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Abstract: Background: Chronic progressive external ophthalmoplegia (CPEO) is a rare disorder
that can be at the forefront of several mitochondrial diseases. This review overviews mitochondrial
CPEO encephalomyopathies to enhance accurate recognition and diagnosis for proper management.
Methods: This study is conducted based on publications and guidelines obtained by selective
review in PubMed. Randomized, double-blind, placebo-controlled trials, Cochrane reviews, and
literature meta-analyses were particularly sought. Discussion: CPEO is a common presentation of
mitochondrial encephalomyopathies, which can result from alterations in mitochondrial or nuclear
DNA. Genetic sequencing is the gold standard for diagnosing mitochondrial encephalomyopathies,
preceded by non-invasive tests such as fibroblast growth factor-21 and growth differentiation factor-
15. More invasive options include a muscle biopsy, which can be carried out after uncertain diagnostic
testing. No definitive treatment option is available for mitochondrial diseases, and management is
mainly focused on lifestyle risk modification and supplementation to reduce mitochondrial load
and symptomatic relief, such as ptosis repair in the case of CPEO. Nevertheless, various clinical
trials and endeavors are still at large for achieving beneficial therapeutic outcomes for mitochondrial
encephalomyopathies. Key Messages: Understanding the varying presentations and genetic aspects
of mitochondrial CPEO is crucial for accurate diagnosis and management.
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1. Introduction

Chronic progressive external ophthalmoplegia (CPEO) is the most common manifesta-
tion of mitochondrial diseases and is characterized by bilateral symmetrical progressive
ptosis and reduced ocular motility. CPEO can be isolated or accompanied by a clinical
feature of systemic involvement of mitochondrial dysfunction (CPEO plus syndrome). The
worldwide prevalence of CPEO is unknown; however, the incidence of CPEO is 1–2 per
100,000. In the United Kingdom’s cohort database, the estimated prevalence of CPEO
recorded was 1 in 30,000 [1].

Von Graefe, in 1868, originally described CPEO, and later, in 1958, Kearns and Sayre
first described their triad of CPEO, retinal degeneration, and heart block (Kearns–Sayre
syndrome) [2]. Microscopical findings of pathological mitochondria in 1967 and ragged
red fibers in 1972 [3,4], as well as increased venous pyruvate and lactate in 1976 [5], were
significant in understanding the disease’s path. More recently, singular and multiple
mitochondrial DNA (mtDNA) deletions were detected in 1988 and 1989 [6,7]. Finally, in
2000, the first nuclear DNA (nDNA) mutation was detected alongside multiple mtDNA
deletions [8].

2. Pathophysiology, Genetics and Classification

Mitochondrial disorders generally affect tissues with high metabolic demand, such as
the central and peripheral nervous systems, heart, adrenal glands, renal tubules, skeletal
muscles, and the eye [9] (Figure 1). In CPEO, the ocular findings of ptosis and ophthal-
moplegia occur due to the inability of the abnormal mitochondria to supply an adequate
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amount of ATP due to defective oxidative phosphorylation. The extraocular muscles are
particularly susceptible due to their high mitochondrial volume and lower mutational
threshold [10]. Their susceptibility is expressed in multiple mitochondrial disorders, high-
lighting the significance of examining other manifestations in patients with PEO.
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to each oocyte before fertilization. This ensures a fluctuation of mutant mtDNA load in 
the characteristic maternal inheritance of mtDNA. Point mutations occurring in an asymp-
tomatic mother have a chance of either being diluted to her child or transmitted with a 
higher load [11,12]. When mutated mtDNA loads exceed a certain threshold, symptoms 
occur, and, in this case, mitochondrial encephalopathy, lactic acidosis, and stroke-like ep-
isodes (MELAS) can be inherited. Large-scale deletions can occur during embryogenesis, 
giving rise to mtDNA deletion syndromes such as CPEO, Kearns–Sayre syndrome (KSS), 

Figure 1. The diverse clinical outcomes of mitochondrial encephalomyopathies necessitate thorough
screening of patients under suspicion.

Both mtDNA and nDNA can be affected in mitochondrial diseases. mtDNA has a
unique trait of heteroplasmy since numerous copies are distributed in varying numbers
to each oocyte before fertilization. This ensures a fluctuation of mutant mtDNA load
in the characteristic maternal inheritance of mtDNA. Point mutations occurring in an
asymptomatic mother have a chance of either being diluted to her child or transmitted with
a higher load [11,12]. When mutated mtDNA loads exceed a certain threshold, symptoms
occur, and, in this case, mitochondrial encephalopathy, lactic acidosis, and stroke-like
episodes (MELAS) can be inherited. Large-scale deletions can occur during embryogenesis,
giving rise to mtDNA deletion syndromes such as CPEO, Kearns–Sayre syndrome (KSS),
and Pearson syndrome (PS). In the case of Leigh syndrome (LS), both mtDNA and nDNA
can be affected, giving rise to a similar clinical phenotype with different genetic variants.
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Mutations of nDNA can interfere with mitochondrial maintenance by affecting mtDNA
synthesis, the mitochondrial nucleotide pool, and mitochondrial fusion. Nuclear genes
responsible for synthesis include POLG, TWNK, RNASEH1, MGME1, and DNA2. The
nucleotide pool is maintained through nucleotide metabolism with TYMP and RRM2B, the
salvage pathway that includes TK2 and DGUOK, and nucleotide import such as ANT1 and
MPV17. Finally, the OPA1 gene aids in preventing the loss of mitochondrial components,
contributing to mitochondrial fusion [13] (Figure 2).
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Figure 2. This diagram shows the proteins involved in the maintenance of mitochondrial DNA
and the pathways involved. The mitochondrial nucleotide salvage pathway (1) is shown and is
responsible for salvaging deoxyribonucleosides (dNs) and converting them into deoxyribonucleotide
triphosphates (dNTPs) used in mtDNA replication. Along this pathway, Thymidine kinase 2 (TK2)
and deoxyguanosine kinase (DGK) convert dNs into deoxyribonucleotide monophosphates (dNMPs)
that later convert into deoxyribonucleoside diphosphates(dNDPs) by nucleotide monophosphate
kinase (NMPK), then into dNTPs by nucleotide diphosphate kinase (NDPK). The cytosolic nucleotide
metabolism pathway (2) includes thymidine phosphorylase (TP), which converts thymidine into
thymine, and ribonucleotide reductase (RNR), which converts NDPs into dNDPs, supplying the
nucleotide salvage pathway. RNR consists of two catalytic and two R2 or p53-induced small subunits.
The nucleotide transport proteins (3) supply the nucleotide salvage pathway from the cytosol. MPV17
protein supplies dNTPs, while adenine nucleotide transporter (ANT1) supplies ADPs with the
assistance of acylglycerol kinase (AGK), which are later converted to deoxyadenosine diphosphate
(dADPs) feeding into the dNDPs. Mitochondrial DNA synthesis (4) requires the enzymes TWINKLE,
a helicase, and the synthesis initiator, DNA polymerase gamma (POLG), which needs an RNA
primer that is supplied by mitochondrial transcription factor A (TFAM). POLG consists of one
catalytic subunit and two subunits encoded from POLG2. (5) The removal of RNA primers and
flap intermediates is then achieved via ribonuclease H1 (RNase H1), DNA helicase/nuclease 2
(DNA2), and mitochondrial genome maintenance exonuclease 1 (MGME1). (6) Mitochondrial fusion
is mediated by the proteins optic atrophy 1 (OPA1), F-box and leucine-rich repeat 4 (FBXL4), mitofusin
1 and 2 (MFN 1 and 2).
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In this review, we will review clinical entities of mitochondrial encephalomypoathies
based on the corresponding genetics of each syndrome rather than symptomology because
of the wide overlap of presentations and varying modes of inheritance accompanying each
syndrome (Table A1).

