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Abstract: In population-based cohort studies, magnetic resonance imaging (MRI) is vital for examin-
ing brain structure and function. Advanced MRI techniques, such as diffusion-weighted MRI (dMRI)
and resting-state functional MRI (rs-fMRI), provide insights into brain connectivity. However, biases
in MRI data acquisition and processing can impact brain connectivity measures and their associations
with demographic and clinical variables. This study, conducted with 5110 participants from The
Maastricht Study, explored the relationship between brain connectivity and various image quality
metrics (e.g., signal-to-noise ratio, head motion, and atlas–template mismatches) that were obtained
from dMRI and rs-fMRI scans. Results revealed that in particular increased head motion (R2 up to
0.169, p < 0.001) and reduced signal-to-noise ratio (R2 up to 0.013, p < 0.001) negatively impacted
structural and functional brain connectivity, respectively. These image quality metrics significantly
affected associations of overall brain connectivity with age (up to −59%), sex (up to −25%), and body
mass index (BMI) (up to +14%). Associations with diabetes status, educational level, history of car-
diovascular disease, and white matter hyperintensities were generally less affected. This emphasizes
the potential confounding effects of image quality in large population-based neuroimaging studies
on brain connectivity and underscores the importance of accounting for it.

Keywords: brain connectivity; image quality; magnetic resonance imaging; population-cohort
study; neuroimaging

1. Introduction

Population-based cohort studies are extremely relevant sources of fundamental re-
search data, contribute to a better understanding of health effects of life styles and patho-
physiology of diseases, and reveal key information on risk factors [1]. If the structure
and function of the brain are of interest, neuroimaging using magnetic resonance imaging
(MRI) is often the preferred tool to incorporate into the study design. Neuroimaging can
provide valuable structural and functional information on the brain, but the large amount
of individuals in combination with the typical size of MRI data poses certain challenges in
terms of data acquisition, storage, processing, and analysis [2]. Although there are several
on-going large-scale neuroimaging population-based cohort studies, e.g., the Generation
R Study [3], Rotterdam Scan Study [4], UK Biobank [5], Human Connectome Project [6,7],
The Rhineland Study [8], and The Maastricht Study [9], each using different scanner hard-
ware, study-specific scan protocols, and processing tools, there is no consensus on data
acquisition and processing. In order to recognize potential biases introduced during data
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acquisition and processing, it is important to be transparent about the quality of the MRI
data itself and the way these data are processed.

In the last two decades, advanced MRI techniques have been developed that allow
mapping of the connectivity of the brain’s network. Two main techniques to do so are
typically diffusion-weighted MRI (dMRI) and resting-state functional MRI (rs-fMRI). The
dMRI estimates the axonal orientations which are consecutively used to calculate white
matter fiber tracts between brain regions, i.e., structural connectivity, using tractography
algorithms [10,11]. The rs-fMRI data are used to calculate functional connectivity as the
correlation between temporal changes in the blood-oxygen-level-dependent (BOLD) signal
of spatially distinct brain regions [12,13].

Recent research has indicated that not only in neurological and psychiatric disorders [14],
but also in systemic conditions such as type 2 diabetes mellitus (T2DM), structural [15–17] as
well as functional brain connectivity [18–21] are altered compared to healthy controls.

Previous research has shown that head motion is an important confounder for mea-
sures derived from structural MRI scans, even when visible artifacts are removed [22,23],
as well as for brain connectivity measures obtained from dMRI and rs-fMRI scans [24–26].
Other sources of image-quality-induced bias include limitations in the signal-to-noise ratio
(SNR) [27,28] and magnetic field inhomogeneities leading to geometric distortions, which
in turn can result in misalignment (spatial mismatch) between dMRI and rs-fMRI data and
brain atlases [29,30].

These studies, however, have a more narrowed scope. Either the number of partici-
pants in these studies is relatively small compared to the typical number of participants
in population imaging studies, which often have thousands of participants, or the study
population was limited to children and younger adults. Also, to the best of our knowledge,
it has not been shown how strong image quality influences the associations between net-
work measures and demographic and clinical variables, which is of particular interest to
evaluate and eventually compare ongoing population imaging studies as being relevant in
the clinical and healthcare context. Lastly, the aforementioned studies focused on either
dMRI or rs-fMRI, while the results may be extended from rs-fMRI to dMRI or vice versa.

We implemented a quality assessment procedure within the structural and functional
brain connectivity processing pipeline of The Maastricht Study [9], which focuses on
the etiology, pathophysiology, complications, and comorbidities of T2DM and in which
both dMRI as well as rs-fMRI data were acquired in more than 5000 participants with ages
between 40 and 75 years. This gives us the opportunity to determine how the effect of image
quality is expressed in a more older and larger population than reported from previous
studies with smaller sample sizes and/or younger cohorts. Therefore, the main aim of the
current study was to investigate how strong structural and functional connectivity outcome
measures are related to image quality metrics of SNR, head motion, and atlas mismatch.
Secondly, we were interested to what extent image quality affects associations between
brain connectivity and typical demographic and clinical variables of interest, i.e., age, sex,
body mass index, diabetes status, educational level, history of cardiovascular disease, and
white matter hyperintensities. Third, we studied which of these demographic and clinical
variables were most strongly associated with low image quality.

For clarity and where applicable per section, we first report the methods and results
for dMRI/structural connectivity followed by those for rs-fMRI/functional connectivity.

2. Materials and Methods
2.1. Study Population

We used data from The Maastricht Study, an observational population-based cohort
study. The rationale and methodology have previously been described [9]. In brief, the
study focuses on the etiology, pathophysiology, complications, and comorbidities of T2DM
and is characterized by an extensive phenotyping approach. Eligible for participation
were all individuals aged between 40 and 75 years and living in the southern part of the
Netherlands. Participants were recruited through mass media campaigns, the munici-
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pal registries, and the regional Diabetes Patient Registry via mailings. Recruitment was
stratified according to known type 2 diabetes status, with an oversampling of individuals
with T2DM for reasons of efficiency. Structural, diffusion, and resting-state functional MRI
measurements were implemented from December 2013 onward to February 2017 and were
completely available in 5261 (95%) of 5547 participants. Processing of the dMRI or rs-fMRI
data failed in 71 participants, and in the remaining 5190 participants (94%) complete data
on covariates were available in 5110 (92%, a flow chart is provided in Figure A1). The study
has been approved by the institutional medical ethics committee (NL31329.068.10) and the
Minister of Health, Welfare and Sports of the Netherlands (permit 131088-105234-PG). All
participants gave written informed consent.

2.2. MRI Data Acquisition and Retrieval

For each participant, MRI data were acquired on a 3T clinical magnetic resonance
scanner (MAGNETOM Prismafit, Siemens Healthineers GmbH, Munich, Germany) lo-
cated at a dedicated scanning facility (Scannexus, Maastricht, The Netherlands) using
a head/neck coil with 64 elements for parallel imaging. The MRI protocol included a
three-dimensional (3D) T1-weighted (T1w) magnetization prepared rapid acquisition gra-
dient echo (MPRAGE) sequence (repetition time/inversion time/echo time (TR/TI/TE)
2300/900/2.98 ms, 176 slices, 256 × 240 matrix size, 1.0 mm cubic reconstructed voxel size);
a fluid-attenuated inversion recovery (FLAIR) sequence (TR/TI/TE 5000/1800/394 ms, 176
slices, 512 × 512 matrix size, 0.49 × 0.49 × 1.0 mm reconstructed voxel size); a resting-state
functional MRI (rs-fMRI) using a task-free T2*-weighted blood-oxygen-level-dependent
(BOLD) sequence (TR/TE 2000/29 ms, flip angle 90◦, 32 slices (interleaved acquisition
order), 104 × 104 matrix size, 2.0 × 2.0 × 4.0 mm reconstructed voxel size, 195 dynamic
volumes); and a diffusion-tensor MRI (dMRI) using a diffusion sensitized echo-planar
imaging (EPI) sequence (TR/TE 6100/57 ms, 65 slices, 100 × 100 matrix size, 64 diffusion
sensitizing gradient directions (b = 1200 s/mm2), 2.0 mm cubic reconstructed voxel size)
with three additional minimally diffusion-weighted images (b = 0 s/mm2).

