulation (RNS). The RNS® System is an FDA-approved implantable
responsive neurostimulator device which is indicated when there are no more than two
epileptogenic foci, or with seizures originating from eloquent cortices, which cannot be
resected. The RNS device (RNS® System; NeuroPace, Inc., Mountain View, CA, USA)
continuously monitors electrocorticographic (ECoG) activity and delivers targeted electrical
stimulation to suppress seizures [8]. After extensive pre-surgical evaluation to identify
the seizure onset zone (SOZ), including stereo electroencephalography (SEEG), the RNS
electrodes are placed in the area determined to be the SOZ. The RNS electrodes detect
the abnormal electrical patterns associated with seizure onset, and the device promptly
provides stimulation to disrupt the seizure cascade, preventing the occurrence of clinical
and electrographic seizures. RNS offers a personalized treatment modality for DRE patients,
delivering real-time intervention tailored to their specific seizure patterns [1].

While the RNS system may provide significant benefits in managing DRE patients,
some patients may still experience persistent seizures or develop new seizure foci. Mag-
netoencephalography (MEG), a valuable FDA-approved, noninvasive technique, plays a
crucial role in the preoperative evaluation of DRE patients and/or evaluation in cases war-
ranting reoperation [9]. Utilizing superconducting quantum interference devices (SQUIDs),
MEG measures the brain’s magnetic fields, ranging from femto-tesla to pico-tesla [10,11],
with millisecond precision and a spatial resolution of 2–3 mm [12]. MEG has proven valu-
able in mapping functional brain networks, localizing epileptic seizure foci, and aiding in
pre-surgical planning [13]. MEG can also help identify eloquent cortices, which is important
in order to minimize functional deficits during epilepsy surgery [11].

The use of MEG for surgical planning in operative re-interventions, particularly in
patients experiencing ongoing seizures after RNS system placement, has been limited. This
is largely due to the assumption that electric and magnetic interference from the RNS
device [10,14] would lead to a non-diagnostic study. Many services refrain from attempting
MEG scans in RNS patients due to these challenges, further emphasizing the need for
innovative solutions to integrate MEG into standard care for these patients. MEG is critical
for understanding brain activity dynamics, seizure initiation, and the impact of RNS on
neural networks. Techniques like temporal signal space separation (tSSS) [14,15] have been
explored to mitigate signal distortion but have not consistently yielded satisfactory results.
The limited effectiveness of current strategies underscores the urgency for user-friendly
and automated methods to augment MEG’s clinical utility in RNS patients and make the
noninvasive approach more practical and efficient. Our aim is to address the challenges
posed by the RNS neurostimulator [10], and to fill this critical gap in MEG clinical practice.
This advancement is essential for enhancing our understanding of post-RNS brain function
and improving targeted treatments for improved seizure control and patient outcomes.