3. Mitochondrial DNA Deletion/Depletion Disorders Causing CPEO
3.1. CPEO

In its isolated form, CPEO is typically a sporadic disorder characterized by progressive
bilateral ptosis and ophthalmoparesis [9] (Figure 3). Ptosis examination yields poor levator
palpebrae superioris (LPS) muscle function, where eyelid excursion is often less than
8–10 mm rather than the normal ≥12 mm. Slowed, incomplete, and omnidirectional
saccades can be a subtle early clinical sign that is frequently missed. Later on, as the disease
progresses, ophthalmoplegia becomes more evident. The often-symmetric nature of the
disease means that patients do not have diplopia, and reports of manifest strabismus with
diplopia in CPEO patients are rare [14,15]. Retinal examination could reveal pigmentary
retinopathy that is typical in Kearns–Sayre syndrome, characterized as salt and pepper
retinopathy, where clumps of retinal pigment epithelium (RPE) alternate with areas devoid
of RPE [16]. However, these retinal changes rarely harbor field defects or a change in
visual acuity.
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gressive external ophthalmoplegia with limited eye movements in all gazes and cerebellar signs
(intention tremor in finger-to-nose test and tandem walking), in addition to areas of pigment hyper-
plasia on fundoscopy. The yellow discoloration shown in the image is from fluorescein eye staining.

Treatment of CPEO is focused on the correction of ptosis. It can start with eyelid
crutches as a non-surgical solution, which usually is not preferred due to discomfort or
intolerable aesthetics [17]. Surgery is the mainstay treatment and is dependent on LPS
function. Resection of the levator tendon along the superior tarsus is available for mild
LPS impairment, while in more severe cases, frontalis suspension procedures with facia
lata or silicon are used [18,19]. When strabismus and diplopia occur, prismatic glasses are
prescribed to correct small malalignments, and strabismus surgery can be performed to
improve the patient’s quality of life [19].

3.2. Kearns–Sayre Syndrome

Kearns–Sayre syndrome is a syndrome of CPEO and pigmentary retinopathy, with
onset before the age of 20 as well as one of the following features: a complete heart
block, cerebellar ataxia, dementia, deafness, short stature, endocrine abnormalities, and
cerebrospinal fluid (CSF) protein of more than 100 mg/dL. If the diagnostic criteria are not
met, the patient is termed “CPEO plus” or “KSS-minus” [20].

When a patient presents with CPEO before the age of 20, they should be evaluated
with mtDNA sequencing followed by regular ophthalmologic assessments and screening
for systemic signs and symptoms. A muscle biopsy can be performed to look for the ragged
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red fibers. The fundoscopic examination reveals pigmentary retinopathy that should be
distinguished from retinitis pigmentosa since they might share similar symptoms like
mildly reduced night vision and visual acuity. Retinitis pigmentosa typically affects the
peripheral or the mid-peripheral retina with a bone spicule pattern, whereas KSS affects
the posterior retina with a salt and pepper pattern [21]. It is essential to perform an electro-
cardiogram on these patients to rule out a complete heart block. Endocrine abnormalities
affecting the adrenals, parathyroid, and hypothalamus can present with diabetes mellitus,
growth hormone deficiency, and short stature [22,23]. Orbicularis oculi muscle weakness
can impair eyelid closure, and frontalis weakness can affect eyelid elevation. Dysphagia is
a rare presentation of KSS and may result from upper esophageal sphincter dysfunction
and reduced peristalsis in the pharynx and upper esophagus, as observed in a manometric
study of a case report by Shaker et al. [24].

No definitive treatment option is available for KSS. Symptomatic treatment includes
correction of CPEO, treating heart blocks with pacemakers with a long-term cardiology
follow-up, correction of endocrine abnormalities, and cochlear implants in cases of hear-
ing loss.

3.3. Pearson Syndrome

Pearson syndrome (PS), also known as Pearson marrow–pancreas syndrome, is a rare
fatal multisystemic mitochondrial disease due to deletions in mtDNA, and it typically
affects infants. Ophthalmologic manifestations include corneal endothelial dysfunction,
ptosis, CPEO, and mild peripheral pigmentary retinopathy [25]. It is also characterized by
refractory sideroblastic anemia, lactic acidosis, and exocrine pancreatic dysfunction. It can
also present with vacuolization of hematopoietic precursors, pancytopenia, failure to thrive,
diarrhea, hypospadias, cleft lip palate, diabetes mellitus, renal tubular dysfunction, hepatic
failure, enteropathy, and rashes [26]. Cardiac manifestations, such as bundle branch blocks
and supraventricular tachycardia, have been reported; however, cardiac involvement is not
yet a part of the major criterion of the disease [27].

Usually, premature death at three years of age occurs due to infection from neutropenia
or metabolic crisis. Thus, early diagnosis is essential in improving the poor prognosis for
these patients. The diagnosis of Pearson syndrome is challenging due to the atypical
presentation in infancy. It can be confirmed via mtDNA sequencing and observing multiple
deletions of varying lengths [28]. Interestingly, these single large-scale mtDNA deletions
can also be found in young patients with CPEO and KSS. They, therefore, form a continuous
spectrum of diseases termed “mtDNA deletion syndromes”, supported by reports of a
KSS-like phenotype in PS survivors [29].

Treatment for Pearson syndrome is supportive and may include blood transfusions,
iron chelating therapy, pancreatic replacement therapy, and prompt detection and manage-
ment of cardiac dysfunction. Bone marrow transplant has been tested and, unfortunately,
yielded poor outcomes [26,30].

3.4. Leigh Syndrome

Leigh syndrome is a fatal, progressive neurodegenerative disease that typically mani-
fests in infants and young children of 3 months to 2 years of age [31]. It can be caused by
multiple mtDNA deletions as well as nDNA defects in more than 75 different monogenic
causes, most commonly by the SURF1 variant [32,33].

The clinical features of LS vary, with the most common characteristics, according to
a meta-analysis by Chang et al., being developmental delay, hypotonia, respiratory dys-
function, epilepsy, reduced feeding, and weakness [34]. The ocular features of LS include
nystagmus, ptosis, ophthalmoplegia, strabismus, pigmentary retinopathy, and optic atro-
phy [34,35]. Common cardiac abnormalities are hypertrophic or dilated cardiomyopathy
and conduction defects such as Wolff–Parkinson–White syndrome [36,37].

Consensus on the clinical diagnosis is yet to be determined; however, LS is suspected
through the hallmarks of the disease along with findings suggestive of brainstem dysfunc-
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tion in addition to T2 weighted brain MRI lesions and accessory laboratory findings [34].
Brain MRI findings typically show bilateral symmetrical supra-tentorial (basal ganglia,
thalamus, and sub-thalamus) and/or infra-tentorial (brainstem and dentate nuclei) lesions.
A study by Ardissone et al. presented a predominating basal ganglia involvement of 90.2%.
They also showed that both supra and infra-tentorial involvement is dominant in cases
of both mtDNA (74%) and -nDNA (67%) variants, while isolated infra-tentorial variants
are rare [38]. Extensive research is being conducted to find genetic correlations with MRI
findings of LS. For example, a retrospective cohort found significant associations between
the SURF1 variant and inferior olivary nuclei lesions [39].