Contraindications for MRI assessments were the presence of a cardiac pacemaker
or implantable cardioverter defibrillator, neurostimulator, nondetachable insulin pump,
metallic vascular clips or stents in the head, cochlear implant, metal-containing intrauter-
ine device, metal splinters or shrapnel, dentures with magnetic clip, an inside bracket,
pregnancy, epilepsy, and claustrophobia.

2.3. Segmentation of Brain Tissue

T1w and FLAIR data were analyzed by use of an ISO13485:2012-certified, automated
method (which included visual inspection) [31,32]. T1w data were segmented into gray
matter, white matter, white matter hyperintensities (WMH), and CSF volumes (1 voxel
= 1.00 mm3 = 0.001 mL) [31]. Intracranial volume (ICV), in which the cerebellum was
included, was calculated as the sum of gray matter, white matter (including WMH volume),
and CSF volumes.

2.4. dMRI and rs-fMRI Data Pre-Processing

dMRI as well as rs-fMRI data were first anonymized and converted from DICOM to
NIfTI format using Chris Rorden’s dcm2nii tool (version 2MAY2016 64bit BSD License) for
further processing.

Pre-processing of the dMRI data was mainly performed with ExploreDTI v4.8.6 (PRO-
VIDI lab, Image Sciences Institute, Utrecht, The Netherlands) [33], and included eddy
current and head motion correction [34,35], which was followed by constrained spherical
deconvolution (CSD)-based deterministic whole-brain tractography [36] to obtain white
matter fiber tracts. Next, the automated anatomical labeling (AAL) atlas [37], consisting of
94 (sub)cortical brain regions in the cerebrum, was (affine) coregistered to the dMRI data
using FLIRT [38] in the FMRIB Software Library (FSL) 5.0.10 (FMRIB Analysis Group, Uni-
versity of Oxford, Oxford, UK). Lastly, for each pair of brain regions with two or more tracts
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running between them, the connection strength was determined as tract volume (number
of voxels visited by a tract multiplied by the voxel size) relative to ICV [39,40], resulting
in a symmetric 94 × 94 connectivity matrix, i.e., the participant’s structural connectome
(SC), where each row and column represent a brain region and each element represents the
relative tract volume between two regions.

Pre-processing of the rs-fMRI data was performed using a combination of tools in FSL
5.0.10 and Statistical Parametric Mapping (SPM) 12 (The Wellcome Trust College London,
London, UK), and included magnetization stabilization followed by correction for field
inhomogeneities [41], slice-timing, and head motion [42]. Next, rs-fMRI data were spatially
and temporally filtered using a band-pass filter (0.01 to 0.1 Hz) to increase the signal-to-
noise ratio (SNR) and remove possible respiratory and signal drift effects to focus on the
spontaneous low-frequency fluctuations [12]. Lastly, the AAL atlas and individual-specific
T1w including WM and CSF masks were (affine) coregistered to the rs-fMRI data using
FSL’s FLIRT [38], and the average time-series for each brain region as well as for the CSF
and WM were calculated from the per-voxel time-series in each region. For each pair of
brain regions, the connection strength was defined as the Pearson’s correlation coefficient
calculated using linear regression of the averaged time-series of each region, corrected for
motion (three translational and three rotational parameters) as well as the CSF and WM
signal, resulting in the participant’s functional connectome. Negative correlations, which
are considered as not representing any meaningful connections, were set to zero [43].

In both the structural as well as the functional connectome, self–self connections,
i.e., the diagonal elements, were set to zero. A complete overview of the structural and
functional connectivity processing pipeline, including a description of the hardware and
software, is provided in Appendix A, and a schematic overview is shown in Figure 1.

Brain Sci. 2024, 14, x FOR PEER REVIEW 5 of 29 
 

 
Figure 1. Schematic overview of the complete processing pipelines of the dMRI (top) and rs-fMRI 
(bottom) data to analyze structural and functional network connectivity, respectively, in terms of 
graph measures of average node degree (ν), normalized clustering coefficient (γ), and normalized 
global efficiency (ε). 

2.5. Brain Network Connectivity Analysis Using Graph Theory 
From here on, the approach to calculate the structural and functional connectivity 

using graph theory was similar. First, one structural and one functional group-averaged 
connectome were calculated from all individual structural (n = 5226) and functional (n = 
5231) connectomes, respectively. For the structural group-averaged connectome, the indi-
vidual connectomes were used in binarized form (relative tract volume > 0), whereas for 
the functional group-averaged connectome the individual connectomes were used as 
such. To minimize the effect of spurious connections, both group-averaged connectomes 
were proportionally thresholded to a default sparsity of 0.80, meaning that only the con-
nections that were present in at least 80% of the participants were taken into account in 
the individual structural and functional connectivity analyses. At this sparsity of 0.80, the 
most contrast in connectivity measures is expected between healthy, pre-diabetic and 
T2DM participants [21]. A schematic representation of the structural and functional 
group-averaged connectomes at sparsity 0.80 is shown in Figure 2.  

Figure 1. Schematic overview of the complete processing pipelines of the dMRI (top) and rs-fMRI
(bottom) data to analyze structural and functional network connectivity, respectively, in terms of
graph measures of average node degree (ν), normalized clustering coefficient (γ), and normalized
global efficiency (ε).
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2.5. Brain Network Connectivity Analysis Using Graph Theory

From here on, the approach to calculate the structural and functional connectivity
using graph theory was similar. First, one structural and one functional group-averaged
connectome were calculated from all individual structural (n = 5226) and functional (n
= 5231) connectomes, respectively. For the structural group-averaged connectome, the
individual connectomes were used in binarized form (relative tract volume > 0), whereas for
the functional group-averaged connectome the individual connectomes were used as such.
To minimize the effect of spurious connections, both group-averaged connectomes were
proportionally thresholded to a default sparsity of 0.80, meaning that only the connections
that were present in at least 80% of the participants were taken into account in the individual
structural and functional connectivity analyses. At this sparsity of 0.80, the most contrast in
connectivity measures is expected between healthy, pre-diabetic and T2DM participants [21].
A schematic representation of the structural and functional group-averaged connectomes
at sparsity 0.80 is shown in Figure 2.
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Figure 2. Structural (left) and functional (right) group-averaged connectomes at a sparsity of 0.80
showing the connections (number of connections = 874) between brain regions that were subse-
quently used in the structural and functional network connectivity analyses, respectively. (Red:
interhemispheric connections, green: intrahemispheric connections). Brain region labels and colors
are according to the automated anatomical labeling (AAL2) atlas which is shown underneath.

Before thresholding the individual connectomes with the group-averaged connectome [44],
the participant’s structural and functional overall connectivity were calculated as the mean from
all weights in the SC and FC, respectively [45]. Subsequently, each participant’s connectome
was masked by the group-averaged connectome, resulting in a weighted, undirected network
with a sparsity close to the sparsity of the group-averaged connectome.