It is important to effectively reduce the contamination caused by environmental
noise, sensor noise, and physiological artifacts while retaining the signal quality so that it
enhances the accuracy and reliability of the analysis of brain activity. Incorrectly applying
artifact rejection methods could unintentionally eliminate sources of interest or lead to
erroneously interpreting overmanipulated or poorly manipulated data as abnormal brain
activity, making the choice and implementation of artifact rejection methods critical. There
are several artifact rejection methods commonly used in MEG. These methods aim to
identify and remove various types of artifacts to enhance the quality of MEG data. Some of
these artifact rejection techniques include tSSS [15] and independent component analysis
(ICA) [16,17]. tSSS constructs a subspace based on spatially coherent artifacts captured by
reference sensors and projects this subspace out of the MEG data, effectively removing
artifact contamination and improving the accuracy of neural activity analysis [15]. The
tSSS method requires only two assumptions: the brain and external interference sources
can be separated geometrically, and the brain signals are not temporally correlated with
any signal from a nearby artifact source [18]. In this way, tSSS removes the substantial
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interference caused by external and nearby sources. The tSSS method has been shown
to be effective for noisy datasets contaminated by contributions from dental braces and
fillings, metal implants, or stimulators [19]. ICA is a technique for estimating independent
source signals from recordings in which the source signals were mixed in unspecified ratios.
Typically, users are required to select components representing artifacts; however, recent
advancements, such as those in MNE-Python (package version 0.23.4), an open-source
software for MEG signal processing, have automated this procedure [16]. This function
decomposes the temporal data into a predetermined number of components, from which
either an algorithm or a user with expertise identifies and designates the components that
represent noise, and these are projected out of the temporal data. This process entails
the removal of the identified noise-afflicted components from the temporal data domain.
Other artifact rejection techniques include automatic bad channel detection, trial rejection
based on amplitude thresholds, and artifact subspace reconstruction [20]. Specifically, the
“ft_rejectartifact” function in Fieldtrip enables the semiautomatic detection of well-defined
artifacts such as eye blinks, muscle contractions, or MEG SQUID jumps [20]. The peak-
to-peak amplitude rejection method involves rejecting MEG trials that exhibit excessive
peak-to-peak amplitudes exceeding a predefined threshold [21]. It is most effective in
identifying and removing artifacts caused by sudden movements, muscle activity, or
environmental interference [21]. It is important to note that different artifact rejection
methods may suit different types of artifacts. Therefore, combining multiple techniques is
often employed to achieve robust artifact removal in MEG data analysis.

In the context of addressing the specific challenge of signal separation in MEG record-
ings of patients with implanted RNS, this study innovates by applying ICA subsequent to
the conventional tSSS method. Employing ICA within an automated framework facilitates
the identification and removal of artifacts, significantly enhancing the robustness and
precision of MEG data analysis by effectively excluding noise components while preserving
the underlying neural activity. Furthermore, to optimize the efficiency of this challenge,
we propose the automated ICA approach using MNE-Python, a powerful open-source
software package for MEG and electroencephalography (EEG) analysis [16]. This novel
application of a well-established technique, ICA, in the context of clinical MEG analysis
for RNS patients, not only streamlines the data analysis process but also significantly
enhances the quality, consistency, and objectivity of the analysis. MNE-Python provides an
added advantage by eliminating the need for costly proprietary software such as MATLAB,
making it a cost-effective solution. Additionally, the automated nature of the approach
allows it to be easily implemented. By applying automated ICA-based noise reduction
techniques, we anticipate substantial improvements in the quality and reliability of MEG
data obtained from patients with RNS devices. It represents a significant advancement in
the field, providing clinicians with a robust, efficient, and objective method for analyzing
MEG data in this unique patient population.

2. Materials and Methods
2.1. Participants

The MEG scans, performed as part of standard clinical care, utilized a 306-channel
MEGIN Triux-Neo MEG system and were acquired concurrently with EEG data. Clin-
ical resting-state MEG signals from two epilepsy patients with implanted RNS devices
and one epilepsy patient without an implanted RNS device are presented in this study.
Patient 1 and Patient 2, a 42-year-old female and a 30-year-old male, respectively, were
considered DRE patients due to ongoing seizures despite adequate trials of two tolerated
and appropriately chosen ASMs [4]. Patient 1 had frontal dysplasia and lesional focal
frontal lobe epilepsy overlapping with the supplementary motor area (SMA). Patient 2 had
non-lesional multifocal epilepsy, with SOZ overlapping with Broca’s area. Patient 2 had a
previous, limited frontal lobe resection that spared Broca’s area prior to MEG scan. As the
SOZ overlapped with eloquent cortical regions in both patients, a recommendation was
made for RNS device placement. However, despite undergoing RNS device placement and
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programming over time, both patients continued to experience seizures. The RNS devices
for both patients were NeuroPace (RNS-320) (Mountain View, CA, USA). Both patients
had RNS devices placed at outside hospitals; therefore, limited information was available
regarding the presurgical workup. However, chart review of the presurgical workup re-
vealed that MEG was not performed in these particular cases. Unlike RNS-300M models of
the RNS neurostimulator, which are magnetic resonance imaging (MRI)-unsafe, individuals
with the RNS neurostimulator model RNS-320, classified as MRI-conditional, are able to
undergo MRI and MEG procedures. The RNS device location on Patient 1 was at the left
occipital/parietal region with strip electrodes in the left SMA. The RNS device location
on Patient 2 was at the left frontal region with strip electrodes in the left frontal region.
The time from RNS placement to the MEG scan was 3 and 4 years for patients 1 and 2,
respectively. Patient 3 was a 67-year-old male without implanted RNS or other devices.
Detailed information for each patient is available in Table A1.