Abnormal laboratory findings may yield elevated blood, urine, and CSF lactate levels.
Additional deficiencies may be observed in respiratory chain complexes through enzyme
assays and pyruvate dehydrogenase complex [40]. However, these laboratory findings are
not consistently present. Therefore, confirmatory tests with genetic assays are required for
a definitive diagnosis and the identification of specific variants of LS [41].

3.5. MELAS

MELAS, or mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes
(SLEs) are associated with A to G RNA transfer mutation (Leu (UUR)) in the most commonly
m.3243A>G mutation [42,43].

The clinical presentations vary widely, usually in childhood, with neurological symp-
toms that include SLEs, sensorineural hearing loss, and cognitive impairment associated
with diffuse white matter injury. Less commonly, it can present with gastrointestinal
manifestations that include gastric perforation, ischemic colitis, segmental ileal paralysis,
pseudo-obstruction, or megacolon. Endocrine manifestations, such as diabetes mellitus,
have also been reported in MELAS [44].

Ophthalmologic manifestations of MELAS include hemianopia and cortical blind-
ness from SLEs, nystagmus, cataracts, CPEO, optic atrophy, salt and pepper pigmentary
retinopathy, and macular degeneration [45].

The transient SLEs of the disease are characterized by nausea, vomiting, a migraine-
like headache, encephalopathy, and focal seizures with or without neurological deficits.
The exact pathogenic mechanism for these episodes is yet to be determined; however,
three theories have been postulated. The first is insufficient energy due to mitochondrial
dysfunction, supported by the increase in lactate peaks and decreased N-acetyl aspartate
peaks of the occipital regions in brain magnetic resonance spectroscopy (MRS) [46]. The
second is nitric oxide (NO) deficiency, which usually regulates oxygenation and blood flow.
This hypothesis is supported by a reduction in NO metabolites during acute attacks and an
increase in NO synthase inhibitors in the COX-negative fibers of MELAS patients [47]. The
third theory is mitochondrial angiopathy, an accumulation of mitochondria in the smooth
muscle cells and endothelial cells of small cerebral arteries leading to the narrowing of the
lumen of blood vessels and reducing perfusion [48]. MRI findings of SLE exhibit stroke-like
lesions (SLLs) that are usually differentiated from other pathologies by initially observing
cortical and deep white matter lesions, in addition to occipital and parietal lobe lesions or
lesions not confined to arterial territories. PWI/ASL can also show hyperperfused lesions,
and MRS exhibits lactate peaks [49]. Another distinctive finding in neuroimaging was
reported in some cases of MELAS as cerebellar lesions SLLs [49,50].

Since MELAS is associated with reduced levels of citrulline and arginine, which are
NO precursors, and decreased NO that contributes to SLEs, supplement replacement with
arginine was proposed. A systematic review by Argudo et al. concluded that the studies
conducted showed promising results in managing SLEs [51]. Acute phase management
consists of giving an intravenous dose of 500 mg/kg/day or 10 g/m2 in 24 h for 3–5 days.
Whereas chronically, 150–300 mg/kg/day (maximum of 500 mg) is used instead [52]. A
study conducted by Pek et al. using induced pluripotent stem cell-derived endothelial
cells vouched for edaravone, a potent antioxidant, to be used for improving the vascular
function in MELAS since it scavenges ROS and inhibits the inflammatory response in
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cerebrovascular diseases, which L-arginine and citrulline do not tackle [42]. For treating
epilepsy, levetiracetam is considered to be the first-line anticonvulsant in mitochondrial
encephalomyopathy due to the mitochondrial toxicity of other anticonvulsant agents [53].

4. Nuclear DNA Gene Mutations/Protein Dysfunction Causing CPEO
4.1. DNA Polymerase Subunit Gamma (POLG)

POLG-related disorders affect the nDNA that encodes mtDNA polymerase gamma.
The first identified POLG mutation variant was inherited in an autosomal dominant man-
ner; however, it was identified in recessive variants later in other families. CPEO was
observed in both autosomal dominant and recessive carriers along with other neurode-
generative disorders associated with POLG that include myoclonic epilepsy myopathy
sensory ataxia (MEMSA), childhood myocerebrohepatopathy spectrum (MCHS), Alpers
syndrome, Alpers–Huttenlocher syndrome (AHS), and ataxia neuropathy spectrum (ANS)
disorder [54].

The clinical presentation of POLG-related disorders can vary widely and include neu-
rological features such as ataxia, axonal neuropathy, myoclonic epilepsy, and sensorineural
hearing loss. Other features are PEO, cataracts, hypogonadism, liver dysfunction, and
possible renal manifestations [55].

The diagnostic approach of POLG-related disorders proposed by Hikmat et al. is
simplified and accounts for the age of onset and clinical picture with supportive and
definitive investigations. EEG, MRI, muscle biopsy, and laboratory investigations are used
as supportive investigations and ordered depending on the clinical presentation. POLG
gene sequencing is the definitive investigation [55].

4.2. Twinkle mtDNA Helicase (TWNK)

The TWNK gene, also known as C10orf2 or PEO1, is responsible for encoding TWIN-
KLE, an mtDNA helicase, an enzyme that unwinds DNA temporarily for replication [56].
The dysfunction in TWINKLE is thought to pause or stall mtDNA replication and accumu-
late many mtDNA deletions over time [57]. Mutations in this gene are usually associated
with adult-onset autosomal dominant PEO (adPEO). The clinical presentation can be iso-
lated CPEO or with systemic muscle weakness, dysarthria, dysphagia, and cardiac or
neurological involvement [58]. Treatment options for this disease are supportive and
focused on alleviating symptoms.

4.3. Thymidine Phosphorylase

The TYMP gene encodes thymidine phosphorylase (TP), an enzyme that catalyzes
thymidine and deoxyuridine into thymine and uridine, respectively. Defects in this gene
cause the accumulation of thymidine and uracil in the blood, resulting in mitochondrial
neurogastrointestinal encephalopathy (MNGIE). MNGIE is a rare multisystemic autosomal
recessive disorder that typically starts before the second decade of life but can manifest up
to the fifth decade [59,60]. It is characterized by CPEO, cachexia, severe gastrointestinal
dysmotility, sensorineural hearing loss, peripheral neuropathy, and leukoencephalopa-
thy [59]. Clinically, diagnosis can be supported by increased plasma levels of thymidine
(>3 micromol/L) and deoxyuridine (>5 micromol/L) or a decrease in the buffy coat of TP
activity to less than 8% of controls [61]. It is important to note that TYMP is not the only
mutation attributed to a MNGIE-like phenotype, as POLG1, RRM2B, and LIG3 mutations
were reported with a somewhat similar clinical phenotype in the literature [62,63]. This can
be of therapeutic value since TYMP mutations have ongoing treatment modalities to restore
TP activity and target the toxic effects of thymidine and uracil, such as platelet infusion,
continuous ambulatory peritoneal dialysis, enzyme replacement therapy, hematopoietic
stem cell transplantation, and liver transplantation [62].
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4.4. Ribonucleoside–Diphosphate Reductase Subunit M2 B (RRM2B)

Ribonucleotide–diphosphate reductase subunit M2 B is an enzyme encoded by RRM2B,
which produces one of the two subunits of ribonucleotide reductase. Ribonucleotide
reductase is induced by p53 to produce deoxyribonucleoside diphosphatase, a nucleotide
precursor, for DNA repair and mtDNA synthesis in non-proliferating cells [64].