From each masked individual connectome, the following theoretical network con-
nectivity measures were calculated using graph theory: average node degree (ν), a basic
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global network measure that can be interpreted as the “wiring cost” of the network [46];
normalized clustering coefficient (γ), a global measure of network segregation [46,47]; and
normalized global efficiency (εglobal), a global measure of network integration [48,49]. The
clustering coefficient and global efficiency were normalized to values calculated from 100
randomly generated networks of the same size, sparsity, and binary degree as the individ-
ual network [46,49]. All connectivity analyses were performed using the Brain Connectivity
Toolbox [46] in MATLAB Release 2016a (The Mathworks Inc., Natick, MA, USA).

To assess robustness of the connectivity measures over sparsity, the structural and
functional group-averaged connectomes were additionally thresholded to sparsities rang-
ing from 0.60 to 0.90 (step size 0.05) and from 0.10 to 0.90 (step size 0.10), respectively, and
the connectivity measures were calculated at each of these sparsity values.

2.6. Quality Assessment

Uncertainty in brain connectivity measures was assessed using the following image
quality metrics, each on a ‘lower is better’ scale: (1) inverse signal-to-noise ratio (iSNR) of
the unprocessed images, (2) amount of head motion, and (3) spatial mismatch between the
pre-processed dMRI or rs-fMRI data and the AAL brain atlas:

• Inverse signal-to-noise ratio

The iSNR [-] was calculated according to Equation (1) [50]:

iSNR = − mean(I1, I2)

std(I1 − I2)/sqrt(2)
(1)

where I1 and I2 were two (brain masked) volumes that were acquired immediately after
each other at b = 0 s/mm2 at the end of the dMRI scan. For the rs-fMRI scan, I1 and I2
were the first two volumes that were acquired after removal of the first 10 s to account for
magnetic stabilization, i.e., the 5th and 6th volume.

• Head motion

The amount of head motion was expressed as mean volume-to-volume translation,
which was calculated from the translational parameters from the rigid body correction for
head motion according to Equation (2) [24]. In short, the translational head motion [mm] of
a volume was computed as the root-mean-square of displacements in the sagittal, coronal,
and transverse planes:

Translation = ∑N
i=2

√
(Xi − Xi−1)

2 + (Yi − Yi−1)
2 + (Zi − Zi−1)

2

N − 1
(2)

where N is the number of volumes in the dMRI or rs-fMRI data; and X, Y, and Z are the
displacements of the ith volume along the left–right, anterior–posterior, and longitudinal
axes, respectively.

• Mismatch between brain atlas and pre-processed data

The spatial mismatch between the pre-processed dMRI or rs-fMRI data and the AAL
brain atlas was quantified using 1-Dice’s similarity coefficient [51] according to Equation
(3):

Mismatchatlas = 1 − 2|A ∩ B|
|A|+ |B| (3)

where A is the number of voxels in the brain mask of the dMRI or rs-fMRI data and B is the
number of voxels in the brain mask of the AAL template. Mismatch varies between 0 and 1
representing no and complete mismatch, respectively.

2.7. Demographic and Clinical Variables

Demographic and clinical data were collected as previously described [9]. Variables of
interest included age, sex, body mass index (BMI), and history of cardiovascular disease
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(‘No’, or ‘Yes’). Educational level was assessed by interview and classified into eight levels
commonly used in the Netherlands: (1) no education, (2) primary education, (3) lower
vocational education, (4) intermediate general secondary education, (5) intermediate voca-
tional education, (6) higher general secondary education, (7) higher vocational education,
and (8) university degree. For this study, educational level was divided into three groups:
Low (levels 1–3), Middle (levels 4–6), and High (levels 7 and 8). Based on their glucose
metabolism status as determined according to the World Health Organization’s criteria by
a 75 g two-hour glucose tolerance test (OGTT) after an overnight fast [52], participants were
categorized into either ‘No diabetes’ (normal glucose metabolism), ‘Prediabetes’, ‘Type 2
diabetes’, or ‘Other type of diabetes’ [9].

2.8. Statistics

Structural and functional brain connectivity measures were reported using the ap-
propriate descriptive statistics, e.g., means and standard deviation in the case of normally
distributed data, median and 25–75th percentiles for non-normally distributed data, or
percentages for categorical data. Correlations between dMRI and rs-fMRI quality metrics
were assessed using Pearson’s correlation. Multiple linear regression was used to assess the
relationship between quality metrics and structural and functional connectivity measures.

To study the effect of image quality on the association between brain connectivity and
demographic and clinical variables, two linear regression models were used. In Model 1,
the connectivity measure was the dependent variable and age, sex, BMI, diabetes status,
educational level, history of CVD, and WMH volume were the independent variables. In
Model 2, we additionally adjusted for the image quality metrics. Skewed variables (WMH
volume) were log10-transformed. Significant regression coefficients that changed more
than 10% were considered as relevant changes.

To ascertain which of the demographic and clinical variables of age, sex, BMI, diabetes
status, educational level, history of CVD, and WMH volume were associated with the
quality metrics, linear regression was used. Skewed variables (WMH volume) were log10-
transformed.

All statistical analyses used a level of significance of 0.05, and were performed in IBM
SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, NY, USA).

3. Results

Demographic and clinical characteristics, brain connectivity estimates at a sparsity of
0.80, and dMRI and rs-fMRI image quality metrics in the participants that were included in
this study (n = 5110) are listed in Table 1.

Histograms of dMRI and rs-fMRI image quality metrics SNR, head motion, and atlas
mismatch are reported in Figure A2. For both dMRI as well as rs-fMRI, the strongest
correlation was observed between the quality metrics iSNR and head motion (r = 0.298 and
r = 0.522, respectively, both p < 0.001). A cross-table reporting the Pearson’s correlation
coefficients between all dMRI and rs-fMRI quality metrics is given in Table A2.

Mean and 5–95th percentiles of structural and functional connectivity measures ν,
γ, and εglobal are plotted over the range of sparsities in Figure A3. Mean (standard devi-
ation (SD)) of overall structural and functional connectivity (note that these are sparsity-
independent) were 5.3 * 10−3 (0.6 * 10−3) and 0.32 (0.03), respectively.
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Table 1. Characteristics of participants with successfully processed dMRI and rs-fMRI data (n = 5110).

Characteristic

Demographic
Age [mean (SD), years] 59.4 (8.7)

Sex [%]
Male

Female

50.6
49.4

Educational level [%] †

Low
Medium

High

32.0
28.4
39.7

Clinical
BMI [mean (SD), kg/m2] 26.6 (4.2)

Diabetes status [%]
No diabetes
Prediabetes

Type 2 diabetes
Other type of diabetes

64.1
14.7
20.6
0.6

History of CVD [%] ‡

No
Yes

87.4
12.6

Relative WMH volume
[median (25—75th percentile), % of ICV] 0.016 (0.005–0.050)

Brain connectivity
Structural connectivity [mean (SD), -]

Overall
Average node degree, ν
Clustering coefficient, γ
Global efficiency, εglobal

5.3 * 10−3 (0.6 * 10−3)
17.8 (0.4)
2.31 (0.08)
0.84 (0.03)

Functional connectivity [mean (SD), -]
Overall

Average node degree, ν
Clustering coefficient, γ
Global efficiency, εglobal

0.32 (0.03)
16.7 (0.7)
3.25 (0.23)
0.75 (0.02)

Image quality
dMRI

Signal-to-noise ratio [mean (SD), -]
Head motion [mean (SD), mm]
Atlas mismatch [mean (SD), -]

22 (6.5)
0.64 (0.16)

0.087 (0.0092)

rs-fMRI
Signal-to-noise ratio [mean (SD), -]

Head motion [mean (SD), mm]
Atlas mismatch [mean (SD), -]

39 (11)
0.13 (0.088)

0.089 (0.0086)

Abbreviations: SD: standard deviation; BMI: body mass index; CVD: cardiovascular disease; WMH: white matter
hyperintensities; ICV: intracranial volume; dMRI: diffusion-weighted magnetic resonance imaging; rs-fMRI:
resting-state functional magnetic resonance imaging. Missing data: † Educational level (N = 62); ‡ History of CVD
(N = 57).