2.2. Resting-State Protocol and MEG Data Acquisition

The MEG data were acquired while the participant was supine in a magnetically
shielded room (MSR). MEG recordings were collected continuously at a 1000 Hz sampling
rate with a system that includes 204 planar gradiometers and 102 magnetometers. Par-
ticipants were sleep deprived prior to the scan and, during the scan, were asked to keep
their eyes closed and fall asleep if possible. The duration of these recordings was about
60 min. Electrooculogram (EOG) and electrocardiogram (ECG) electrodes were used to
record the vertical and horizontal eye movements, and heartbeat artifacts, respectively. In
addition, the head position indicator (HPI) coils were attached to the scalp and measured
head position at the start and end of each scan. A FASTRAK digitizer was used to record
locations of the HPI coils as well as three anatomical fiducials for the nasion, left and right
pre-auricular points (LPA and RPA, respectively), and approximately 500 points across the
scalp to help with the co-registration of MEG data with their corresponding T1-weighted MRI.

2.3. RNS Device Settings during MEG Scan

The RNS device can be programmed to monitor and deliver responsive stimulation
to no more than two epileptogenic foci. When a specific ECoG pattern is detected, up to
five individually configured sequential stimulations can be delivered. Each stimulation can
contain two bursts that can be independently configured. The RNS device can also store
segments of electrocorticographic activity, neurostimulator status indicators, and records
of events detected by the neurostimulator [22].

Clinicians can program how the neurostimulator operates [23]. In this study, RNS was
recorded in two modes, an MRI mode and an off mode [10]. The MRI mode disables the
stimulation, but enables detection and storage. This means that the RNS device cannot
stimulate the brain but still monitors and records the brain signal, looking for changes and
stores them. The off mode disables the stimulation, detection, and storage. Off mode helps
to avoid the limited recording utility of the MEG due to the artifact of the RNS electronics.

2.4. Standard Clinical Preprocessing (Conventional Preprocessing)

Standard clinical pre-processing, tSSS, was performed on raw MEG data using the
scanner manufacturer’s software MaxFilter (version 2.2.14—US). The patient’s center of
sphere was calculated using Mrilab (version 1.7.25). These patient-specific coordinates, a
tSSS subspace correlation of 0.88, and a tSSS buffer length of 4 s were utilized in MaxFilter.
All other parameters were set to the manufacturer default.

2.5. Automated ICA (ICA-Based Noise Removal Preprocessing)

MEG sensor-level data were then further pre-processed using the freely available MNE-
Python package [16]. First, a 1–70 Hz band-pass filter was applied to the tSSS resting-state
file. The default window method was used for the finite impulse response (FIR) filter design.
Then, ICA was performed using a pre-defined rejection band (magnetometer = 5 × 10−12 T,
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gradiometer = 4 × 10−10 T) to avoid fitting ICA in situations with significant environmental
artifacts. We used 25 components for fitting ICA, and the ICA method was set to the default
“fastica” method. The FastICA estimation is non-deterministic, so fixing the seed to have
reproducible results is practical. To this end, the random state was set to 23. The EOG and ECG
artifacts were automatically removed using ICA. EOG and ECG recordings were available, so it
automatically selected the corresponding artifact components from the decomposition. Finally,
the rejected components were removed by the application of the ICA function, and saved into
a new FIF file for evaluation with MEGIN clinical software (Graph version 2.94). Figure 1
illustrates the MEG signal after the conventional and ICA-based noise removal preprocessing.

