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Abstract: The stability—plasticity dilemma remains a critical challenge in developing artificial in-
telligence (AI) systems capable of continuous learning. This perspective paper presents a novel
approach by drawing inspiration from the mammalian hippocampus—cortex system. We elucidate
how this biological system’s ability to balance rapid learning with long-term memory retention can
inspire novel Al architectures. Our analysis focuses on key mechanisms, including complementary
learning systems and memory consolidation, with emphasis on recent discoveries about sharp-wave
ripples and barrages of action potentials. We propose innovative Al designs incorporating dual
learning rates, offline consolidation, and dynamic plasticity modulation. This interdisciplinary ap-
proach offers a framework for more adaptive Al systems while providing insights into biological
learning. We present testable predictions and discuss potential implementations and implications
of these biologically inspired principles. By bridging neuroscience and Al, our perspective aims to
catalyze advancements in both fields, potentially revolutionizing Al capabilities while deepening our
understanding of neural processes.

Keywords: artificial intelligence; hippocampus; neocortex; stability—plasticity dilemma; continual

learning; memory consolidation; brain-inspired computing

1. Introduction

The quest to create artificial intelligence (Al) systems capable of continuous learning
while maintaining previously acquired knowledge remains one of the grand challenges
in machine learning. This challenge, known as the stability—plasticity dilemma, lies at the
heart of developing Al systems that can adapt to new information without catastrophically
forgetting past learning [1].

Figure 1 illustrates the fundamental trade-off between stability (the ability to retain
existing knowledge) and plasticity (the capacity to acquire new information) in learning
systems. The x-axis represents increasing plasticity from left to right, while the y-axis
represents increasing stability from bottom to top. This Pareto Frontier Graph shows the
optimal trade-off between stability and plasticity. The curve indicates the efficient frontier
where improvements in one dimension lead to compromises in the other.

On the Pareto frontier, the inflection point represents the location where there is a
change in the curve’s curvature. In the context of Pareto optimality, the inflection point sig-
nifies the transition between two regimes of trade-offs between objectives: before this point,
it is possible to achieve relatively significant gains in one objective with only a small loss in
the other, whereas after it, making further improvements becomes increasingly costly, and
the trade-offs become more pronounced. The inflection point is marked with an asterisk.

Recent advances in Al, such as DeepMind’s muZero Schrittwieser and colleagues [2],
have demonstrated impressive capabilities in learning and decision-making across various
domains. However, these systems still struggle with balancing the need for plasticity to
acquire new knowledge and stability to retain existing information.
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Figure 1. The Stability-plasticity trade-off in learning systems. The graph illustrates the fundamental
trade-off between stability (y-axis) and plasticity (x-axis) in learning systems. The green curve repre-
sents the Pareto frontier, showing the optimal trade-off where increasing one capability necessarily
reduces the other. The blue dot marks the inflection point, where the trade-off dynamics shift from
gradual to more pronounced changes, representing a critical balance between stability and plasticity.

In the realm of neuroscience, the mammalian brain, particularly the hippocampus—cortex
system, provides a compelling model for addressing this dilemma. This biological system
has evolved to effectively balance the rapid learning of new experiences with the gradual
integration of knowledge into long-term memory [3]. Recent work by Wirtshafter and
Wilson [4] has highlighted intriguing parallels between the functions of advanced Al
systems like muZero and hippocampal processing, suggesting a bidirectional opportunity
for insight between Al and neuroscience.

Building on these recent developments, this perspective paper argues that a deeper
understanding and implementation of hippocampus—cortex-inspired architectures could
lead to significant advancements in Al systems’ ability to manage the stability—plasticity
trade-off. It is proposed that by mimicking the dual fast and slow learning systems observed
in the hippocampus and neocortex, future Al architectures could achieve more effective
continual learning while maintaining the ability to generalize across contexts.

This perspective paper will explore the following:

1. The current state of the stability—plasticity dilemma in Al and its parallels in neuro-
science.

2. Key features of the hippocampus—cortex system relevant to addressing this dilemma,
including complementary learning systems [5], memory replay [6], and contextual
representation [7].

3. Proposed Al architectures inspired by the hippocampus—cortex system, emphasizing
dual learning rates and offline consolidation mechanisms.

4.  Potential implications and challenges in implementing these biologically inspired
approaches in Al systems.

5. Future directions for research at the intersection of neuroscience and Al, with a focus
on continual learning and knowledge integration.

By examining how the brain solves the stability—plasticity dilemma, the aim of this
perspective is to inspire novel approaches in Al that could lead to more adaptive and
generalizable learning systems. This interdisciplinary perspective not only offers potential
advancements in Al but also provides a framework for testing and refining our understand-
ing of hippocampal and cortical functions in biological learning and memory.

This perspective bridges neuroscience and artificial intelligence, offering novel insights
for advancing machine learning through an understanding of biological neural systems.
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Given its interdisciplinary nature, we will introduce and explain key terminology from
both neuroscience and computer science as it appears in the text. This approach aims
to make the content accessible to readers from diverse backgrounds, fostering a shared
understanding of complex concepts such as non-REM sleep, sharp-wave ripples (SWRs),
and barrages of action potentials (BARRs) alongside their potential analogues in artificial
neural networks. By explicitly connecting these biological mechanisms to computational
concepts, we hope to facilitate the cross-pollination of ideas between these two rapidly
advancing fields.