3.1. Associations of Connectivity Measures with dMRI and rs-fMRI Quality Metrics

The diffusion MR image quality metrics iSNR, head motion, and atlas mismatch
were all related to structural connectivity measures of overall SC, ν, and γ, with the
strongest associations for head motion with standardized regression coefficients (β) ranging
from –0.36 to 0.40 (all p < 0.001), while atlas mismatch was most strongly related to
εglobal (β = –0.15, p < 0.001), as shown in Figure 3. A full overview of the associations
between the diffusion and functional MR image quality metrics and the structural and
functional connectivity measures, respectively, as well as the R2 for each model, is reported
in Appendix C, Table A3A,B.
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From the functional MR image quality metrics, iSNR was most strongly related to
each of the functional connectivity measures of overall FC, ν, and γ, with standardized
regression coefficients (β) ranging from –0.22 to 0.15 (all p < 0.001), except for εglobal, for
which head motion had the strongest association (β = 0.16, p < 0.001), as shown in Figure 4.
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The variability in the SC measures was consistently better explained by the quality
metrics than variability in the FC measures, with R2 values ranging from 0.030 to 0.173
(3.0% to 17.3%) for the SC measures (see Appendix C Table A3A) and 0.006 to 0.032 (0.6%
to 3.2%) for the FC measures (see Appendix C Table A3B).

3.2. Effect of dMRI and rs-fMRI Quality on Connectivity Associations

Standardized regression coefficients (β) of the regression model between the structural or
functional connectivity measures and the demographic/clinical variables, and the same model
with additional adjustment for the image quality metrics are shown in Tables 2 and 3.
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Table 2. Standardized regression coefficients (β) of the regression model between the structural connectivity measures at sparsity 0.80 and the demographic/clinical
variables (Model 1), and the same model with additional adjustment for the diffusion MR image quality metrics (Model 2). For significant regression coefficients, the
percentage change is also reported.

Independent
Variables

Overall SC ν γ εglobal
Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%]

Age −0.179 *** −0.074 *** −59 −0.222 *** −0.110 *** −50 0.179 *** 0.059 *** −67 0.171 *** 0.180 *** +5
Sex 0.284 *** 0.213 *** −25 0.058 *** −0.081 *** −240 −0.207 *** −0.096 *** −54 −0.018 –0.076 *** +322

Educational level −0.044 ** −0.045 *** +2 0.025 0.024 - –0.007 −0.007 - −0.010 –0.011 -
BMI 0.096 *** 0.109 *** +14 0.009 0.035 * +289 −0.037 * −0.054 *** +46 −0.013 0.002 -

Diabetes status −0.025 0.003 - −0.103 *** −0.082 *** −20 0.074 *** 0.046 ** –38 0.015 0.010 -
History of CVD −0.015 –0.010 - −0.034 * −0.027 * −21 0.021 0.014 - −0.010 −0.008 -
WMH volume † 0.041 ** 0.048 *** +17 −0.053 *** −0.036 ** −32 0.093 *** 0.077 *** −17 −0.013 −0.008 -

iSNR - −0.120 *** - - 0.008 - - 0.006 - - 0.047 ** -
Head motion - −0.249 *** - - −0.276 *** - - 0.310 *** - - −0.008 -

Atlas mismatch - 0.021 - - −0.206 *** - - 0.081 *** - - −0.194 *** -

R2 0.131 0.204 +56 0.097 0.197 +103 0.121 0.199 +64 0.031 0.065 +110

Models: (1) Connectivity measure = β0 + β1 * Age + β2 * Sex + β3 * Educational level + β4 * BMI + β5 * Diabetes status + β6 * History of CVD + β7*WMH volume. (2) Connectivity
measure = Model 1 + β8 * iSNR + β9 * Head motion + β10 * Atlas mismatch. Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter hyperintensity
volume; iSNR: inverse signal-to-noise ratio. † Log10-transformed. Significant at * p < 0.05; ** p < 0.01; *** p < 0.001. Significant regression coefficients that changed more than 10% are
expressed in bold.

Table 3. Standardized regression coefficients (β) of the regression model between the functional connectivity measures at sparsity 0.80 and the demographic/clinical
variables (Model 1), and the same model with additional adjustment for the functional MR image quality metrics (Model 2). For significant regression coefficients,
also the percentage change is calculated.

Independent Variables Overall FC ν γ εglobal
Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%]

Age −0.003 0.015 - −0.129 *** −0.119 *** −8 0.050 ** 0.042 ** −16 0.063 *** 0.050 ** −21
Sex −0.054 ** −0.062 *** +15 0.006 0.003 - −0.006 −0.012 - −0.113 *** −0.095 *** −16

Educational level 0.017 0.014 - 0.039 ** 0.036 * −8 −0.045 ** −0.042 ** −7 0.013 0.015 -
BMI −0.029 −0.008 - −0.030 * −0.005 −83 0.001 −0.017 - 0.094 *** 0.049 ** −48

Diabetes status −0.037 * −0.030 - −0.065 *** −0.060 *** −8 0.060 *** 0.054 *** −10 0.013 0.008 -
History of CVD −0.016 −0.017 - −0.040 ** −0.041 ** +3 0.009 0.010 - 0.010 0.011 -
WMH volume † −0.030 * −0.027 - −0.058 *** −0.057 *** −2 0.021 0.018 - 0.000 0.002 -

iSNR - −0.082 *** - - −0.052 ** - - 0.075 *** - - 0.004 -
Head motion - 0.048 ** - - −0.010 - - −0.035 * - - 0.127 *** -

Atlas mismatch - 0.027 - - 0.004 - - 0.016 - - −0.029 -

R2 0.007 0.012 +71 0.046 0.049 +7 0.013 0.017 +31 0.033 0.048 +45

Models: (1) Connectivity measure = β0 + β1 * Age + β2 * Sex + β3 * Educational level + β4 * BMI + β5 * Diabetes status + β6 * History of CVD + β7*WMH volume. (2) Connectivity
measure = Model 1 + β8 * iSNR + β9 * Head motion + β10 * Atlas mismatch. Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter hyperintensity
volume; iSNR: inverse signal-to-noise ratio. † Log10-transformed. Significant at * p < 0.05; ** p < 0.01; *** p < 0.001. Significant regression coefficients that changed more than 10% are
expressed in bold.
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Without adjustment for image quality, in particular higher age and male sex were
associated with lower overall structural connectivity (β = −0.180, p < 0.001; and β = 0.284,
p < 0.001, respectively), lower average node degree (β = −0.222, p < 0.001; and β = 0.058,
p < 0.001, respectively), and higher clustering coefficient (β = 0.179, p < 0.001; and β =
−0.207, p < 0.001, respectively). With adjustment for diffusion MR image quality, the
aforementioned associations with age and sex decreased by more than 26%. Without
adjustment for image quality, higher age, but not sex, was associated with higher global
efficiency (β = 0.171, p < 0.001; and β = 0.018, p = 0.204, respectively), while male sex
was found to be associated with lower global efficiency (β = −0.076, p < 0.001) after
adjustment for image quality. Of note, significant associations were also observed for
different combinations of demographic/clinical variables and the structural connectivity
measures, with standardized regression coefficients (β) generally <0.1 with relevant changes
(>10%) after adjustment for image quality (See Table 2).