Figure 1. Example of conventional vs. ICA-based preprocessing of time series data. This illustrates
20 s of MEG signal data from 20 MEG channels out of 306 channels for the conventional vs. ICA-based
preprocessing methods (Patient 1). The plot on the left shows the MEG signal with the conventional
preprocessing, which includes tSSS only. The plot on the right shows a cleaner signal after the
ICA-based preprocessing steps were performed on the data after tSSS.

2.6. Power Spectral Density and Signal-to-Noise Ratio Calculation

The power spectral density (PSD) was computed using Welch’s method. First, the
average PSD from all channels was calculated for both processing methods in dB, and the
values were used to calculate and compare the signal-to-noise (SNR) ratio from conventional
and ICA-based preprocessing steps. Secondly, for both preprocessing methods, the SNR
was calculated and compared for channels directly above the RNS neurostimulator and
channels on the contralateral hemisphere with less RNS interference in Patients 1 and 2.
For Patient 3, we adopted the noise and signal hemispheres identical to those of Patient 1
for the purpose of SNR and PSD calculations. Finally, statistical analysis was reported in
terms of “mean ± standard deviation” in decibels (mean ± SD).

As an illustration, Figure 2 shows the layout of the MEG channels along with the
location of the placement of the RNS device in Patient 1 (left occipital/parietal region). In
this patient, the channels on the left parietal/occipital region are the channels above the
RNS device, and the channels on the right parietal/occipital region are the channels on
the contralateral hemisphere with less RNS interference. Figure 3 shows the conventional
and ICA-based preprocessing of MEG signals in channels above the RNS device versus
the channels on the contralateral side of the hemisphere from the RNS device for the
same patient. Figure 4 shows a graph of the PSD and SNR calculations corresponding to
MEG1633 and MEG2233 channels after ICA-based preprocessing.
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Figure 2. MEG sensor layout. This illustrates the MEG sensor layout and the RNS device location for
Patient 1. The RNS device was located in the left occipital/parietal region.

Figure 3. Example time series data. This illustrates 20 s of MEG signal data from 8 MEG channels out
of 306 channels for the conventional vs. ICA-based preprocessing methods (Patient 1). The top four
channels are the MEG channels directly above the RNS, and the bottom four are the MEG channels
on the contralateral hemisphere with less RNS interference.

Figure 4. Example PSD and SNR Plots. The plots of PSD and SNR resulted from MEG1633 (Noise)
and MEG2233 (Signal) for Patient 1. MEG1633 is located above the RNS, which was considered to be
the noise, and MEG2233 is located on the contralateral hemisphere of the brain from the RNS, which
was considered to be the signal.

2.7. MEG Dipole Analysis

The MEG data underwent analysis by a board-certified clinical neurophysiologist with
additional training in clinical MEG. The source estimation of the visually detected spikes
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was performed using the single equivalent current dipole (SECD) model in xfit (clinically
approved software from MEGIN (xfit version 5.5)). During the assessment of the SECD
fitting, the following statistical criteria were employed: a goodness of fit > 80%, a confidence
volume of <1000 mm3, a reduced chi-square value of 0.5–2.0, and a dipole moment ranging
from 100–500 nAm. The analysis was performed using data that underwent conventional
and ICA-based preprocessing.

Dipole fitting with both conventional and ICA-based analyses were performed prior
to a potential second intracranial study or resection. Results were interpreted in the context
of all clinical data and ancillary testing results. As part of their presurgical and postsurgical
evaluation at our high-volume NAEC (National Association of Epilepsy Centers) level 4
epilepsy center, patients were presented at a multidisciplinary epilepsy team conference,
including epileptologists, neurosurgeons, neuroradiologists, psychiatrists, and psycholo-
gists. The MEG dipole data from the conventional processing was presented and discussed
along with other data, including seizure clinical semiology and electroclinical findings, in
addition to a battery of noninvasive and invasive results. At the conclusion of these patient
management conferences, a hypothesis of the SOZ was formulated.