2. The Hippocampus—Cortex System

The hippocampus—cortex system is a crucial neural architecture that plays a central
role in learning, memory formation, and spatial navigation. This system exemplifies
a solution to the stability—plasticity dilemma through its complementary fast and slow
learning mechanisms [8]. Understanding the intricacies of this biological system can
provide valuable insights for developing more adaptive Al architectures.

Figure 2 illustrates a striking parallel between biological and artificial learning sys-
tems, highlighting how both employ a two-stream approach to memory formation and
learning. At its core, both systems rely on a crucial interplay between fast and slow learning
mechanisms, centered on memory consolidation.

Al System Biological System
[ Fast-Learning Module J ( Hippocampus J
Rapid Updaélg kine Consodilation Fast Llearning }nory Replay
Recent Experience l
Buffer Slow-learning Module Short-term Memory Neocortex
| |
Gradual Integration Slow Learning

| !

Knowledge Base Long-term Memory

Figure 2. Parallel architecture of artificial and biological learning systems. Comparison between Al and
biological learning systems, illustrating their analogous dual-stream processing. Both systems feature
fast-learning components (Fast-Learning Module/Hippocampus) that interact with slow-learning
components (Slow-learning Module/Neocortex) through memory consolidation. The biological
system employs bidirectional crosstalk between the hippocampus and neocortex during memory
replay, enabling systematic integration of new information while maintaining existing knowledge.

In biological systems, the hippocampus serves as the initial, fast-learning center that
rapidly captures new experiences. Through a process called memory consolidation, these
experiences are gradually transferred to the neocortex, which acts as a slow-learning module
responsible for long-term memory storage. Importantly, this consolidation process involves
bidirectional crosstalk between the hippocampus and neocortex rather than a simple one-
way flow of information. Through memory replay, this back-and-forth communication
allows short-term memories to be systematically integrated into lasting knowledge while also
allowing existing knowledge to influence how new information is processed and stored.

Mirroring this biological architecture, artificial systems implement a similar dual-
stream approach. A fast-learning module quickly processes new information, temporarily
storing recent experiences in a buffer. Through offline consolidation, this information is
gradually integrated into a slow-learning module. This careful process ultimately leads
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to the formation of a stable knowledge base, much like how human long-term memories
are formed.

The key to both systems lies in the delicate balance between rapid acquisition and grad-
ual consolidation. Memory consolidation-whether between the hippocampus and neocor-
tex in biological systems or between fast and slow-learning modules in Al systems-ensures
that new information is meaningfully integrated without disrupting existing knowledge.
This parallel organization reveals how artificial systems have been designed to emulate the
time-tested architecture of biological learning.

2.1. Key Concepts and Terminology

To facilitate a comprehensive understanding of the hippocampus—cortex system and
its relevance to Al, it is crucial to define and explain several key concepts and terms.
These concepts, drawn from neuroscience, form the foundation of our discussion on brain-
inspired Al approaches. By providing clear explanations of these terms, we aim to bridge
the gap between neuroscience and computer science, enabling readers from both fields
to engage fully with the interdisciplinary nature of this work. The following definitions
and explanations will be referenced throughout the subsequent discussions on memory
consolidation, learning, and Al design.

Non-REM vs REM sleep: Non-REM (Non-Rapid Eye Movement) sleep is a phase
of sleep characterized by slower brain waves and reduced neural activity. It is divided
into three stages, with the deepest stage (slow-wave sleep) being crucial for memory
consolidation. In contrast, REM (Rapid Eye Movement) sleep is characterized by rapid eye
movements and increased brain activity similar to that of wakefulness and is associated
with vivid dreaming [9,10].

SWRs: SWRs are brief, high-frequency oscillations observed in the hippocampus,
primarily during non-REM sleep and quiet wakefulness. They are associated with the
reactivation and consolidation of recently acquired memories [11,12]. In the context of
neural networks, SWRs can be thought of as burst-like activations that strengthen specific
connection patterns [4].

BARRs: BARRs are recently discovered synchronized bursts of neural activity, pri-
marily involving CA2 pyramidal cells and certain interneurons in the hippocampus. They
occur during non-REM sleep and appear to play a complementary role to SWRs in memory
processing [13]. In artificial neural network terms, BARRs could be analogous to coordinate
inhibitory signals that help maintain network stability and prevent the over-strengthening
of recently potentiated connections [4].

2.2. Complementary Learning Systems

The hippocampus and neocortex work in tandem as complementary learning systems
(CLS) [14]. The hippocampus, with its ability to rapidly form detailed memories of specific
experiences, serves as a fast-learning system. In contrast, the neocortex gradually integrates
information over time, extracting general patterns and rules from repeated experiences,
functioning as a slow-learning system [15].

This dual-system approach allows for the quick acquisition of new information with-
out disrupting existing knowledge, addressing a key aspect of the stability—plasticity
dilemma. The hippocampus can quickly encode new experiences, while the neocortex
slowly incorporates this information into its existing knowledge structures [16].