Defects in this gene can cause mtDNA maintenance defects, either from mtDNA de-
pletion in RRM2B encephalomyopathic mitochondrial DNA maintenance defect (MDMD)
and in RRM2B mimicking mitochondrial neurogastrointestinal encephalopathy (MNGIE)
or multiple mtDNA deletions in RRM2B adPEO and RRM2B autosomal recessive PEO
(arPEO) [65].

A common feature in these subtypes is ophthalmoplegia and ptosis; however, the
age of onset and other clinical features may differ. For example, RRM2B adPEO usually
accompanies bulbar dysfunction, hearing loss, and gastrointestinal motility [64]. On
the other hand, arPEO is a childhood-onset disease that is more severe with associated
retinopathy, myopathy, and mood disorders [64,66]. RRM2B encephalomyopathic MDMD
is an infantile-onset severe multisystem disease that usually presents with hypotonia, poor
feeding, and failure to thrive. In addition, other manifestations include respiratory failure,
renal tubular necrosis, and sensorineural hearing loss [67]. Finally, MNGIE-like RRM2B is
a rare phenotype that can occur with cachexia, gastrointestinal dysmotility, and peripheral
neuropathy [68].

4.5. Optic Atrophy 1 (OPA-1)

The OPA-1 (optic atrophy 1) gene is a membrane-remodeling protein that regulates
mitochondrial dynamics with both energetics and mitochondrial morphology [69]. It
was discovered in 2000, along with its association with dominant optic atrophy (DOA).
Since then, a broad spectrum of clinical features have been reported in DOA plus syn-
dromes that include Behr syndrome, syndromic parkinsonism, dementia, CPEO, and other
neuromuscular features [70–72]. The clinical features characterizing DOA are bilateral
progressive visual loss involving color vision and the central or paracentral visual field
with varying severity. Funduscopic examination exhibits optic pallor or atrophy related to
retinal ganglionic cell (RGC) layer death. Additional diagnostic modalities for DOA can
involve optical coherence tomography, which shows nonspecific retinal nerve fiber layer
thinning and abnormal visual evoked potentials due to RGC dysfunction [73]. In a cohort
by Romagnoli et al. for using Idebenone as a therapeutic option for OPA1-DOA, patients
who underwent the therapy benefited in terms of visual recovery four times more than
those who did not. This shows promising results that have yet to be confirmed by future
studies [74].

4.6. Thymidine Kinase 2 (TK2)

The Thymidine kinase 2 (TK2) gene encodes for an enzyme integral for mtDNA repli-
cation and maintenance since it phosphorylates deoxythymidine (dT) and deoxycytidine
(dC) into deoxynucleotide triphosphates in the deoxypyrimidine salvage pathway [75]. The
clinical picture of TK2 deficiency (TK2d) varies with the age of onset and is categorized into
early-onset (≤1 year), childhood-onset (>1 to ≤12 years), and late-onset (>12 years) TK2d.

Early-onset TK2d is usually a severe myopathic form that is fatal within a year, with
early symptoms preceding muscle weakness that include esophageal reflux, vomiting,
intestinal dysmotility, and failure to thrive. These patients can also exhibit neurological
and extra-skeletal manifestations, which include seizures, cognitive impairment, bilateral
optic atrophy, multiple fractures, rigid spine, nephropathy, and cardiomyopathy.

The childhood-onset form of the disease typically has an intermediate to a rapidly
progressive phenotype of proximal myopathy with Gowers signs and a dropped head.
Some cases can also show CPEO, facial diplegia, dysphagia, and restrictive lung disease,
aiding the diagnosis. Extra-skeletal findings may include multiple fractures, cognitive
decline, encephalopathy, hearing loss, renal tubulopathy, and arrhythmias.
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Patients with late-onset TK2d have the characteristic progressive proximal muscle
wasting, with the addition of axial neck flexors and facial weakness. This form usually
accompanies CPEO, bulbar weakness, and early respiratory muscle involvement requiring
non-invasive ventilation. In some cases, peripheral neuropathy and hearing loss can also
occur [76].

A recent cohort by Domínguez-González et al. demonstrated a characteristic lower
limb muscle MRI pattern that can differentiate the condition from other myopathies with
similar clinical features [77].

Therapy using the active substrates dT and dC in TK2d patients has been reported to
improve muscle weakness and ambulation, as well as discontinuing mechanical ventilation
and gastrostomy in affected children. However, late-onset cases showed minimal benefits,
and further studies are needed to establish a clear benefit [78].

4.7. Deoxyguanosine Kinase

Deoxyguanosine kinase (DGK) phosphorylates purine deoxyribonucleosides and con-
tributes to the deoxyribonucleoside salvage pathway in the mitochondrial matrix [79]. Two
forms of DGUOK gene deficiency have been described in the literature, with neonatal
multisystem disorder being the most common [80]. It is characterized by hepatic and neu-
rological manifestations, including developmental delay, hypotonia, nystagmus, jaundice,
cholestasis, and hepatomegaly [81]. The second less severe form is an isolated childhood
hepatic disorder. Long-term follow-up of varying cases with this phenotype showed renal
involvement, myopathy, and parkinsonism with CPEO, rigidity, and bradykinesia [82–84].
The most common cause of mortality in both forms is progressive hepatic disease, and a
decision on whether a transplant is needed should be as per hepatologist since the topic is
under debate [81,85].

4.8. Ribonuclease H1 (RNase H1)

RNase H1, or ribonuclease H1, is an enzyme encoded by the gene RNASEH1, located
in chromosome 17p11.2. This enzyme contributes to mitochondrial dynamics through
primer maturation, removal, synthesis of replication primer, and pre-RNA processing in
mtDNA replication [86,87]. In a cohort conducted by Bugiardini E. et al., patients harboring
RNASEH1 mutations had characteristic features of CPEO, cerebellar ataxia, and dysphagia,
with CPEO being a universal feature in all cases. In contrast, ataxia and dysphagia were
concomitantly present in approximately 50% of cases. Other less frequent symptoms were
proximal muscle weakness, peripheral neuropathy, and pyramidal signs. This study also
concluded that in the presence of POLG-negative ataxia neuropathy spectrum, all patients
should be considered for genetic analysis for RNASEH1 mutations since it is the fourth most
common cause of adult mendelian PEO with multiple mtDNA deletions in their cohort,
following POLG, TWNK and RRM2B [88]. Manini et al. reported similar findings in their
case report and compiled data from several reports of patients with the RNASEH1 mutation
and noted that some of these frequent findings have been observed in other mitochondrial
diseases, such as dysarthria in adults with POLG and TK2 mutations, and cerebellar signs
in late-onset RRM2B mutations [87].