The analysis of the preprocessed MEG data with ICA-based preprocessing method
was performed as part of the research protocol and was not related to the epilepsy team’s
plan recommendation. The primary aim being to assess the viability of the processed
data for dipole modeling with acceptable statistical criteria. However, the results of the
ICA-based processing were discussed with a subset of the multidisciplinary team, in a
similar manner to the multidisciplinary team conference.

3. Results
3.1. Signal-to-Noise Ratio Analysis

The recordings taken while the RNS devices were in MRI mode had extremely limited
recording quality that resulted in multiple errors and failures in MaxFilter when attempting
to apply tSSS. Therefore, the SNR values from the RNS devices in MRI mode are not
reported. The SNR values from patients 1 and 2 with RNS devices in off mode, as well as
Patient 3, without an RNS device, are shown in Table 1. The first row of data in Table 1
shows the SNR mean and standard deviation (SD) calculated for the conventional versus
the ICA-based method. A better signal improvement was seen in Patient 1. The second and
third row of data in Table 1 shows the SNR for the conventional and ICA-based methods,
respectively, assessing the channels above the RNS devices versus the channels on the
contralateral hemisphere of the brain for Patients 1 and 2. We evaluated the SNR in Patient
3 using the same methodology and hemisphere selection as we did for Patient 1. The SNR
improved in both RNS patients in the ICA-based method.

Table 1. The results from SNR calculations (mean ± SD (dB)).

Conventional Method ** ICA-Based Method ** Conventional vs.
ICA-Based Method ***

Patient 1 −18.49 ± 1.20 −16.89 ± 0.35 0.14 ± 0.75

Patient 2 −18.22 ± 1.90 −15.66 ± 1.07 −0.61 ± 0.78

Patient 3 * −1.92 ± 1.61 −2.10 ± 1.47 −0.45 ± 0.24
* Patient 3 did not undergo RNS device implantation; however, in the selection of noise and signal channels, we
employed the same criteria as applied to Patient 1, whose RNS device location informed our choice of channels
and hemisphere. ** This represents the results from channels above the RNS devices compared to those on the
contralateral hemisphere. *** This represents the average results from all channels.

Negative SNR values in Table 1 imply that the noise is much greater than the signal
where the RNS device is located in patients 1 and 2. In addition to these quantitative
findings, a board-certified epileptologist qualitatively confirmed the improved readability
of the signals after ICA-based preprocessing.



Brain Sci. 2024, 14, 173 8 of 14

3.2. MEG Dipole Analysis and Comparison with Clinical Results

With the ICA-based preprocessing method, we were able to model all previously mod-
eled dipoles, as well as to add more dipoles to represent time points that were previously
unable to be modeled with acceptable statistical criteria.

Patient 1, with seizure onset at age ten months, had an MRI showing extensive left
superior and medial frontal lobe cortical dysplasia. The patient underwent SEEG, as well as
grid placement, at an outside hospital that identified a probable SOZ, including dysplasia
in the left frontal lobe and SMA. The patient also had an interictal single-photon emission-
computed tomography (SPECT) but not SISCOM (subtraction ictal SPECT co-registered
to MRI) demonstrating decreased perfusion in the left frontal lobe and neuropsychologi-
cal evaluation demonstrating dysfunction in frontal/subcortical cerebral networks. The
outside hospital recommended resection, which the patient declined due to concerns for
potential postop deficits. The patient underwent RNS device placement in the left frontal
lobe at the outside hospital. However, her seizures persisted and she was referred to our
institution for further evaluation, including a MEG scan, for possible surgical options. Fol-
lowing repeat testing, the epilepsy team recommended RNS device removal with resection
of the SMA and frontal region dysplasia with the reimplantation of the RNS device.