2.3. Biological Solutions to the Stability—Plasticity Dilemma

The stability—plasticity dilemma is a fundamental challenge in both biological and
artificial learning systems. The brain’s solution to this dilemma, particularly in the
hippocampus—cortex system, offers valuable insights for Al design. Recent research by
Karaba and colleagues [13] has shed new light on the intricate mechanisms the brain em-
ploys to balance the need for plasticity (learning new information) with stability (retaining
existing knowledge).
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2.3.1. Complementary Network Events: SWRs and BARRs

The hippocampus utilizes two complementary types of network events during non-REM

sleep to address the stability—plasticity dilemma: SWRs and the newly discovered BARRSs.

1.

SWRs: SWRs have long been recognized as crucial for memory consolidation. During
these events, neurons that were active during recent experiences are reactivated in a
time-compressed manner [13]. This reactivation strengthens the neural connections
associated with new memories, facilitating their integration into existing knowledge
structures in the neocortex.

BARRs: Karaba and colleagues [13] discovered that BARRs play a complementary
role to SWRs. BARRs involve the synchronized firing of a subset of CA2 pyramidal
cells and cholecystokinin-expressing (CCK+) basket cells. Crucially, neurons and
assemblies that were active during learning and subsequently reactivated during
SWRs are inhibited during BARRs.

2.3.2. Balancing Act: Selective Strengthening and Network Stability

The alternating pattern of activation (during SWRs) and inhibition (during BARRs)

provides a sophisticated mechanism for addressing the stability—plasticity dilemma:

1.

Plasticity through SWRs: SWRs promote plasticity by selectively reactivating and
strengthening neural patterns associated with recent, important experiences. This
process allows for the rapid acquisition and initial consolidation of new memories.
Stability through BARRs: BARRSs contribute to network stability by inhibiting the same
neurons and assemblies that were previously activated. This inhibition may serve sev-
eral crucial functions: (a) Preventing runaway excitation: By dampening the activity of
recently strengthened neural patterns, BARRs may prevent the excessive amplification
of new memories, which could otherwise lead to network instability. (b) Maintaining
relative synaptic weights: The inhibition during BARRs might help preserve the
relative importance of different memories by preventing the over-strengthening of
the most recent experiences. (c) Facilitating integration: By temporarily suppressing
recently acquired information, BARRs may create opportunities for older, related
memories to be activated and integrated with new learning.

Dynamic regulation: Karaba and colleagues [13] found that the initial increase in
reactivation during SWRs gradually returned to baseline levels through sleep. This
trend was abolished when CCK+ basket cells were silenced during BARRs, resulting
in higher synchrony of the CA1 assemblies and impaired memory consolidation. This
suggests that the interplay between SWRs and BARRs is crucial for appropriately
balancing synaptic strengthening and network stability over time.

2.3.3. Implications for Artificial Intelligence

The hippocampus—cortex system, particularly the recent discovery of BARRs [13],

offers several key principles that could inform AI design and potentially address the
stability—plasticity dilemma in artificial systems:

1.

Dual Learning Rates and Complementary Processes: The combination of fast hip-
pocampal learning with slow cortical integration provides a model for balancing
quick adaptation with long-term stability. Al systems could implement dual-memory
architectures with different learning rates to mimic this biological strategy [17]. Fur-
thermore, inspired by the complementary roles of SWRs and BARRs, Al systems
could incorporate alternating phases of activation and targeted inhibition during the
consolidation process.

Implementation: Design a neural network with two interacting components: a fast-
learning module (analogous to the hippocampus) and a slow-learning module (analo-
gous to the neocortex). The training regime should alternate between strengthening
recent patterns (inspired by SWRs) and selectively inhibiting these same patterns
(inspired by BARRSs) to prevent overfitting and maintain network stability.
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2. Offline Consolidation with Selective Inhibition: The use of replay for gradual knowl-

edge integration during periods of rest or low activity could inspire similar mecha-
nisms in AI [18,19]. This could involve periodic “sleep” phases where the Al system
consolidates recent experiences into a more stable knowledge base. The discovery of
BARRs suggests that this process should include not only the reactivation of recent
experiences but also their selective inhibition.
Implementation: Design an Al system with dedicated offline processing periods that
implement both prioritized experience replay (inspired by SWRs) and a novel “selec-
tive inhibition” mechanism (inspired by BARRs) that temporarily downregulates the
influence of recently strengthened connections.

3. Dynamic Regulation of Plasticity: The temporal dynamics observed in the interplay

between SWRs and BARRs, where reactivation strength gradually returns to the
baseline, suggesting that Al systems could benefit from the dynamic regulation of
plasticity over time.
Implementation: Develop a time-dependent learning rate that starts high for new
information and gradually decreases, mimicking the biological return to the baseline
activation. This could be coupled with a complementary inhibition strength that
increases over time for recently learned patterns.

4.  Circuit-Specific Mechanisms: The distinct roles of different neural subtypes (e.g., CA2
pyramidal cells and CCK+ basket cells) in BARRs highlight the potential benefits of
incorporating diverse, functionally specialized components in Al architectures.
Implementation: Design Al architectures with functionally distinct subnetworks that
play different roles in learning and consolidation. For example, one subnetwork
could specialize in the rapid encoding of new information, while another focuses on
selectively inhibiting recent patterns to maintain overall network stability.