4.9. Mitochondrial Genome Maintenance Exonuclease 1 (MGME1)

Mitochondrial genome maintenance exonuclease 1 (MGME1), or Ddk1, is an exclusive
mitochondrial DNase responsible for mtDNA maintenance by preferentially cutting single-
stranded DNA (ssDNA) flaps and enabling the ligation of new DNA strands [89]. MGME1
affects the turnover of 7S DNA and causes its accumulation when depleted or causes
7S DNA attrition when overexpressed [90]. 7S DNA is a ssDNA arising from the non-
coding region and is postulated to contribute to the mtDNA displacement loop (D-loop)
as an intermediate of premature termination of mtDNA replication [91]. Patients with
this mutation have shown an increase in 7S DNA and a multisystemic phenotype of PEO,
muscle wasting, emaciation, and respiratory failure [92]. A similar phenotype was reported
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recently with skeletal malformations, atrioventricular block, and cerebellar atrophy in
magnetic resonance imaging [93] (Figure 4).
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Figure 4. Patient B is a 27-year-old male with a recent diagnosis of a homozygous pathogenic variant
of MGME1, presenting with chronic progressive external ophthalmoplegia (limitation with horizontal
and vertical gazes), refractory errors, pigmentary retinopathy, exercise intolerance, myopathy, fatigue,
attention-deficit/hyperactivity disorder, and right bundle branch block. He underwent ptosis repair
at the ages of 15 and 17, but ptosis recurred over time. He has a long family history of consanguinity
and a similar clinical phenotype presented in his cousin and past uncles.

4.10. Adenine Nucleotide Translocator 1 (ANT1)

ANT1-related PEO is associated with adPEO and affects the adenine nucleotide translo-
case type 1 (ANT1) gene, which encodes the translocator responsible for ADP to ATP
exchange in the inner mitochondrial membrane and regulates the mitochondrial perme-
ability transition pore that initiates apoptosis [94]. The complete loss of this gene causes
the characteristic clinical phenotype of cardiomyopathy and myopathy [95]. On the other
hand, the overexpression of this gene results in cardioprotective features [96]. Other clinical
features of this disorder include exercise intolerance, muscle weakness, ptosis, and lactic
acidosis [97]. All of the symptoms mentioned assist in suspecting the diagnosis, which
can later be confirmed with genetic testing. There is no consensus on the treatment of this
disorder. Standard heart failure treatment has been used to manage some cases to tackle
cardiomyopathy; however, the results did not show any benefit in halting disease progres-
sion [98]. Recent studies suggest that reducing protein leak can be an effective treatment
option for aged cardiomyocytes, which may assist in ANT1-related symptoms [99]. Another
showed improvement in exercise intolerance using nicotinamide riboside in ANT1-deficient
mice [100].

4.11. Mitochondrial Inner Membrane Protein MPV17

MPV17 is an inner mitochondrial non-selective channel that is thought to play a role in
mitochondrial maintenance by preventing the formation of reactive oxygen species [101,102].
The clinical picture of this mutation is similar to DGUOK with an early-onset hepatocere-
bral phenotype with hypoglycemia, metabolic acidosis, gastrointestinal findings of poor
feeding, failure to thrive, and dysmotility. Rare cases of this mutation with a late-onset
neuromyopathic phenotype have also been reported [103]. Brain MRI findings may harbor
abnormalities in lower brainstem reticular formation, reticulospinal tracts at the cervicocra-
nial junction, and cerebral leukoencephalopathy [102,104].

5. A Diagnostic Approach to Mitochondrial Encephalomyopathies

There is no consensus on a specific algorithm for diagnosing mitochondrial en-
caphalomyopathies, and a general approach of clinical suspicion was followed by clinical
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and biochemical findings, which were then forwarded to targeted or exploratory sequenc-
ing. Clinical suspicion requires knowledge of inheritance, varying phenotypical findings,
and syndromes along the myopathic, encephalomyopathic, hepatocerebral, and neurogas-
trointestinal forms, among others. When clinical suspicion arises, an array of clinical and
biochemical tests can be carried out to narrow down differential diagnoses and focus on
targeted sequencing (Table 1).

Table 1. This table shows the differential diagnosis of chronic progressive external ophthalmoplegia,
which should be excluded to avoid misdiagnosis.

Differential Diagnosis of Chronic Progressive External Ophthalmoplegia

Myopathic Neuropathic Neuromuscular Junction Other

Orbital myositis Multiple sclerosis Myasthenia gravis Botulism

Graves’ disease Miller Fisher syndrome Congenital myasthenic
syndrome

Medications:
Statins

Myotonic dystrophy
types 1 and 2

A-beta lipoproteinemia

Lambert–Eaton
myasthenic syndrome

(LEMS)

Tolosa-Hunt syndrome

WEBINO syndrome

CAPOS syndrome

CANOMAD syndrome

Congenital myopathies Supranuclear ophthalmoplegia:
Hereditary ataxias

HSP
SCA 1, 2, 3, 7, 9, 11, 28

Congenital cranial dysinnervation disorders:
CFEOM, Moebius syndrome, Duane syndrome

OPMD

OPDM

LGMD with
ophthalmoplegia

Abbreviations: OPMD: Oculopharyngeal muscular dystrophy, OPDM: Oculopharyngodistal myopathy, LGMD:
Limb-girdle muscular dystrophy, WEBINO: Wall-eyed bilateral internuclear ophthalmoplegia, CAPOS: Cerebellar
ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss, CANOMAD: Chronic ataxic neuropathy
with ophthalmoplegia, IgM paraprotein, cold agglutinins, and disialosyl antibodies, HSP: Hereditary spastic
paraplegia, SCA: Spinocerebellar ataxia, CFEOM: congenital fibrosis of the extraocular muscles.

Serum biomarkers of growth differentiation factor 15 (GDF-15) and fibroblast growth
factor 21 (FGF-21) were proposed to aid in decision making as they increase in metabolic
diseases with oxidative stress and inflammation; however, they cannot be used as a diagnos-
tic tool for mitochondrial disorders as they increase in a variety of other non-mitochondrial
diseases [105]. Additionally, GDF-15 was noted to be the most useful first-line test for
mitochondrial respiratory chain deficiency, with a superior diagnostic sensitivity and odds
ratio compared to FGF-21 [106,107]. Other biomarkers are plasma lactate for metabolic
crisis, creatine kinase for myopathy, an endocrinological panel for diabetes, thyroid and
parathyroid screening, and a urine dipstick with a renal function test. Neuroimaging,
electroencephalography, and nerve conduction studies are used to screen and assess neu-
ropathies. Cardiomyopathies are less frequent but require screening nonetheless with
echocardiography, in addition to an electrocardiogram for arrhythmias. Muscle biopsies
are less commonly performed now due to genetic testing being the reliable gold standard
of diagnosis. They are used in some cases of unclear genetic testing or phenotype with the
typical findings of ragged red fibers with trichome histological staining, which represent
excess mitochondrial proliferation, and cytochrome c oxidase (COX) negative fibers in COX
and succinate dehydrogenase stains [108].