Without adjustment for image quality, higher age and male sex were associated with
lower functional average node degree (β = −0.129, p < 0.001) and higher functional global
efficiency (β = −0.113, p < 0.001), respectively, and these associations did not change
after adjustment for functional MR image quality. No other associations with |β| > 0.1
were observed between the demographic/clinical variables and the functional connectivity
measures (see Table 3).

3.3. Associations between Quality and Demographic Variables

Standardized regression coefficients (β) between the demographic/clinical variables
and each of the diffusion and functional MR image quality metrics, including the R2 value
for the complete model, are listed in Tables 4 and 5.

Table 4. Standardized regression coefficients (β) obtained from a linear regression model with
forward selection between demographic/clinical variables and each of the quality metrics for the
diffusion MRI.

Independent Variables iSNR Head Motion Atlas Mismatch
β p-Value β p-Value β p-Value

Age 0.117 <0.001 0.368 <0.001 0.056 <0.001
Sex −0.071 <0.001 −0.279 <0.001 −0.303 <0.001

Educational level −0.017 0.242 0.001 0.916 −0.009 0.519
BMI 0.067 <0.001 0.028 0.031 0.093 <0.001

Diabetes status 0.032 0.042 0.095 <0.001 −0.023 0.129
History of CVD 0.004 0.774 0.020 0.093 0.009 0.514
WMH volume † −0.038 0.009 0.048 <0.001 0.017 0.224

R2 0.033 0.297 0.113

Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter hyperintensity volume;
iSNR: inverse signal-to-noise ratio. † Log10-transformed.

Table 5. Standardized regression coefficients (β) obtained from a linear regression model with
forward selection between demographic/clinical variables and each of the quality metrics for the
functional MRI.

Independent Variables iSNR Head Motion Atlas Mismatch
β p-Value β p-Value β p-Value

Age 0.170 <0.001 0.079 <0.001 −0.088 <0.001
Sex −0.027 0.034 −0.071 <0.001 0.317 <0.001

Educational level −0.044 <0.001 −0.010 0.457 −0.003 0.847
BMI 0.408 <0.001 0.321 <0.001 −0.113 <0.001

Diabetes status 0.096 <0.001 0.024 0.100 −0.020 0.172
History of CVD −0.012 0.315 −0.004 0.784 0.004 0.772
WMH volume † 0.030 0.015 −0.016 0.249 0.013 0.337

R2 0.270 0.132 0.142

Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter hyperintensity volume;
iSNR: inverse signal-to-noise ratio. † Log10-transformed.
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From the three diffusion MR image quality metrics (Table 4), variance in head motion
could be best explained by the demographic/clinical variables (R2 = 0.297) with age (β =
0.368, p < 0.001) and sex (β = −0.279, p < 0.001), indicating more head motion at higher age
and in men compared to women, as the strongest covariates. Mismatch between diffusion
MRI and brain atlas had the strongest association with sex (β = −0.303, p < 0.001), indicating
less mismatch in women compared to men. Conversely, the amount of variance in the iSNR
of the diffusion MRI that could be explained by the demographic/clinical variables was
negligible (R2 = 0.033).

From the three functional MR image quality metrics (Table 5), variance in iSNR could
be best explained by the demographic/clinical variables (R2 = 0.270) with BMI (β = 0.408,
p < 0.001) as the strongest covariate. Variance in head motion and atlas mismatch of the
functional MRI were best explained by BMI (β = 0.321, p < 0.001) and sex (β = 0.317, p
< 0.001), respectively. Scatterplots and histograms visualizing the strongest associations
between quality metric and demographic variables are shown in Figure 5.
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Figure 5. Examples of strongest determinants of quality metrics in the structural (top) and functional
(bottom) connectivity pipeline. For structural quality, motion was best determined by age and sex, and
atlas mismatch by sex. For functional quality, motion and iSNR were best determined by BMI, and atlas
mismatch by sex. Note: for intuitiveness, SNR (expressed as -iSNR) is plotted instead of iSNR.
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4. Discussion
4.1. Main Findings

We extensively studied the association of dMRI and rs-fMRI quality with structural
and functional connectivity measures, respectively, in 5110 participants of The Maastricht
Study. To summarize, we found a significant association between the dMRI and rs-fMRI
quality metrics, i.e., head motion and signal-to-noise ratio in particular, respectively, and
measures of structural and functional connectivity. Moreover, the image quality metrics
affected the association between brain connectivity measures and demographic variables.
Furthermore, our results showed that the image quality metrics were equally or even
stronger determinants of brain structural and functional connectivity than demographic
and/or clinical variables.

4.2. Head Motion

Head motion during the dMRI scan was most strongly associated with three of the
four structural connectivity measures studied here, indicating it is an important potential
confounder. To put the effect of head motion into perspective, every 0.1 millimeter of
head motion during dMRI can be misinterpreted as a decrease in overall structural brain
connectivity similar to 18.3 years of aging (see Appendix D for derivation).

For dMRI as well as rs-fMRI, the amount of head motion increased with age and was
larger in men compared to women. These results are in line with the current literature,
as similar findings have been reported earlier [22,24,53,54]. In addition, the amount of
head motion during the rs-fMRI scan increased with BMI, confirming the findings reported
earlier [55,56], and might be caused by the larger respiration-related body displacement in
persons with high BMI.

We also found that the amount of head motion was larger in the dMRI compared to
the rs-fMRI scan (mean head motion 0.64 mm and 0.13 mm, respectively), and that they
were only weakly correlated (Pearson’s r = 0.21). An explanation for this finding might lie
in the nature of the pulse sequences, for instance the longer echo and repetition times and
the much stronger gradients of the dMRI scan, leading to notable table vibrations and head
coil vibrations, which may amplify any distorting effects due to head motion compared
to the rs-fMRI scan used. Furthermore, the dMRI sequence was applied after the rs-fMRI
sequence, at the end of the scan protocol. Hence, assuming that participants are more likely
to move with longer scan times, this might explain the higher amount of head motion
during the dMRI compared to the rs-fMRI.

To assess whether the observed effects are robust to large motion, we performed a post
hoc analysis in which the cases with motion > 1.0 mm were excluded (n = 121 excluded).
The results (see Appendix E, Tables A4–A7) showed that excluding the cases with the
strongest motion only marginally affected the results, and that the interpretation of the
results and conclusions that were drawn from these results do not change.

4.3. Brain Atlas Mismatch

Although the distribution of atlas mismatches in the studied population is highly
comparable for dMRI and rs-fMRI (Figure A2C,F), atlas mismatch was associated with
three out of four structural connectivity measures, but not with any of the functional
connectivity measures. However, the dMRI-based structural connectivity measures rely on
the geometric start and end (voxel) points as well as trajectories of streamlines connecting
these points, which are likely more susceptible to geometric distortions than the rs-fMRI-
based functional connectivity measures, which are based on spatially region-averaged
signal time-series.

Since atlas mismatch and head motion are both associated with three out of four struc-
tural connectivity measures, they might have a common source, i.e., typical susceptibility
artifacts due to the EPI sequences used during dMRI that are known to be highly prone to
resonance offsets, e.g., magnetic susceptibility gradients, or B0 inhomogeneities [57], for
which ExploreDTI did not correct. The linear registration that we used to co-register the
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atlas to dMRI space is only able to account for deformations caused by these susceptibility
artefacts to a limited extent. Whether the use of a non-linear registration procedure, an
individual-based atlas, or implementation of a more rigorous susceptibility correction
method will lead to less mismatch was beyond the scope of the current study.