5. Contextual Representation with Balanced Plasticity: The hippocampus’s ability to
form distinct representations of similar experiences (pattern separation) while also
generalizing across contexts (pattern completion) could inform the development of
more flexible Al learning algorithms [20,21]. The addition of BARR-inspired mecha-
nisms could help maintain the stability of these representations over time.
Implementation: Develop Al systems with enhanced abilities to create distinct con-
textual representations, coupled with a mechanism for selectively strengthening or
inhibiting these representations based on their recency and importance.

6. Hierarchical Organization with Regulated Plasticity: The progression from specific

episodic memories in the hippocampus to more abstract, semantic knowledge in the
cortex suggests a hierarchical organization of knowledge. This principle could be
applied to develop Al architectures that build increasingly abstract representations
over time, with BARR-inspired mechanisms helping to regulate plasticity at different
levels of the hierarchy.
Implementation: Create a hierarchical neural network where lower levels capture spe-
cific details, and higher levels represent more general concepts. Implement different
plasticity rules at each level, with BARR-inspired inhibition more strongly regulating
lower, more plastic levels to prevent overfitting to recent experiences.

By incorporating these biologically inspired principles, including the newly discovered
BARR mechanism, Al systems might better navigate the stability—plasticity dilemma,
achieving both rapid learning and long-term knowledge retention without catastrophic
forgetting. Moreover, these approaches could lead to Al systems with more human-
like learning capabilities, including improved transfer learning, few-shot learning, and
continual learning [8,14].

The integration of BARR-like mechanisms represents a novel approach to addressing
the stability—plasticity dilemma. By mimicking the brain’s sophisticated balance between
strengthening new memories and preventing network oversaturation, we may develop Al
systems that are both more adaptive and more stable, capable of continuous learning in
complex, changing environments.
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To visually summarize the key concepts discussed in this section, Figure 3 illustrates
the parallels between biological mechanisms in the hippocampus—cortex system and their
potential Al implementations.

Hippocampus-Inspired AI Concepts

Biological Mechanisms Al Implementations

Hippocampus (Fast) & Neocortex (Slow) —-—-——-—-—-- Dual-Memory Architecture

AWRs (Activation) & BARRs (Inhibition) = = = = = = = = Alternating Sytrengthen / Inhibit Phases

Sleep Reply & Consolidation ~ e e—o-- Offline Processing with Selective Inhibition
SWR/BARR Temporal Dynamics ~~  —————-—=-- Time-Dependent Leamning Rate

Distinct Neural Subtypes (CA2, CCK+) =—===-==-- Functionally Distinct Subnetworks

Episodic to Semantic Progression ~ _ __ _____ Hierachical Network with Regulated Plasticity

Figure 3. Hippocampus-inspired Al concepts. This diagram compares key features of the
hippocampus—cortex system (left) with potential AI implementations (right). It illustrates how
biological mechanisms like dual learning rates, memory consolidation, and hierarchical organization
inspire corresponding Al designs, highlighting the potential for neuroscience-informed advancements
in artificial intelligence.

This diagram presents a side-by-side comparison of biological mechanisms and their
corresponding Al implementations. The dual learning rates of the hippocampus and neo-
cortex inspire dual-memory architectures in Al systems. The interplay between SWRs and
BARRs suggests alternating strengthening and inhibiting phases for Al training regimes.
The process of offline consolidation during sleep informs offline processing strategies with
selective inhibition in AL

The temporal dynamics of SWRs and BARRs inspire the implementation of time-
dependent learning rates in artificial systems. The specialized circuits involving distinct
neural subtypes suggest the potential benefits of functionally distinct subnetworks in
Al architectures. Finally, the hierarchical organization of memory inspires hierarchical
networks with regulated plasticity in Al designs.

This visual representation underscores the rich potential for cross-pollination between
neuroscience and artificial intelligence. By drawing inspiration from the sophisticated mech-
anisms of the brain, it becomes possible to develop more adaptive, robust, and efficient Al
systems that better navigate the challenges of continuous learning and knowledge integration.

2.3.4. Neuronal Representations and Plasticity

At the cellular level, the hippocampus exhibits remarkable plasticity and complex
neuronal dynamics that contribute to its role in learning and memory. Recent research has
revealed even more intricate mechanisms that fine-tune this plasticity, balancing the need
for rapid learning with network stability.

Place cells in the hippocampus which fire when an animal is in specific locations and
can rapidly form new representations of novel environments [22]. This quick adaptation
allows for the immediate encoding of new spatial contexts [23]. The entorhinal cortex,
which serves as the main interface between the hippocampus and neocortex, contains grid
cells that provide a coordinate system for spatial navigation [24]. These cells maintain more
stable representations across environments, potentially serving as a universal spatial map
onto which specific experiences can be anchored [25].