Next-generation sequencing (NGS) has been a significant development in diagnosing
mitochondrial diseases, being faster, more accurate, and cost-effective. Watson et al. pro-
posed a genetics-first approach towards confirming diagnoses using it along with ancillary
non-invasive testing before moving to more invasive tests in case of unclear diagnoses.
Their approach depends on identifying and running existing phenotype–genotype correla-
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tions through a targeted sequencing panel, followed by exploratory whole-exome (WES) or
whole-genome sequencing (WGS) if no correlation was noted. This method also identifies
novel mutations and confirms their pathogenicity; if not, a review or more invasive tests
such as a muscle biopsy can be performed [109] (Figure 5).
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6. Treatment of Mitochondrial Diseases

Patients with mitochondrial diseases are generally treated with supportive and symp-
tomatic multi-disciplinary therapy. Regular aerobic exercise is recommended and thought to
reduce fatigue and improve the quantity of muscle mitochondria and quality of life [110,111].
A ketogenic diet, which is high in fat and moderate in protein as well as low in carbohy-
drates, is an option for epileptics; however, it is contraindicated in patients with mtDNA
deletion-related myopathy, so proper consultation with a nutritionist is recommended [112].
The patient should be counseled about avoiding toxic mitochondrial medications such as
metformin, propofol, valproic acid, aminoglycosides, linezolid, and nucleoside analog treat-
ments [113,114]. To counteract the impairment of mitochondrial function in these patients,
a common treatment strategy employing a “mitochondrial cocktail” of vitamins, supple-
ments, and antioxidants is used. These include L-carnitine, coenzyme Q10, riboflavin,
thiamine, vitamin C, and E. [115]. Other pharmaceutical options used are Idebenone for
OPA1, L-arginine and nicotinamide for MELAS, and active dT and dC substrates in TK2d
(Table A2).
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Options for future treatment by genetic therapy using mitochondrial genome manip-
ulation in somatic tissues or replacement in the germline are still in the phase of clinical
trials or animal models. Restriction endonucleases, transcription activator-like effectors,
transcription activator-like effector nucleases, zinc finger nucleases, and clustered regularly
interspaced short palindromic repeats all follow the concept of manipulating mtDNA
through locating or targeting the mutation and then proceeding to eliminate or cleave
the mutation. Replacement therapies that aim to replace mutated mtDNA with wild-type
mtDNA include pronuclear and oocyte spindle transfer. They have been restricted in many
nations due to debates and uncertainties about their outcomes [116].

7. Conclusions

In conclusion, understanding the pathophysiology of mitochondrial disorders has
significantly advanced over the years, with the identification of mitochondrial and nuclear
DNA mutations and their impact on different tissues and organs. This knowledge has led to
improved classification and diagnosis of these disorders and to the knowledge that CPEO
is one of their most common manifestations. Unfortunately, definitive phenotype–genotype
correlations are still far out of reach, and physicians should familiarize themselves with
these, maintain high clinical suspicion to diagnose them, and stop focusing on a solitary
finding. Since no definitive treatment option is available, medical therapy focuses on
alleviating symptoms and relieving defective mitochondrial expression. Genetic therapy
is the future for treating these conditions, and this is an area where ongoing research
is directed.
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Appendix A

Table A1. The clinical features of mitochondrial encephalomyopathies.

Mitochondrial DNA
Disorder Acronym Possible Clinical Features Reference

Chronic progressive external
ophthalmoplegia CPEO

Progressive bilateral ptosis, ophthalmoplegia, diplopia

[117]CPEO “plus”: muscle weakness, exercise intolerance, short stature, pharyngeal muscle
weakness, cognitive impairment, decreased vision, cardiac conduction block

Kearns–Sayre syndrome KSS
Criterion: CPEO and pigmentary retinopathy (onset < 20 years), cerebrospinal fluid protein
>1 g/L. Plus one of the following: Cerebellar ataxia, myopathy, dysphagia, sensorineural

hearing loss, heart block, diabetes mellitus, endocrine dysfunction
[118]

Pearson syndrome PS Sideroblastic anemia, pancytopenia,
exocrine pancreatic failure, renal tubular defects [119]

Mitochondrial
encephalopathy, lactic

acidosis, and stroke-like
episodes

MELAS

Criterion: Stroke-like episodes (SLEs) (age < 40 years), seizures and/or dementia, signs of
myopathy, e.g., ragged red fibers and/or lactic acidosis.

Pigmentary retinopathy, diabetes mellitus, cardiomyopathy, bilateral sensorineural
deafness

[120–122]

Leigh syndrome * LS

Developmental delay, hypotonia, respiratory dysfunction, epilepsy, reduced feeding,
weakness.

Cardiomyopathy, cardiac conduction defects.
Ptosis, ophthalmoplegia, nystagmus, strabismus, pigmentary retinopathy, optic atrophy

[34–37]

Maternally Inherited Leigh
Syndrome MILS Intractable epileptic seizures, chorea, hyporeflexia, psychomotor retardation, hypoacusis,

dystonia, hypotonia, hypertrophic cardiomyopathy, hepatopathy, lactic acidosis [123]
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Table A1. Cont.

Mitochondrial DNA
Disorder Acronym Possible Clinical Features Reference

Neuropathy, Ataxia, Retinitis
Pigmentosa NARP

Axonal neuropathy, cerebellar ataxia, proximal muscle weakness, retinitis pigmentosa.
Epilepsy, cerebellar or cerebral atrophy, dementia, hypoacusis, optic atrophy, sleep apnea

syndrome, renal impairment, diabetes mellitus
[124]

Leber’s hereditary optic
neuropathy LHON

Bilateral vision loss, central/centro cecal scotoma, mild disc pseudo edema, dyschromatopsia,
peripheral neuropathy, clonus, dystonia, postural tremor, myopathy, Wolff Parkinson White

syndrome
[125]

Maternally Inherited
Diabetes and Deafness MIDD

Diabetes mellitus, progressive sensorineural deafness, thin and short stature,
macular dystrophy, proliferative retinopathy, myopathy, left ventricular hypertrophy,
Wolff Parkinson White syndrome, atrial fibrillation, constipation, diarrhea, intestinal

pseudo-obstruction

[126]

Myoclonic Epilepsy and
Ragged Red Fibers MERRF

Myoclonus, epilepsy, ataxia, migraine, dementia, SLEs, myopathy, myalgia, dysphagia,
dysmotility, polyneuropathy, hearing loss, optic atrophy, ptosis, ophthalmoparesis,

cardiomyopathy, arrhythmias, lipomatosis
[127]

Sensory ataxic neuropathy
with dysarthria and
opthalmoparesis *

SANDO
Ataxia, ptosis, dysarthria, sensory neuropathy, dysphagia, myalgia, seizures, diabetes

mellitus
[128,129]

Nuclear DNA gene Protein Possible clinical manifestations Reference

POLG DNA polymerase
subunit gamma

Seizures, ataxia, SLEs, peripheral neuropathy, migraine-like headache, hypotonia, liver
involvement, anemia, ptosis, PEO [55]

TWNK Twinkle Ataxia, neuropathy, myopathy, epileptic encephalopathy, CPEO, cataracts, mild cardiac
abnormalities, parkinsonism [58]

TYMP Thymidine
phosphorylase

Mitochondrial neurogastrointestinal encephalopathy (MNGIE): CPEO, cachexia, severe
gastrointestinal dysmotility, sensorineural hearing loss, peripheral neuropathy,

leukoencephalopathy
[59]

RRM2B
P-53 subunit of
ribonucleotide

reductase

Autosomal dominant PEO: Bulbar dysfunction, hearing loss, gastrointestinal dysmotility [64]

Autosomal recessive PEO: Retinopathy, myopathy, mood disorders [66]

Encephalomyopathy phenotype: Hypotonia, failure to thrive, sensorineural hearing loss,
retinopathy, renal tubular necrosis, respiratory failure [67]

MNGIE-like phenotype: cachexia, gastrointestinal dysmotility, peripheral neuropathy [67]

RNASEH1 Ribonuclease H1 CPEO, cerebellar ataxia, dysphagia
Proximal muscle weakness, peripheral neuropathy, pyramidal signs [87,88]