4.4. Signal-to-Noise Ratio (SNR)

SNR was weakly associated with one structural connectivity measure, i.e., overall SC,
but with three out of four functional connectivity measures, indicating that, in addition to
head motion, SNR is a quality metric of interest in functional brain connectivity analyses.
Interestingly, SNR, as well as head motion in rs-fMRI, and to a lesser extent also in dMRI,
decreased with BMI, which might have a physiological explanation as respiratory function
is altered in obesity [58], especially when scanned in the supine position, which may
increase physiological-related noise [59]. Since the SNR and head motion in rs-fMRI are
moderately correlated (Pearson’s r = −0.52, p < 0.001), which is comparable to the results
reported by Van Dijk et al. (r = −0.57, p < 0.001) [24], but the amount of head motion is
relatively small (mean = 0.13 mm), we propose that the small amount of head motion is
propagated into the SNR.

4.5. Effect of Image Quality on Associations between Brain Connectivity and Demographic
Variables

Since the image quality metrics were significantly related to measures of structural and
functional connectivity, it is apparent that they affect the associations between structural or
functional connectivity and demographic/clinical variables. Indeed, without adjustment
for image quality, the strength of the associations between structural connectivity and
demographic variables, particularly age and sex and to a lesser extent BMI and WMH
volume, differed by more than 25% compared to the model that adjusted for image quality.
Interestingly, whereas the age- and sex-related associations with brain connectivity were
weakened due to confounding effects of image quality, BMI–brain connectivity associations
were actually strengthened when image quality was taken into account. A plausible
explanation for this observation is currently still lacking. Although the ground truth
structural connectivity in our study sample is unknown, the fact that age-, sex-, and BMI-
related associations are affected by image quality underlines the importance of adjusting
for it.

For functional connectivity associations with demographic/clinical variables, however,
the changes due to adjustment for image quality were much smaller. An explanation for
this discrepancy is that the gradients in dMRI are stronger than in rs-fMRI, hence any
artifact is more pronounced in the dMRI and thus the effect of low image quality is stronger.
Moreover, during the pre-processing of the rs-fMRI data, head motion is already taken into
account by adding the motion parameters as nuisance regressors to the regression model
when calculating temporal correlation between two brain regions.

4.6. Validity of Structural and Functional Connectivity Results

Analyses of the connectivity associations with demographic/clinical variables demon-
strated that overall structural and functional connectivity, and hence node degree, decrease with
age, whereas normalized clustering coefficient and global efficiency increase with age. This
finding suggests that despite decreasing connectivity, whole-brain network segregation and
integration increase during aging. Decreased structural and functional connectivity during
aging is consistent with the current consensus as summarized in a recent review [60]. Less
consensus, however, exists in the literature on the association of global efficiency with age. For
example, structural and functional global efficiency were lower in older people compared to
young people [61,62], or showed no difference between old and young people [63–65], whereas
we found a slight positive association. The positive association between the structural clustering
coefficient and age that we found confirms the findings reported by Zhao et al. [62]. Yet, it has
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to be noted that the aforementioned findings have been reported in studies with relatively small
sample sizes (n ≤ 126) compared to our study.

The validity of our structural and functional connectivity results is further supported
by their dependency on sparsity. Both the structural and functional average node degree
decreased with sparsity. This was as expected, since with increasing sparsity fewer connec-
tions are evaluated, and thus the number of possible connections to each node decreases as
well. Structural and functional normalized clustering coefficient increased with sparsity.
This effect, too, can be explained by the methodology used, because the proportion of
connections between the nodes within its neighborhood divided by the number of con-
nections that theoretically could exist between them will decrease with increasing sparsity.
Conversely, the normalized clustering coefficient increases at increasing sparsity, because
the clustering coefficient is normalized to a random network, for which the proportional
decrease is larger.

In contrast, the normalized global efficiency over sparsity showed an opposite trend
in the structural compared to the functional connectomes. This difference can be explained
by varying number of intra- and interhemispheric connections taken into account in the
structural and functional group-averaged connectomes over the sparsity range. While the
percentage of interhemispheric connections in the functional group-averaged connectomes
remains fairly constant (at 41–44%), this percentage decreases in the structural group-
averaged connectomes from 25% at sparsity of 0.60 to 12% at sparsity of 0.90 (see Figure A4).
As the connection weights in the structural connectomes represent tract volumes, and since
the structural connections taken into account are mostly short (intra-hemispheric) tracts
with a small volume, the structural global efficiency is calculated using fairly low connection
strengths that increases with sparsity, whereas the functional global efficiency is based on
connections of high strength that increase with sparsity.

The result that fewer interhemispheric connections were taken into account in the
structural compared to the functional connectomes can be explained by the effect of length
and shape of the tracts in whole-brain tractography [66]. Since interhemispheric tracts
are generally longer than intrahemispheric tracts, they are more difficult to track and are
thus less likely to end up in the group-averaged connectome in favor of intrahemispheric
connections.

4.7. Strengths and Limitations

Strengths of this study include the large number of participants and the acquisition of
dMRI as well as rs-fMRI data in these participants. However, there are also several limitations
that are noteworthy to address. First of all, due to missing field maps, we could not implement
any advanced correction for B0-field inhomogeneities or geometric distortions, e.g., FSL’s
“topup” [67], in the dMRI and rs-fMRI processing pipelines. Hence, we were restricted to less
advanced methods, such as (affine) registration to standard space. Consequently, the results
relating to regions in the anterior frontal cortex and temporal lobe might therefore be less reliable
as geometric distortions often occur in this location [68]. However, to our knowledge, there is
no reason to assume that these artifacts differ between subgroups, e.g., participants with and
without T2DM, and therefore no bias has been introduced.

Second, we used an atlas template that is not participant-specific and as such may con-
tribute to mismatch between the brain regions defined in the atlas and the actual functional
boundaries of the brain regions in the participant’s dMRI or rs-fMRI. An individual-based
brain parcellation, such as implemented in the FreeSurfer software [69], might result in
better overlap with the participant’s dMRI or rs-fMRI. However, this requires substantially
longer processing times, e.g., up to 20 h per participant, as well as visual checks and
manual intervention, whereas linear registration of the AAL2 atlas is robust and is typically
completed within a minute.

Third, we did not compare different structural and functional connectivity processing
pipelines in this study to assess the most suitable pipelines. Since systematic variability
across connectivity pipelines can yield misleading results, as shown recently by Luppi
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et al. [70], further optimization of the processing pipelines might be warranted. Never-
theless, we believe we obtained valid structural and functional connectivity results, as
discussed in the previous section.

Third, due to the intrinsic differences in dMRI and rs-fMRI sequences, direct com-
parison between their image quality does not seem valid. However, during setup of the
scanning protocol, both sequences were considered equally important, i.e., both were
optimized in terms of acquisition time, signal-to-noise ratio, and spatial resolution without
sacrificing one sequence over the other.

Lastly, by using full correlation to calculate functional connectivity, our processing
pipeline might be less sensitive to certain confounding effects, e.g., global mean confound-
ing. Alternative approaches, such as partial correlation, regularized inverse covariance, or
Bayes net methods, can improve the sensitivity of the functional connectivity processing
pipeline [43].