Karaba and colleagues [13] have revealed additional layers of complexity in hippocam-
pal neuronal dynamics, particularly in the interplay between different cell types during
memory consolidation. They identified a subset of CA2 pyramidal cells that exhibit distinc-
tive firing patterns during non-REM sleep, contributing to BARRs. These CA2 neurons,
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along with cholecystokinin-expressing (CCK+) basket cells in CA1, play a crucial role in

regulating plasticity:

1. Cell-type specific roles: The study found that deep CA2 pyramidal cells were more
active during BARRs, while superficial CA2 cells were more active during SWRs. This
anatomical and functional segregation suggests highly specialized roles for different
neuronal subpopulations in memory processing.

2. Differential plasticity regulation: During BARRs, CA1 neurons that had increased
their activity during learning were selectively inhibited. This mechanism appears
to provide a counterbalance to the strengthening of synapses that occurs during
SWR-associated replay.

3. Dynamic plasticity modulation: The alternation between SWRs and BARRs creates
a dynamic modulation of neuronal plasticity. Synapses associated with recent learn-
ing are strengthened during SWRs and then selectively suppressed during BARRs,
potentially preventing runaway excitation and maintaining network stability.

4. Time-dependent plasticity changes: Karaba and colleagues [13] observed that the
reactivation of learning-related neural patterns during SWRs gradually decreased
over the course of sleep, returning to baseline levels. This suggests a time-dependent
regulation of plasticity, where initial strong reactivations give way to more stabilized
representations.

5. Interneuron-mediated plasticity control: The study highlighted the crucial role of
CCK+ interneurons in regulating plasticity. These cells were highly active during
BARRSs but not during SWRs, suggesting they play a key role in the selective inhibition
of recently potentiated synapses.

This intricate interplay between different cell types and network events (SWRs and
BARRSs) provides a biological solution to the stability—plasticity dilemma. It allows for the
rapid formation of new memories through the plasticity of place cells and the reactivation
during SWRs while also incorporating mechanisms to stabilize these memories and prevent
overexcitation through the selective inhibition during BARRs.

Understanding these complex dynamics of neuronal representations and plasticity in
the hippocampus not only deepens our knowledge of biological memory systems but also
offers inspiration for developing more sophisticated Al architectures. Future Al systems
might benefit from incorporating analogous mechanisms of dynamic, cell-type-specific,
and temporally regulated plasticity to achieve a better balance between rapid learning and
long-term stability.

2.4. Synaptic Plasticity and Long-Term Potentiation

Long-Term Potentiation (LTP) is a fundamental mechanism of synaptic plasticity
that plays a crucial role in learning and memory formation, particularly in the hippocam-
pus. First discovered by Terje Lemo in 1966 and later characterized by Bliss and Lemo
in 1973 [26], LTP refers to a long-lasting enhancement in signal transmission between
two neurons following the high-frequency stimulation of a chemical synapse [22].

LTP is widely considered to be one of the major cellular mechanisms underlying
learning and memory [23]. It occurs primarily through the activation of N-methyl-D-
aspartate (NMDA) receptors, leading to an influx of calcium ions and the subsequent
strengthening of synaptic connections [24]. This process involves both pre- and post-
synaptic changes, including increased neurotransmitter release and upregulation of AMPA
receptors [25].

In the context of Al and machine learning, LTP-inspired mechanisms could potentially
enhance the learning capabilities of artificial neural networks, particularly in the areas
of rapid learning and memory consolidation [27]. By incorporating principles of LTP,
Al systems might better emulate the brain’s ability to form and strengthen connections
based on repeated activation, potentially addressing aspects of the stability—plasticity
dilemma [28].
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Future research integrating LTP-like mechanisms into Al architectures could lead to
more efficient and adaptive learning algorithms, closer to the brain’s remarkable capacity
for continuous learning and memory formation [29].

2.5. Memory Consolidation and Replay

A key mechanism in the hippocampus—cortex system is memory consolidation, where
information initially encoded in the hippocampus is gradually transferred to the neocortex
for long-term storage. This process often occurs during sleep or periods of rest through a
phenomenon known as replay [30].

During replay, the hippocampus “replays” recently encoded experiences, often in a
time-compressed manner. This replay is coordinated with neocortical activity, facilitating
the gradual incorporation of new information into existing cortical networks [6]. This
process allows for the integration of new memories without catastrophic interference with
existing knowledge [16].

Figure 4 illustrates the process of memory consolidation in the brain, specifically the
transfer of information from short-term storage in the hippocampus to long-term storage in
the neocortex. The left side of the diagram shows the hippocampus, represented by a pink
ellipse and labeled as the site of short-term storage. On the right, a green ellipse represents
the neocortex, labeled as the site of long-term storage.

Memory Consolidation Process

Consolidation

Hippocampus Neocortex
(Short-term Storage) (Long-term Storage)

Replay during sleep/rest

Minutes to Hours Days to Years

Figure 4. The process of memory consolidation, showing how information is transferred from short-
term storage in the hippocampus to long-term storage in the neocortex, facilitated by replay during
periods of rest and sleep.

A black arrow connecting these two regions represents the general process of memory
consolidation, indicating the transfer of information from the hippocampus to the neocortex
over time. Below this, a blue curved arrow represents the process of memory replay that
occurs during sleep and rest periods. This replay is a crucial mechanism in the consolidation
process, allowing for the reactivation and strengthening of neural patterns associated with
recent experiences.