TK2 Thymidine kinase 2

Early-onset (≤1 year): Esophageal reflux, vomiting, intestinal dysmotility, failure to thrive,
severe myopathy, seizures, cognitive impairment, rigid spine, multiple fractures,

nephropathy, cardiomyopathy, bilateral optic atrophy
Childhood-onset (>1 to ≤12 years): Gowers sign, dropped head, CPEO, facial diplegia,

dysphagia, restrictive lung disease, encephalopathy, hearing loss, cognitive decline,
multiple fractures, arrhythmias, renal tubulopathy

Late-onset (>12 years): Proximal muscle wasting, facial and axial neck flexor muscle
weakness, CPEO, bulbar and diaphragmatic weakness

[76]

DGOUK Deoxyguanosine
kinase

Psychomotor delay, hypotonia, nystagmus, Optic disc dysplasia, renal involvement,
jaundice, cholestasis, hepatomegaly, progressive hepatic disease

[82,130]

myopathy, parkinsonism, CPEO, rigidity, bradykinesia, progressive hepatic disease [84]

OPA1
GTPase

mitochondrial
fusion

Progressive bilateral optic neuropathy, optic atrophy.
Dominant optic atrophy-plus: CPEO, myopathy; ataxia; peripheral neuropathy

sensorineural hearing loss
[70]

MGME1

Mitochondrial
genome

maintenance
exonuclease 1

PEO, muscle wasting, emaciation, respiratory failure, skeletal malformations,
atrioventricular block, cerebellar atrophy [92,93]

ANT1 Adenine nucleotide
translocator 1 Exercise intolerance, muscle weakness, ptosis, cardiomyopathy [97]

MPV17 MPV17 protein

Early-onset hepatocerebral phenotype: hypoglycemia, metabolic acidosis, failure to thrive,
liver failure, dysmotility, corneal scarring [131]

neuromyopathic phenotype [132]

DNA2 DNA replication
ATP-dependent

CPEO, limb-gridle weakness, Gowers sign, progressive muscle weakness, myalgia, and
dyspnea [133]

POLG2 DNA polymerase
subunit gamma 2 Cerebellar ataxia, CPEO, neuropathy, seizures, parkinsonism, and exercise intolerance [134]

AFG3L2 AFG3-like protein 2 Spinocerebellar ataxia type28, CPEO, optic atrophy, nystagmus, parkinsonism [135–137]

SPG7 Paraplegin
Spastic paraplegia 7, Proximal myopathy, CPEO, optic atrophy, dysphagia, spasticity,

ataxia, cerebellar atrophy
[138]
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Table A1. Cont.

Nuclear DNA gene Protein Possible clinical manifestations Reference

TOP3A
DNA

topoisomerase 3
alpha

Cerebellar ataxia, neuropathy, sensorineural hearing loss, CPEO, myopathy, cardiac
conduction defects [139,140]

LIG3 DNA ligase 3 MNGIE and MELAS-like phenotype, headache, neurogenic bladder, cataracts,
macular degeneration [63]

RRM1
Ribonucleotide

reductase catalytic
subunit M1

Proximal myopathy, dysphagia, ptosis, ophthalmoparesis, peripheral neuropathy, nausea,
vomiting, cachexia, intestinal dysmotility

[141]

C1QBP Compliment C1q
binding protein Exercise intolerance, muscle weakness, CPEO, left ventricular hypertrophy [142,143]

GMPR
Guanosine

monophosphate
reductase

CPEO [144]

Ophthalmological features are underlined. * Can be associated with nuclear mutations.

Table A2. Proposed therapeutic options for mitochondrial encephalomyopathies.

Treatment Mechanism of Action Conditions Results Clinical Trial/Reference

Mitochondrial cocktail

Coenzyme Q10
(ubiquinone)

Antioxidant/ electron flow
restoration in the respiratory chain

complex

Mitochondrial diseases

Phase 3 clinical trial
(completed)

No statistical difference in
measured outcomes.

NCT00432744

Primary and Secondary
Coenzyme Q10 deficiency Variable outcomes. [145]

L-carnitine

Fatty acid metabolism,
detoxification, cell membrane

stabilization/control of ketogene-
sis/gluconeogenesis/Improves

metabolic flexibility

Mitochondrial
myopathy/CPEO

Improved exercise tolerance
and aerobic capacity. [146]

Carnitine deficiency-related
mitochondrial dysfunction

Maintenance of metabolic
flexibility. [147]

Riboflavin
(Vitamin B2) Electron carrier component

Primary and secondary
flavoenzyme defects with

mitochondrial dysfunction,
e.g., complex 1 and 2

deficiencies

Dramatic improvements in
supplementation for
riboflavin-associated

deficiencies.

[148]

Thiamine
(Vitamin B1)

Coenzyme in the maintenance of
carbohydrate metabolism

Genetic dysfunction of
thiamine metabolism and

transport.

Supplementation improves
symptoms, clinical outcomes,

and survival.
[149]

Thiamine-deficient leigh
syndrome

Significant reduction in
morbidity and mortality. [150]

Alpha lipoic acid (ALA) Antioxidant

Age-associated cognitive and
mitochondrial dysfunction

Improves age-associated
memory loss, mitochondrial

function, and structure.
[151]

ALA and L-acetyl carnitine for
supranuclear palsy

Phase 2 clinical trial
(completed).

Results posted and updated in
2017.

NCT01537549

Parkinson’s disease

Slows cognitive decline
effectively. [152]

Improved mitochondrial
function and autophagy. [153]

Folinic acid

Increases levels of 5MTHF levels in
the brain,

Folate is believed to play a role in
mitochondrial nucleotide
biosynthesis, and mtDNA

replication

Cerebral folate deficiency in
KSS

Reversal of
leukoencephalopathy and

normalization of 5MTHF CSF
levels.

[154]

Early, high dose treatment
seems advisable in KSS. [155]

Cerebral folate deficiency and
mitochondrial complex 1

deficiency

Improvement in hypotonia,
ataxia, and cerebral
hypomyelination.

[156]
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Table A2. Cont.

Treatment Mechanism of Action Conditions Results Clinical Trial/Reference

Mito Q
Antioxidant targeting

mitochondria
Mitochondrial diseases, e.g.,

Friedreich ataxia

Targeted antioxidants are
more effective than
non-targeting ones.

[157]

Benefits including protection
from ischemia/ reperfusion

injury and endothelial
damage.

[158]

Therapy tackling mitochondrial disease outcomes

Idebenone
(RAXONE) Electron carrier, antioxidant

LHON

(RODOS study)
No statistically significant
difference in recovery of
visual acuity except in

discordant visual acuity
Secondary endpoints were all

statistically significant.

NCT00747487

RODOS OFU study
Beneficial effects persisted for
a median of 30 months post

discontinuation.

NCT01421381

Phase 4 CT LOROS study
Long term treatment results in
prolonged clinical benefit in

the subacute phase.

NCT02774005

MELAS

Phase 2 clinical trial
Non statistically significant

difference in primary
outcomes.

NCT00887562

Vatiquinone
(EPI-743)

Inhibitor of 15-lipooxygenase, a
regulator of oxidative stress

pathways
Augmentation of glutathione

synthesis

Friedreich’s ataxia

Phase 2/3 clinical trial
Non statistical difference in

primary endpoints. However,
there was a statistically

significant impact in fatigue
scores and disease progression
of upright stability and bulbar
subscales in a 72-week period.