The MEG results for this patient were as follows: (A) Conventional preprocessing—tight
clusters in the left precentral and postcentral gyri, the latter bordering the large artifact area,
and a loose cluster in the left anterior insula, inferior frontal operculum, and middle frontal gyri.
(B) ICA-based preprocessing—a tight cluster in the left inferior frontal gyrus and precentral
gyrus, a loose cluster in the insula and Rolandic operculum, and isolated dipoles in the cingulate
gyrus, the SMA, and the middle and superior frontal gyri within, or bordering on, the
dysplastic area (Figure 5).

Figure 5. MEG dipole analysis: A comparison of dipole analysis between conventional and ICA-based
preprocessing techniques on Patient 1. This figure illustrates that the dipoles (represented by yellow
lines and triangles) fitted with the ICA-based preprocessed data show diminished association with
the RNS device artifact area and increased concordance with the hypothesized seizure onset zone
(left inferior frontal and precentral gyri) compared to conventional preprocessing.
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Patient 2, with seizure onset at eight years old, had a previous SDE (subdural evalua-
tion) which showed left basal frontal, inferior frontal, anterior temporal, inferior temporal,
and insular seizure onset zones. After intracranial evaluation, the fMRI evidenced the
overlapping of Broca’s area with epileptogenic focus and a Wada test suggested left lan-
guage lateralization. The patient underwent left frontal disconnection procedures due to
proximity to Broca’s area, and responsive neurostimulator placement.

Despite numerous interventions, as described, his seizures persisted. The MRI ev-
idenced generalized atrophy of the left temporal lobe, the left frontal resection, and the
RNS device placement. Post-operative positron emission tomography (PET) suggested
epileptogenic focus in the left frontal lobe posterior to the resection cavity. Ictal SPECT
demonstrated increased perfusion posterior to the left frontal resection with reduced inter-
ictal and neuropsychological evaluation evidencing frontal/subcortical networks of the
dominant language hemisphere.

The MEG results for this patient were as follows: (A) Conventional preprocessing—A
loose cluster in the left inferior and middle frontal gyri in the expected region of Broca’s
area, and seven additional dipoles, which were mapped within the large artifact area in the
left frontal lobe. (B) ICA-based preprocessing—Two tight clusters, one in the left inferior
frontal gyrus posterior to the resection area, and one in the nearby anterior insula, with two
additional dipoles within the left middle frontal gyrus, posterior to the resection (Figure 6).

Figure 6. MEG dipole analysis: A comparison of dipole analysis between conventional and ICA-based
preprocessing techniques on Patient 2. This figure also illustrates that the dipoles (represented by
yellow lines and triangles) fitted with the ICA-based preprocessed data show diminished association
with the RNS device artifact area and increased concordance with the hypothesized seizure onset zone
(left inferior frontal gyrus and left insula) compared to the conventional preprocessing, indicating
enhanced localization and reduced interference.

The patient and family were not interested in a new invasive EEG evaluation or resec-
tion. The interdisciplinary epilepsy surgical committee discussed the case and agreed that
the patient could benefit from adding centromedian DBS therapy to existing RNS therapy.

The dipoles were localized to the same location as the conventional processing used
for Patient 3 (Figure A1).
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4. Discussion

The dipoles localized using the MEG data with the RNS device in off mode and
ICA-based noise removal preprocessing analysis were in areas closer to the probable
seizure onset zone and aligned with the treatment recommendations and surgical plan
more than the traditional preprocessing method.

SNR comparisons between the conventional and ICA-based methods revealed that the
ICA-based method exhibited superior signal improvement in both patients. Particularly,
Patient 1 showed significantly better results with the ICA-based method. The SNR values
demonstrated consistent improvements when assessing channels above the RNS device
compared to channels on the contralateral hemisphere of the brain for both patients with
RNS. These findings suggest the effectiveness of the ICA-based method in enhancing SNR
and highlight its potential benefits for improving RNS recordings in off mode.