The timeline at the bottom of the diagram provides a sense of the temporal scale of
this process. It shows that initial encoding in the hippocampus occurs within minutes to
hours, while the full consolidation of memories in the neocortex can take days to years.

This visualization encapsulates the dynamic nature of memory formation and storage
in the brain, highlighting the complementary roles of the hippocampus and neocortex in
this process.

As discussed earlier, SWRs and BARRs play complementary roles in memory consoli-
dation. During this process, the reactivation of neural patterns during SWRs is balanced
by the selective inhibition provided by BARRs, allowing for the integration of new infor-
mation without disrupting existing neural networks. This delicate balance enables the
brain to maintain network stability while still remaining plastic enough to encode new
experiences. The alternating pattern of activation and inhibition helps prevent the overexci-
tation of recently strengthened synapses, potentially preserving the relative importance
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of different memories and facilitating their gradual incorporation into long-term storage.
This mechanism exemplifies the brain’s sophisticated solution to the stability—plasticity
dilemma, providing a model for Al systems to achieve continuous learning without
catastrophic forgetting.

In AJ, the concepts of “rest” and “sleep” manifest as specific processing phases inspired
by biological memory consolidation:

1. Offline Processing: Al systems engage in internal computations to consolidate and
optimize learning, analogous to memory consolidation during sleep [9].

2. Experience Replay: Inspired by hippocampal replay, Al systems reprocess previ-
ous experiences to reinforce learning and integrate new information with existing
knowledge [31].

3. Model Consolidation: In continual learning setups, “sleep” phases consolidate knowl-
edge from recent learning into a more stable, general model, mirroring hippocampal-
neocortical dialogue [15].

4.  Regularization and Pruning: Al systems maintain network efficiency through pro-
cesses analogous to synaptic homeostasis in neuroscience [31].

These processes, while inspired by biological rest and sleep, are computational ana-
logues serving similar functional roles: consolidating learning, integrating new information,
and optimizing system performance.

Crucially, these “rest and sleep” phases in Al can implement mechanisms inspired by
the interplay between SWRs and BARRs observed in hippocampal memory consolidation.
Al architectures could incorporate alternating phases of strengthening recent memories
(inspired by SWRs) and selective inhibition (inspired by BARRs) during offline processing.
This approach aims to balance rapid learning with long-term stability, addressing key
challenges in continual learning and knowledge integration without catastrophic forgetting.

2.6. Contextual Representation and Pattern Separation

The hippocampus is adept at forming distinct representations of similar experiences,
a process known as pattern separation [20]. This ability allows for the differentiation of
contexts and the formation of unique memory traces, even when experiences share many
common features.

Conversely, the hippocampus can also perform pattern completion, where partial cues
can trigger the recall of entire memory representations [21]. This balance between pattern
separation and completion allows for both specific memory recall and generalization across
similar experiences.

3. Current Challenges in Al: Catastrophic Forgetting

As Al systems advance, they face challenges that mirror those in biological learning
systems, particularly with continuous learning in complex environments. A critical chal-
lenge is catastrophic forgetting, which directly relates to the stability—plasticity dilemma
central to this paper.

Catastrophic forgetting occurs when artificial neural networks rapidly overwrite
previously acquired knowledge when exposed to new data or tasks [32,33]. This challenge
is particularly acute in scenarios requiring sequential learning from non-stationary data
distributions, a common real-world requirement. Unlike the human brain, which can
continually acquire new knowledge without significantly disrupting existing memories,
traditional artificial neural networks struggle to maintain previously learned information
when adapting to new tasks [18].

Several approaches to mitigate catastrophic forgetting have been proposed, with some
drawing inspiration from hippocampal function:

1.  Elastic Weight Consolidation (EWC): This method slows down learning on weights cru-
cial to previously seen tasks, akin to how the brain consolidates important memories [33].
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2. Memory replay techniques: Inspired by hippocampal replay, these methods periodi-
cally revisit and retrain on past experiences, reinforcing previously learned knowl-
edge [34].

3. Model storage and revisiting: This approach involves saving snapshots of the model
at various training stages and selectively fine-tuning them later, aligning with the
concept of memory rehearsal in cognitive psychology [34].

These approaches, particularly memory replay techniques, demonstrate how hippocampus-
inspired mechanisms can address the stability—plasticity dilemma in Al. They aim to balance
the preservation of existing knowledge (stability) with the ability to learn new information
(plasticity).

However, a general solution to catastrophic forgetting across diverse Al applica-
tions remains an open challenge. The ideal solution would enable an Al system to con-
tinually learn and adapt without losing accumulated knowledge, mirroring the human
brain’s ability to acquire new skills while retaining old ones. This goal aligns closely
with the paper’s focus on leveraging hippocampal principles to create more adaptive and
generalizable Al systems.

4. The Grand Challenge: Integrating Diverse AI Solutions

While we have explored various hippocampus-inspired solutions to Al challenges, a
significant overarching challenge remains: effectively integrating these diverse approaches
into a cohesive Al system. This integration challenge mirrors the complexity of the
hippocampus—cortex system, where multiple specialized processes work in concert to
produce adaptive learning and memory.