NCT04577352

Parkinson’s disease

Phase 2 clinical trial
Statistically significant in

retinal function and unified
Parkinson’s disease rating

scale.
Decrease in oxidative stress
markers in the basal ganglia

with MRS.

NCT01923584

Leigh syndrome

Phase 2 CT
Fewer adverse events and

hospitalizations in treatment
group compared to placebo.

NCT02352896

Nicotinamide Riboside
Increasing intracellular levels of

NAD, the crucial cofactor for
mitochondrial energy production

Obesity and the related
metabolic complications

Better systemic NAD
metabolism, composition of

gut microbiota, myoblast
differentiation and

mitochondrial number in the
muscles.

[159]

Healthy subjects Increased NAD pools without
apparent side effects. [160]

Parkinson’s disease

NADPARK study
Phase 1 clinical trial

Increased intracellular levels
of NAD, lysosomal and

proteasomal function of genes
related to the mitochondria of

blood and muscles.
Decreased serum and CSF
inflammatory cytokines.

NCT03816020

ANT1-deficient mice Increased exercise capacity
and mitochondrial respiration. [100]
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Table A2. Cont.

Treatment Mechanism of Action Conditions Results Clinical Trial/Reference

L-arginine
Nitric oxide precursor, regulates
respiratory chain and oxidative

stress in the mitochondria

MELAS

IV arginine improves
symptoms during acute

MELAS attacks.
arginine supplementation

increases endothelial function,
preventing further stroke-like

episodes.

[51]

Sickle cell disease,
vaso-occlusive pain

Phase 2 clinical trial
increases mitochondrial

activity and reduces oxidative
stress.

NCT02536170

L-citrulline Precursor of arginine MELAS

Increases the production of
NO, as well as concentrations

and fluxes of arginine and
citrulline.

[161]

deoxythymidine and
deoxycytidine substrates

Supplies the nucleoside salvage
pathway TK2d

Improve muscle weakness
and ambulation.

Discontinuing gastrostomy
and mechanical ventilation.

[78]

elamipretide

improves coupling of electron
transport chain by Targeting

cardiolipin, a phospholipid in the
inner mitochondrial membrane

Heart failure

Improvement of cardiac
mitochondrial function, and

increased efficiency of
complex 1 and 4.

[162]

Barth syndrome
cardiomyopathy

Improves mitochondrial
bioenergetics and morphology
rapidly in induced pluripotent

stem cells,
normalizes mitochondrial

ultrastructure and dynamics

[163]

Increased left ventricular mass
and stroke volume [164]

Primary mitochondrial
myopathy

MMPOWER-3 clinical trial
Primary endpoints were not

statistically significant, Class I
evidence that elamipretide
does not improve the 6-min

walk test or fatigue at 24
weeks compared with

placebo.

NCT03323749

LHON

Phase 2 clinical trial
Did not achieve primary

BCVA outcomes.
Improvements in color
discrimination, contrast

sensitivity and central visual
field.

NCT02693119

Age-related macular
degeneration with non-central

geographic atrophy

Phase 2 clinical trial
Did not reach primary

outcomes.
Ameliorated

mitochondrial-rich ellipsoid
zone progressive decline.
Improvement of >2 lines

visual improvement in low
luminance visual acuity.

NCT03891875

Sonlicromanol
(KH176) Antioxidant and redox modulator

Mitochondrial m.3243A>G
Spectrum Disorders, e.g.,

MELAS, MIDD.

KHENERGY Study
Phase 2a clinical trial

Positive effect on mood and
alertness with no other
significant parameters.

NCT02909400

Mammalian model of Leigh
syndrome

Improved abnormal gait,
motor coordination, learning,

and decreased the loss of
retinal ganglion cells.

[165]

KL1333 Increase in intracellular NAD

MELAS fibroblasts

Increased ATP decreases ROS
and lactate. Improved

mitochondrial biogenesis and
function.

[166]

PMD

Phase 1 completed (no posted
results) NCT03888716

Phase 2 active (no posted
results) NCT05650229
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Treatment Mechanism of Action Conditions Results Clinical Trial/Reference

edaravone antioxidant

MELAS

Scavenges ROS, and inhibits
inflammation in

cerebrovascular disease,
improving vascular function.

[42]

hyperosmolarity-induced
oxidative stress and apoptosis

in primary human corneal
epithelial cells

Partially attenuated low ATP
production induced by

hyperosmolarity.
[167]

Bocidelpar
(ASP0367)

Modulation of peroxisome
proliferator-activated receptor
delta, a modulator of cellular

energy consumption

PMM
MOUNTAINSIDE study

Phase2/3 clinical trial (no
results posted)

NCT04641962

Genetic therapy

GS010

recombinant adeno-associated
viral vector serotype 2 containing
human wildtype mitochondrial
NADH dehydrogenase 4 (ND4)

gene

LHON

RESCUE Trial and REVERSE
trial

Significant improvement of
visual acuity in both eyes

despite injecting one eye with
treatment and the other with a

sham injection.

NCT02652767
NCT02652780

REFLECT Trial
Subjects treated bilaterally had

better average visual acuity
than those treated unilaterally.

NCT03293524

Mitochondrial
Augmentation Therapy

Replacing dysfunctional
mitochondria with healthy donor

mitochondria
Pearson syndrome

Phase1/2 clinical trial NCT03384420

Improved mitochondrial
function, heteroplasmy, and

respiratory capacity.
Improved quality of life,

aerobic ability, and fine motor
functions.

[168]

Mesoangioblasts (MABs) Lowering the percentage of
mtDNA mutational load

m.3243A>G Mutation Carriers Phase 2 clinical trial
Active, recruiting. NCT05962333

mtDNA mutated myotubes,
m.3271T>C and m.3291T>C

mutation

Proportional reduction in
mtDNA mutational load

in vitro after fusion of wild
type MABs.

[169]

mtDNA point mutation or
large-scale deletions

Half the mtDNA carriers have
nearly mutation free MABs. [170]

Allogeneic hematopoietic
stem cell transplant

Restoring thymidine
phosphorylase enzyme function MNGIE

Short- and long-term
outcomes are influenced by a

diagnosis earlier than
irreversible gastrointestinal

symptoms, a fit matched
HLA-donor, and a

busulfan-based conditioning
regimen.

[171]

Unfavorable overall outcome
pertaining to mortality.

Significant improvement in
progression and clinical

manifestations over time.

[172]

Abbreviations: CPEO: chronic progressive external ophthalmoplegia, 5MTHF: 5-Methyltetrahydrofolate, CSF:
cerebrospinal fluid, KSS: Kearns–Sayre syndrome, mtDNA: mitochondrial Deoxyribonucleic acid, LHON:
Leber’s hereditary optic neuropathy, MELAS: mitochondrial encephalomyopathy, lactic acidosis, and stroke-like
episodes, MRS: magnetic resonance spectroscopy, NAD: nicotinamide adenine dinucleotide, ANT1: adenine
nucleotide translocator-1 gene (SLC25A4), TK2d: thymidine kinase 2 deficiency, BCVA: best corrected visual
acuity, MIDD: maternally inherited diabetes and deafness, ATP: adenosine triphosphate, ROS: reactive oxygen
species, PMD: primary mitochondria disorder, PMM: primary mitochondrial myopathies, NADH: nicotinamide
adenine dinucleotide + hydrogen, MNGIE: mitochondrial neurogastrointestinal encephalopathy, HLA: human
leukocyte antigens.
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