5. Conclusions

To conclude, we here describe the complete pipeline analyses for the assessment
of the structural and functional brain connectivity in The Maastricht Study, including
extensive quality assessment focused on the confounding effects of compromised image
quality in population neuroimaging studies. Structural connectivity estimates were most
strongly associated with head motion, while functional connectivity estimates were mainly
influenced by signal-to-noise ratio, possibly resulting from motion as well, especially
in patients with high BMI. Moreover, image quality metrics substantially affected the
associations between brain connectivity and demographic and clinical variables such as
age, sex, and BMI. These results largely confirm and complement previously reported
findings and we therefore recommend that statistical analyses of structural and functional
brain connectivity and its associations with demographic or clinical variables should report
and consider potential confounding effects of image quality.
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Appendix A. Complete Description of Structural and Functional Connectivity
Processing Pipeline

Appendix A.1. Diffusion Data Pre-Processing

dMRI data were anonymized and converted from DICOM to NIfTI format first using
Chris Rorden’s dcm2nii tool (version 2MAY2016 64bit BSD License). After importing the
NIfTI files into ExploreDTI v4.8.6 (PROVIDI lab, Image Sciences Institute, Utrecht, The
Netherlands) [33], eddy current and head motion correction was applied, while making
sure the b-matrix was rotated accordingly [34,35]. Next, white matter tracts were calculated
using a constrained spherical deconvolution (CSD)-based deterministic tractography algo-
rithm [36] at the following settings: 2 mm seed point resolution with seed points placed
randomly throughout the whole brain; step size 1 mm; and maximum harmonic degree of
8 [71]. Stopping criteria were as follows: fiber orientation distribution < 0.1; angle deviation
> 30◦; fibers leaving the brain mask; or fiber length < 50 mm or > 500 mm.

The automated anatomical labeling (AAL) atlas [37], consisting of 94 (sub)cortical
brain regions in the cerebrum, was (affine) coregistered to the dMRI data using FLIRT [38]
in FMRIB Software Library (FSL) 5.0.10 (FMRIB Analysis Group, University of Oxford,
Oxford, UK) and imported into ExploreDTI.

Subsequently, for each pair of brain regions, the connection strength was defined as
the tract volume (number of voxels visited by a tract multiplied by the voxel size) divided
by the ICV if two or more tracts were found between the two brain regions; otherwise, the
connection was considered as absent and the connection strength set to zero [39]. Also,
the diagonal elements (i.e., self–self connections) were set to zero. Finally, this resulted
in a symmetric 94 × 94 connectivity matrix, i.e., the participant’s structural connectome
(SC), were each row and column represents a brain region and each element represents the
relative tract volume between two regions.

Appendix A.2. Functional Data Pre-Processing

The rs-fMRI data were anonymized and converted from DICOM to NIfTI format
using Chris Rorden’s dcm2nii tool (version 2MAY2016 64bit BSD License). To account
for magnetization stabilization, the first ten seconds of data (equivalent to the first five
volumes) were removed, and the remaining rs-fMRI volumes were corrected for field
inhomogeneities using FSL 5.0.10 (FMRIB Analysis Group, University of Oxford, Oxford,
U.K.) [41]. The rs-fMRI data were then imported into Statistical Parametric Mapping
(SPM) 12 (The Wellcome Trust College London, London, UK). Because the rs-fMRI data
were acquired in an interleaved spatial order, slice-timing correction (with the second
slice as reference since this slice was acquired first) was applied before head motion
correction [42]. To improve the signal-to-noise ratio, the rs-fMRI images were spatially
smoothed using a Gaussian kernel (full width at half maximum = 8 mm). Last, the rs-fMRI
data were temporally filtered using FSL’s band-pass filter (0.01 to 0.1 Hz) [12] to remove
possible respiratory and signal drift effects and to focus on the spontaneous low-frequency
fluctuations.

The participant’s structural T1w images, including the masks of the CSF and WM,
as well as the AAL atlas [37] were (affine) coregistered to the rs-fMRI data using FSL’s
FLIRT [38], and an averaged time-series in each brain region as well as in the CSF and WM
was calculated from the per-voxel time-series in each region.

Subsequently, for each pair of brain regions, a Pearson’s correlation coefficient was
calculated using linear regression of the averaged time-series of each region, with the
averaged time-series in the CSF and WM and the motion correction parameters as nuisance
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regressors in MATLAB Release 2016a (The Mathworks Inc., Natick, MA, USA). This resulted
in a symmetric 94 × 94 correlation matrix, i.e., the participant’s functional connectome (FC).
In the FC, each row and column represent a brain region and each element represents the
temporal correlation between two regions. Last, the diagonal elements (self–self connec-
tions) and negative correlations, which are considered as not representing any meaningful
connections, were set to zero [43], resulting in a correlation-weighted, undirected network.

Appendix A.3. Hardware and Software

All structural and functional connectivity analyses were performed on a dedicated
computer cluster containing four nodes, each with an Intel Xeon E3-1245v3 3.40 GHz
8-core processor, 32 GB of DDR4 RAM, and a 250 GB SSD. Processed data were stored on
dedicated storage servers equipped with in total eight 10 TB SATA 6.0 Gb/s hard disks.
To obtain a high level of data safety, the disks were configured in two RAID 6 arrays, thus
providing protection against simultaneous failure of two disks and resulting in 20 TB of
usable disk space. Each node was loaded with an image that contained the operating
system, drivers, and dedicated software. The operating system was 64-bit Scientific Linux
release 6.8 (Carbon) based on Linux kernel 2.6.32-642.11.1.el6.x86_64 and GNOME 2.28.2.
The software included in the image analyses is listed in supplemental Table A1.

Table A1. Overview of neuro-imaging software used in the structural and functional connectivity
processing pipelines.

Software Package Version Release Date RRID

dcm2nii 2MAY2016 2 May 2016 SCR_014099
MATLAB including the Image Processing

Toolbox 2016a 1 January 2016 SCR_001622

Brain Connectivity Toolbox 2017_01_15 15 January 2017 SCR_004841
ExploreDTI 4.8.6 23 February 2017 SCR_001643

FMRIB Software Library 5.0.10 25 April 2017 SCR_002823
Statistical Parametric Mapping 12 rev 6906 20 October 2016 SCR_007037

RRID: research resource identifier as reported by https://scicrunch.org.

Appendix A.4. Processing Times and Size of Generated Data

Average processing times per participant in the structural and functional network
connectivity pipelines were 1 h 33 m and 0 h 50 m, respectively. With the hard- and software
used in this study, it took approximately 9 days to process the dMRI and rs-fMRI DICOM
data of all participants. The amount of data generated per participant in the structural and
functional network connectivity analyses were 847 MB and 744 MB, respectively, yielding a
total of approximately 3.6 TB of generated data for the complete structural and functional
connectivity analyses.

Appendix B. Pearson’s Correlation Coefficients between dMRI and rs-fMRI Quality
Metrics

Table A2. Pearson’s correlation coefficients between dMRI and rs-fMRI quality metrics.

dMRI Rs-fMRI

iSNR Head
Motion

Atlas
Mismatch iSNR Head

Motion
Atlas

Mismatch

dMRI
iSNR 1 0.298 *** 0.114 *** 0.176 *** 0.248 *** −0.052 ***

Head motion 1 0.217 *** 0.247 *** 0.210 *** −0.255 ***

Atlas mismatch 1 0.112 *** 0.116 *** −0.023

rs-fMRI
iSNR 1 0.522 *** −0.133 ***

Head motion 1 −0.114 ***

Atlas mismatch 1

Abbreviations: iSNR: inverse signal-to-noise ratio. Significant at *** p < 0.001.

https://scicrunch.org
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Appendix C. Standardized Regression Coefficients and Goodness-of-Fit Parameters
between the Connectivity Measures and the Image Quality Metrics

Table A3. (A) Standardized regression coefficients and goodness-of-fit parameters between the
structural connectivity measures and the image quality metrics of the diffusion MRI. (B) Standardized
regression coefficients and goodness-of-fit parameters between the functional connectivity measures
and the image quality metrics of the functional MRI.