Key aspects of this integration challenge particularly relevant to hippocampus-inspired
Al include the following:

1.  Architectural Integration: Developing Al architectures that incorporate both fast
and slow learning components, inspired by the hippocampus and neocortex respec-
tively. This involves creating systems that can rapidly encode new experiences while
gradually integrating this information into a stable knowledge base [5].

2. Balancing Plasticity and Stability: Implementing mechanisms that dynamically adjust
the balance between rapid learning and long-term stability, analogous to the interplay
between SWRs and BARRs observed in the hippocampus [13].

3. Context-Dependent Processing: Designing systems that can form distinct represen-
tations for similar experiences (pattern separation) while also generalizing across
contexts (pattern completion), mirroring hippocampal function [17,21].

4. Memory Consolidation and Replay: Incorporating offline processing periods that al-
low for the gradual integration of new information into existing knowledge structures,
inspired by hippocampal replay during sleep [35].

5. Hierarchical Knowledge Organization: Developing architectures that support the
progression from specific episodic memories to more abstract, semantic knowledge,
reflecting the hippocampus-neocortex dialogue [3].

Addressing these integration challenges will require interdisciplinary approaches,
combining insights from neuroscience, cognitive science, and machine learning. Promising
directions include the following;:

- Dual-process learning algorithms that alternate between phases of rapid acquisition
and selective inhibition.
- Hierarchical neural networks with regulated plasticity at different levels.
- Meta-learning approaches that continuously adapt learning strategies based on task
demands and past experiences.
Successfully integrating these hippocampus-inspired mechanisms could lead to Al
systems that are more flexible, robust, and capable of human-like learning and general-
ization. As we continue to unravel the complexities of the hippocampus—cortex system,
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we may find new insights into solving the grand challenge of creating truly adaptive and
generalizable Al

5. Lessons from Neuroscience: Synthesizing Hippocampus-Inspired AI Concepts

Throughout this paper, we have explored various aspects of the hippocampus—cortex
system and their potential applications in artificial intelligence. This chapter serves as
a comprehensive synthesis of these neuroscience concepts and their implications for Al
design. By consolidating these ideas, we aim to provide a clear overview of how the
sophisticated mechanisms of the hippocampus—cortex system can inspire novel approaches
to address current challenges in machine learning.

As we have discussed, the hippocampus—cortex system offers a rich source of inspira-
tion for Al, having evolved to effectively balance rapid learning with long-term knowledge
retention. Here, we will summarize the key biological principles explored earlier and their
potential Al implementations, emphasizing the interdisciplinary nature of this research.

Central to our discussion has been the concept of complementary learning systems,
introduced by McClelland and colleagues [3] and elaborated by O’Reilly and Norman [36].
This dual-system approach, balancing rapid acquisition with the gradual integration of
knowledge, could inspire Al architectures with separate fast and slow learning components.
As we explored earlier, such an approach has been implemented in recent AI models, like
the work of Sprechmann and colleagues [37] on memory-based parameter adaptation.

We have also examined the hippocampus’s ability to perform pattern separation and
completion, as described by Yassa and Stark [20] and Rolls [21]. These mechanisms could
inspire more robust and flexible memory systems in Al, potentially implemented through
sparse coding techniques or attractor dynamics in recurrent neural networks [38,39].

The distinction between episodic and semantic memory, discussed in relation to the
work of Tulving [39] and Renoult and colleagues [40], suggests the potential for Al systems
that better balance specific and general knowledge. This could be realized through hierar-
chical memory systems, possibly leveraging techniques from hierarchical reinforcement
learning [41].

Memory consolidation and replay, a key process we explored earlier [35,42], could
inspire offline learning mechanisms in Al This might involve implementing “sleep” phases
in Al systems, with prioritized experience replay as proposed by Schaul and colleagues [17].

We have also considered how the hippocampus’s context-dependent representa-
tions [43,44] could inspire improved context-aware learning in Al, potentially through
attention mechanisms similar to those in transformer networks [45].

The concepts of hierarchical predictive processing [46,47] and error-driven learn-
ing [48] in the brain could inform more efficient and adaptive Al learning algorithms.
Similarly, neurogenesis and synaptic pruning [49,50] suggest the potential for dynamic
network architectures in Al [51,52].

We have explored how hippocampal oscillatory patterns [11,53] might inspire new
training regimes in Al, possibly involving alternating “modes” or the periodic synchroniza-
tion of distributed systems [54].

Finally, we discussed Long-Term Potentiation (LTP) [3,22,26], a fundamental mech-
anism of synaptic plasticity, and its potential to enhance learning capabilities in artificial
neural networks [5,27], particularly in addressing the stability—plasticity dilemma.

In conclusion, by synthesizing these diverse yet interconnected concepts from neu-
roscience, we can envision Al systems that are more flexible, adaptive, and capable of
continuous learning. However, as noted throughout our discussion, the direct implementa-
tion of these biological principles may not always be optimal in artificial systems. The goal
is to extract key computational principles and creatively adapt them to the strengths and
limitations of Al

This interdisciplinary approach not only promises to enhance Al capabilities but also
offers a unique lens through which to further our understanding of biological intelligence.
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As our understanding of the brain continues to evolve, so will the potential for neuroscience-
inspired Al holding the promise of revolutionizing both fields in the years to come.