Dipoles fit with the ICA-based processed data demonstrated a reduced relationship
with the RNS artifact area, i.e., the clusters and dipoles localizing to areas well-distinguished
and further from the area of the RNS device, demonstrating less interference from the
artifact. In the case of Patient 1, the conventional preprocessing showed tight clusters in the
left precentral and postcentral gyri, bordering an area on the MRI showing a large artifact
from the RNS device. However, with the ICA-based preprocessing, the tight cluster was
found within the left inferior frontal and precentral gyri, with isolated dipoles localizing
to the SMA, and bordering or within the dysplastic frontal lobe area, suggesting a more
accurate localization within the clinically relevant regions of interest. Similarly, in the case
of Patient 2, the conventional preprocessing showed dipoles bordering or within the large
artifact area in the left frontal lobe. In contrast, the ICA-based preprocessing revealed
two tight clusters in the left inferior frontal gyrus and left insula, with two additional
dipoles within the left middle frontal gyrus. The results of the ICA-based processing were
overlapping SOZs detected by the previous invasive study. In summary, the ICA-based
preprocessing for the MEG results provided information that was more consistent with
other imaging findings, clinical information, and epileptogenic zones identified by SEEG.

This work illustrates the advantages of employing ICA in combination with MNE-
Python to enhance the quality of MEG data in patients with RNS devices. This research
emphasizes the limitations of tSSS in effectively managing complex artifacts with inde-
terminate mixtures, potentially resulting in suboptimal artifact removal. Conversely, ICA
integrated with MNE-Python offers an automated and potent methodology to detect and
eliminate artifact components with uncertain proportions, thereby facilitating more depend-
able and precise artifact correction. Through the adoption of this methodology, considerable
enhancements can be made in the precision and reliability of MEG data, ultimately culmi-
nating in more accurate source modeling and improved evaluations for patients utilizing
RNS devices.

This study presents a novel approach for analyzing MEG signals derived from epilepsy
patients with implanted RNS devices. However, certain limitations are inherent to the
methodology and scope of the current investigation. These limitations serve as a foundation
for potential avenues of future research, aimed at expanding the applicability and robust-
ness of the proposed method. A primary limitation of this study pertains to the restricted
sample size, as only MEG data from two epilepsy patients with identical RNS device
models from a single institution were included. This narrow representation of RNS devices
may hinder the generalizability of the findings. Future endeavors will encompass a broader
cohort. Furthermore, the reliance on contralateral hemisphere channels for establishing a
comparative “ground truth” presents an inherent limitation, as it stems from the inability
to remove the RNS devices for direct signal validation. While necessitated by practical
constraints, this approach introduces an element of uncertainty in the validation process.
Alternative validation strategies should include exploration of synthetic signal simulations
or innovative signal separation techniques. It is also worth acknowledging that despite
the ICA-based processing techniques employed, the MEG signals obtained from channels
directly positioned above the RNS devices remain significantly compromised by excessive
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noise interference. In both patients, the RNS device was implanted close to, or directly over,
the seizure onset zone. If feasible, there could be value in implanting the neurostimulator
portion of the RNS device away from the SOZ, thereby potentially reducing artifacts in this
situation. Nonetheless, this persistent challenge underscores the necessity for continued
methodological development. The exploration of refined data acquisition methodologies
holds promise for addressing this issue. While this study introduces a method for analyzing
MEG signals in the presence of RNS devices, several limitations underscore the necessity
for further research. The expansion of the study’s sample size, validation strategies, noise
mitigation techniques, and multicenter validation efforts collectively represent essential
directions for future investigation. These endeavors are poised to bolster the robustness,
reliability, and clinical applicability of the proposed methodology, ultimately contributing
to a more comprehensive understanding of MEG signal analysis within the context of
RNS devices.