(A) Independent
Variables

Overall SC ν γ εglobal
β p-Value β p-Value β p-Value β p-Value

iSNR −0.127 <0.001 −0.030 0.027 0.027 0.039 0.015 0.286
Head motion −0.302 <0.001 −0.303 <0.001 0.372 <0.001 0.087 <0.001

Atlas mismatch −0.015 0.253 −0.204 <0.001 0.105 <0.001 –0.169 <0.001

R2 0.132 0.167 0.173 0.30

(B) Independent
Variables

Overall FC ν γ εglobal
β p-Value β p-Value β p-Value β p-Value

iSNR −0.093 <0.001 −0.114 <0.001 0.105 <0.001 0.043 0.008
Head motion 0.053 0.001 −0.022 0.176 −0.028 0.087 0.127 <0.001

Atlas mismatch 0.011 0.445 0.020 0.163 0.011 0.451 −0.075 <0.001

R2 0.006 0.017 0.008 0.032

Model: Connectivity measure = β0 + β1 * iSNR + β2 * Head motion + β3 * Atlas mismatch. Abbreviations: iSNR:
inverse signal-to-noise ratio.

Appendix D. Explanation for 0.1 mm of Head Motion being Equivalent to 18.3
Years of Aging

From the standard deviations for age and head motion in dMRI as reported in Table 1
and the standardized regression coefficients as reported in Table 2, we can calculate how
many years of aging has the equivalent effect on overall structural connectivity as a given
amount of millimeters of head motion.

From Table 2, we obtain the standardized regression coefficients for the complete model:
Overall structural connectivity = β0 − 0.074 * Age + 0.213 * Sex − 0.045 * Educational

level + 0.109 * BMI + 0.003 * Diabetes status − 0.010 * History of CVD + 0.048 * WMH
volume − 0.120 * iSNR − 0.249 * Head motion + 0.021 * Atlas mismatch

This can be interpreted as “for one SD years increase in age, the overall structural
connectivity will decrease by 0.074 SD, and for one SD mm increase in head motion, the
overall structural connectivity will decrease by 0.249 SD”.

From Table 1, we obtain the standard deviations for age and head motion, which are
8.7 years and 0.16 mm, respectively. Thus, for each 8.7 years of aging, overall structural
connectivity decreases by 0.074 SD, and for each additional 0.16 mm of head motion, overall
structural connectivity decreases by 0.249 SD.

To have a decrease of one SD in overall structural connectivity, we would need 117.6
(=8.7 years * 1SD/0.074SD) years of aging, or 0.643 (= 0.16 mm * 1SD/0.249SD) millimeters
of head motion. And thus, 117.6 years of aging has the equivalent effect on overall structural
connectivity 0.643 mm of head motion, which is the same as follows: 18.3 (117.6/6.43) years
of aging has the equivalent effect on overall structural connectivity as 0.1 (=0.643/6.43) mm
of head motion.
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Appendix E. Post Hoc Analyses with Cases of dMRI Motion > 1.0 mm Excluded

Table A4. Demographic and clinical characteristics of participants with of dMRI motion > 1.0 mm (n = 121).

Characteristic

Demographic
Age [mean (SD), years] 67.6 (6.7)

Sex [%]
Male

Female

89.3
10.7

Educational level [%]
Low

Medium
High

44.2
21.7
34.2

Clinical
BMI [mean (SD), kg/m2] 27.0 (3.7)

Diabetes status [%]
No diabetes
Prediabetes

Type 2 diabetes
Other type of diabetes

41.8
19.7
36.1
2.5

History of CVD [%]
No
Yes

75.6
24.4

Relative WMH volume
[median (25–75th percentile), % of ICV] 0.083 (0.024–0.277)

Abbreviations: SD: standard deviation; BMI: body mass index; CVD: cardiovascular disease; WMH: white matter
hyperintensities; ICV: intracranial volume.

Table A5. Standardized regression coefficients from linear regression model with structural connec-
tivity measures as dependent variable and dMRI motion as independent variable, reported for all
cases (original analyses, n = 5110) and for cases with motion ≤ 1.0 mm (n = 4989). All p < 0.001.

Structural Connectivity Measure All Cases
(Original Analyses)

Large Motion Cases
Excluded

Overall structural connectivity −0.343 −0.315
Average node degree (ν) −0.356 −0.289

Normalized clustering coefficient (γ) 0.403 0.321
Normalized global efficiency (εglobal) 0.054 0.068

Table A6. Standardized regression coefficients of the crude regression model between normalized
clustering coefficient and the demographic/clinical variables (Model 1), and the same model with
additional adjustment for the diffusion MR image quality metrics (Model 2). For significant regression
coefficients, the percentage change is also calculated.

Independent Variables All Cases (Original Analyses) Large Motion Cases Excluded
Model 1 Model 2 ∆ [%] Model 1 Model 2 ∆ [%]

Age 0.179 *** 0.059 *** −67 0.156 *** 0.063 *** −60
Sex −0.207 *** −0.096 *** −54 −0.191 *** −0.101 *** −47

Educational level −0.007 −0.007 - −0.011 -0.011 -
BMI −0.037 * −0.054 *** +46 −0.035 * −0.055 *** +57

Diabetes status 0.074 *** 0.046 ** −38 0.073 *** 0.052 *** −29
History of CVD 0.021 0.014 - 0.014 0.010 -
WMH volume † 0.093 *** 0.077 *** −17 0.077 *** 0.075 *** –3

iSNR - 0.006 - - 0.024 -
Head motion - 0.310 *** - - 0.227 *** -

Atlas mismatch - 0.081 *** - - 0.085 *** -
R2 0.121 0.199 +64 0.096 0.144 +50

Model (1) Normalized clustering coefficient = β0 + β1 * Age + β2 * Sex + β3 * Educational level + β4 * BMI +
β5 * Diabetes status + β6 * History of CVD + β7 * WMH volume. Model (2) Normalized clustering coefficient
= Model 1 + β8 * iSNR + β9 * Head motion + β10 * Atlas mismatch. Abbreviations: BMI: body mass index;
CVD: cardiovascular disease; WMH: white matter hyperintensity volume; iSNR: inverse signal-to-noise ratio. †

Log10-transformed. Significant at * p < 0.05; ** p < 0.01; *** p < 0.001.
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Table A7. Standardized regression coefficients obtained from a linear regression model with forward
selection between demographic/clinical variables and each of the quality metrics for the diffusion MRI.

Independent Variables All Cases (Original Analyses) Large Motion Cases Excluded
β p–Value β p–Value

Age 0.368 <0.001 0.377 <0.001
Sex −0.279 <0.001 −0.278 <0.001

Educational level 0.001 0.916 0.004 0.731
BMI 0.028 0.031 0.045 0.001

Diabetes status 0.095 <0.001 0.099 <0.001
History of CVD 0.020 0.093 0.015 0.212
WMH volume † 0.048 <0.001 0.011 0.863

R2 0.297 0.295
Abbreviations: BMI: body mass index; CVD: cardiovascular disease; WMH: white matter hyperintensity volume;
iSNR: inverse signal-to-noise ratio. † Log10-transformed.
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Appendix G. Histograms of dMRI and rs-fMRI Image Quality Metrics of SNR, Head
Motion, and Atlas Mismatch
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Figure A2. Histograms of dMRI (top) and rs-fMRI (bottom) image quality metrics of signal-to-noise 
ratio (SNR) (A,D), amount of head motion (B,E), and atlas mismatch (C,F). 
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Appendix H. Mean and 5–95th Percentiles of Structural and Functional Connectivity
Measures ν, γ, and εglobal over Sparsity
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Appendix I. Structural and Functional Group-Averaged Connectomes at Sparsity 0.60 to 0.90
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