6. Future Directions: The Promise and Challenges of Brain-Inspired Al

The principles gleaned from the hippocampus—cortex system offer exciting possibilities
for Al but also present significant challenges. Future brain-inspired Al systems could
potentially have these capabilities:

1.  Learning continuously without forgetting, adapting quickly to new situations while
maintaining a stable knowledge base [5].

2. Handling noisy or incomplete data more effectively through pattern separation and
completion mechanisms [9].

3. Engaging in episodic memory and mental time travel, enabling more context-rich
decision-making and creativity [27].

4.  Integrating emotions and value judgments for a more nuanced understanding of
human preferences [55].

However, significant challenges remain:

Bridging the gap between biological and artificial neural networks [56].

Scaling brain-inspired principles to handle vast amounts of data and complex tasks.
Achieving the energy efficiency of the human brain in artificial systems [57].
Translating the temporal dynamics of biological neural networks into artificial sys-
tems [58].

Integrating various brain-inspired mechanisms into a cohesive system [59].
Determining the appropriate level of biological mimicry [8].

7. Addressing the ethical implications of advanced Al systems [60].

L

AN

Despite these challenges, the potential benefits of brain-inspired Al are immense, promis-
ing to revolutionize fields from healthcare to environmental protection. Progress will likely
come from interdisciplinary approaches, combining neuroscience insights with innovations in
computer science and engineering. This journey toward more brain-like Al not only aims to
create more powerful machines but also deepens our understanding of intelligence itself.

7. Testable Predictions

Table 1 presents a summary of key concepts in hippocampus-inspired Al along with
their associated predictions and testable hypotheses. These concepts emerge from our
analysis of hippocampal mechanisms and their potential Al analogues, offering a roadmap
for future research in brain-inspired artificial intelligence. The table encapsulates seven
primary areas where biological insights could drive innovation in Al systems, potentially
leading to more adaptive and efficient learning algorithms.

Table 1. Hippocampus-Inspired Al Concepts: Predictions and Testable Hypotheses.

Concept Prediction Testable Hypothesis
1. Dual-Process Learning Outperf_orm smgle-prpcess systems in rapid Higher performance in continued learning with
adaptation and retention novel tasks

2. SWR-BARR Consolidation

More stable and generalizable learning Decreased learning interference while improving

skill adaptation
3. Context-Dependent Representations ~ Improved fine discrimination Higher accuracy in visual recognition of similar stimuli
4. Time-Dependent Plasticity More robust fine discrimination Better retention in sequential learning tasks

5. Hierarchal Knowledge

Faster learning and better skill transfer in multi-task

Improved generalization and reasoning environments

6. Pattern Separation/Completion

Higher accuracy in few-shot transfer in multi-task

Enhanced ific recall and generalization .
ced specilic rec gene o environments

7. Oscillation-Inspired Training

Comparable performance with fewer iterations and

More efficient learning and consolidation improved stability
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These testable predictions provide concrete directions for empirical investigation,
bridging the gap between theoretical neuroscience insights and practical Al advancements.
By validating or refuting these hypotheses, researchers can not only drive progress in Al
but also gain valuable insights into the computational principles underlying hippocampal
function. This bidirectional flow of knowledge between neuroscience and Al has the
potential to accelerate progress in both fields, bringing us closer to artificial systems that
can learn and adapt with the flexibility and efficiency of biological intelligence.

8. Conclusions: Charting the Course for Brain-Inspired Al

The intersection of neuroscience and artificial intelligence offers unprecedented oppor-
tunities for advancing both fields. Through our exploration of the hippocampus—cortex
system, we have identified several promising directions for Al development that could
address fundamental challenges like the stability—plasticity dilemma. The complementary
learning systems theory [3,5] provides a framework for balancing rapid learning with stable
knowledge retention, potentially enabling Al systems that can learn continuously while
maintaining accumulated knowledge.

Key innovations in Al inspired by hippocampal function could include the following;:

Dual-process learning systems that mirror hippocampal-cortical interactions [61]
Memory consolidation mechanisms incorporating replay and offline learning [62]
Pattern separation and completion capabilities for the robust handling of noisy or
incomplete data [20,21]

Hierarchical memory systems that support both episodic and semantic learning [39,40]
Theta-coordinated learning mechanisms for error-driven adaptation [63]

Recent advances in Al, such as deep reinforcement learning [62] and large language
models [64], demonstrate the potential for brain-inspired approaches. However, significant
challenges remain in bridging the gap between biological and artificial neural networks [56].
These include achieving the energy efficiency of biological systems [57], implementing
temporal dynamics [58], and addressing ethical considerations [60].

The path forward requires interdisciplinary collaboration between neuroscientists,
computer scientists, and cognitive psychologists. As Hassabis and colleagues [27] argue,
this bidirectional exchange between neuroscience and Al can deepen our understanding
of intelligence while advancing technological capabilities. By drawing inspiration from
the remarkable adaptability and efficiency of the hippocampus—cortex system, we may
develop Al systems that better serve human needs while providing insights into our own
cognitive processes.
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