Overall, the present findings suggest that patients with RNS devices can be success-
fully studied with MEG. Several studies have reported the efficacy of tSSS in removing
artifacts from spontaneous MEG recordings in patients with medically interactable epilepsy
who have undergone RNS or VNS [14,24–27]. Nevertheless, there is a lack of research
investigating the usefulness of this ICA-based preprocessing technique and assessing its
clinical applicability in the context of presurgical epilepsy evaluation. This work represents
a novel application of ICA-based preprocessing methods which show promise in removing
artifacts while preserving neuronal signals.

5. Conclusions

Utilizing ICA-based signal processing beyond the current standard clinical practice,
we significantly improved the SNR and clinical utility of the MEG data in patients with RNS
devices. However, the SNR in channels directly over the RNS device is still poor and may
require modified data acquisition methods in addition to ICA-based preprocessing. This
automated method shows promise and future work will include testing in more patients
to confirm clinical utility. Utilizing these methods to build upon the current method
will allow the fine tuning and improvement of results over time. Overall, patients with
MRI-conditional RNS systems should no longer be deemed unable to undergo MEG.
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Appendix A

Figure A1. MEG dipole analysis: A comparison of dipole analysis between conventional and
ICA-based preprocessing techniques on Patient 3. Yellow dipoles illustrate the conventional prepro-
cessing and red dipoles illustrate the ICA-based preprocessing. This figure illustrates that the dipoles
fitted with the ICA-based processed data indicate the same localization as conventional preprocessed
data in a patient without RNS.

Appendix B

Table A1. Individual patients’ information.

Patient 1 Patient 2 Patient 3

Age (years),
Gender 42, F 30, M 67, M

Epilepsy Duration 41 years and 2 months 21 years and 6 months 10 years

Type of
Epilepsy

Focal: Lesional Frontal
Lobe Epilepsy

Multifocal:
Non-Lesional Epilepsy

Focal: Left Mesial
Temporal Epilepsy

Seizure Type/Frequency

Focal aware seizures: daily
Focal impaired aware seizures:

3 per day
Focal to bilateral tonic–clonic

seizures: sporadic

Focal unaware seizures: 2 per
week

Focal to bilateral tonic–clonic
seizures: sporadic

Focal impaired aware seizures:
3–4 per week

Focal to bilateral tonic–clonic
seizures: sporadic

ASM LCM + LEV + CNB VPA + LCM +ESL LCM + BRV

MRI Left superior and medial frontal
lobe cortical dysplasia

Generalized atrophy of the left
temporal lobe and left

hippocampus. Partial left frontal
lobectomy, RNS device in place

Small cortical defect with gliosis
in right temporoparieto-occipital
lobe; small area encephalomalacia

right cuneus

PET Decreased uptake in left
frontal lobe

No definitive discrete areas of
abnormal metabolism

Decreased metabolism in left
temporal lobe, particularly

laterally; frontal lobes
hypometabolic as compared to

parietal lobes

iEEG

Ictal EEG: Left frontal over FCD;
overlapping with SMA

Interictal EEG: Left centroparietal
breach/slowing *

Ictal EEG: Multifocal; left basal
frontal, inferior frontal, anterior

temporal, inferior temporal,
and insular

Interictal EEG: Left
frontal polyspikes *

Ictal EEG: Left hippocampus
Interictal EEG: Bilateral

independent;
left >>> right hippocampus

Prior Surgery/
Procedure SEEG, RNS device placement

Left frontal topectomy and
multiple subpial transections, Left

partial frontal resection, RNS
device placement

None

Surgical
Pathology N/A

Final pathology results
unavailable (done at
another institution)

N/A

M: Male; F: Female; LCM: Lacosamide; LEV: Levetiracetam; CNB: Cenobamate; VPA: Valproic Acid; ESL: Eslicar-
bazepine; BRV: Brivaracetam; iEEG: Intracranial EEG; FCD: Focal Cortical Dysplasia; N/A: Not Applicable. * Studies
were completed as part of the original pre-surgical workup before RNS device placement and MEG.
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