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Abstract: One of the major obstacles confronting the formulation of a mechanistic understanding for
Alzheimer’s disease (AD) is its immense complexity—a complexity that traverses the full structural
and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and
behavioural processes. This complexity is reflected by the equally complex diversity of risk factors
associated with AD. However, more than merely mirroring disease complexity, risk factors also
provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative
disorder since they are central to disease initiation and subsequent propagation. Based on a systematic
literature assessment, this review identified 30 risk factors for AD and then extended the analysis to
further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although
other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction
of the neuroimmune–neuroinflammation axis was uniquely central to all 30 identified risk factors.
Though the nature of the neuroinflammatory involvement varied, the activation of microglia and
the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This
observation provides further evidence for the importance of immunopathic mechanisms in the
aetiopathogenesis of AD.

Keywords: Alzheimer’s disease; dementia; neurodegeneration; neuroinflammation; neuroimmune;
microglia; cytokine

1. Introduction

The brain is the human body’s most complex and convoluted organ, and neurode-
generative disorders such as Alzheimer’s disease (AD) are arguably amongst the most
complex diseases of the brain. One of the major hurdles encountered when formulating a
mechanistic understanding with which to facilitate management strategies for AD is its
immense complexity—a complexity that traverses the full structural and phenomenological
spectrum, including molecular, macromolecular, cellular, behavioural and neurological
processes [1,2]. AD risk factors are excellent examples of this immense complexity; these
risk factors include such bewilderingly diverse conditions as medical diseases (diabetes),
psychiatric disorders (depression), personal injuries (head trauma), societal factors (social
isolation) and environmental issues (air pollution).

To identify a harmonizing mechanistic explanation with which to unify the many and
varied risk factors for AD, a comprehensive literature review was initially completed (in
PubMed, Web of Science, Scopus and Google Scholar databases including publications
dating up to November 2023) and identified 30 “risk” factors for AD, employing a broad
definition of “risk factor”: some are modifiable risk factors connected in a causative manner
with AD (e.g., smoking, alcohol abuse, obesity); others are concomitant disorders occurring
as co-morbidities (e.g., glaucoma; people with glaucoma are at risk for also developing AD);
others are bidirectional risk factors (e.g., chronic pain causes neuroinflammation, which
is a risk factor for AD, yet the neuroinflammation is a positive feedback risk factor for
continuing pain). This comprehensive list of 30 risk factors includes the 12 modifiable risk
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factors identified in the 2020 Lancet commission (air pollution, alcohol abuse, brain injury,
depression, diabetes, hearing impairment/deafness, hypertension, lower educational level,
obesity, physical inactivity/sedentary lifestyle, smoking and social isolation) [3]. Beyond
these 12 Lancet commission risk factors, 18 additional factors have been added, which
include well-recognized risk factors that are non-modifiable (e.g., age, sex), risk factors
that are modifiable but not at the personal level (e.g., climate change), concomitant co-
morbidities as risks (e.g., glaucoma, migraine) and other newer factors for which convincing
data are emerging but they remain less conclusive (e.g., oral hygiene, allergies).

Next, all literature sources discussing the 30 identified risk factors were searched for
common terms providing mechanistic explanations. The term uniting all 30 risk factors was
“neuroinflammation”, where neuroinflammation is defined as a functional process of the
brain’s innate immune system following activation by diverse external (physical trauma,
toxin (microbiological, chemical)) and/or internal (ischaemia) challenges, and manifesting
as integrated cellular (microglial) and molecular (especially cytokine: e.g., Interleukin (IL)-
1β, IL-6 and Tumour Necrosis Factor (TNF)-α) alterations within the brain [4,5]. Since many
studies provide data strongly implicating neuroinflammation as a significant contributor
and culprit in the aetiopathogenesis of AD, a shared neuroimmune–neuroinflammation
mechanism clearly emerges as a unifying thread providing harmonization within the rich
tapestry of diverse risk factors associated with AD.

Herein, an overview of the neuroimmune–neuroinflammation axis as related to AD is
presented followed by a consideration of the 30 risk factors for AD in conjunction with a
description of their neuroinflammatory mechanisms (Figure 1).

Neuroimmune–Neuroinflammatory Contributions to Alzheimer’s Disease

Traditionally, AD has been regarded as a proteopathy (i.e., protein-based disorder)
arising from the misfolding and oligomerization of β-amyloid (Aβ) and tau. Regrettably,
however, this conceptualization has failed to yield a definitive curative therapy, thereby
necessitating the need to explore other mechanistic approaches, including immunopathy,
gliopathy, mitochondriopathy, membranopathy, synaptotoxicity, metal dyshomeostasis and
oxidative damage, reflecting the biochemical complexity and heterogeneity of AD. Of these
mechanisms, immunopathy is emerging as a lead contender [6–10].

Not surprisingly, an immunopathic mechanistic explanation of AD is likewise com-
plex and involves a host of cellular (microglia) and molecular (cytokine) participants.
Emerging data indicate that the homeostatic balance between pro-inflammatory and anti-
inflammatory processes becomes disordered over the time duration of the disease, ulti-
mately tilting towards a neuropathic pro-inflammatory milieu and manifesting with in-
creased concentrations of activated microglia and pro-inflammatory cytokines (IL-1β, IL-6,
TNFα) [6–8]. During the initial pre-symptomatic phases of the disease, immune processes
are neuroprotective with microglia-mediated phagocytosis of cytotoxic Aβ aggregates.
However, as the disease progresses, such neuroprotective effects are supplanted by neuro-
toxic effects with elevated pro-inflammatory processes. These neurotoxic pro-inflammatory
effects occur within the context of both innate immunity and adaptive immunity, with
deleterious neuroinflammation arising primarily from the actions of prolonged innate
immunity activity. Neuroinflammation involves reactive, pro-inflammatory microglia and
astrocytic phenotypes, which paradoxically enhance Aβ oligomerization and promote tau
hyperphosphorylation, complement activation and the catabolism of neurotransmitters
and brain biomolecules into neurotoxic metabolites—changes which both initiate and/or
propagate neurodegeneration, heralding cognitive reduction and dementia in susceptible
(usually geriatric) adults. Since the neurotoxicity of excessive pro-inflammatory processes
occurs not only at the level of innate immunity, via neuroinflammation, but also at the
level of adaptive immunity, the neuropathological mechanisms of neuronal death involve
both auto-inflammatory and autoimmune mechanisms. Additional support for the ae-
tiopathogenic role of the neuroimmune–neuroinflammation axis AD comes from genetic
studies: genome-wide association studies (GWASs) reveal that multiple polymorphisms
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associated with AD occur in genes that regulate innate immune function (e.g., CD33, CLU,
CR1, TREM-2), which encode proteins that regulate complement activation and cellular
phagocytic activities [9]. Thus, although inflammation, in general, is a non-specific response
to many different types of injury, within the specific context of AD, the neuroimmune–
neuroinflammation axis is a key contributor to disease pathogenesis and progression;
accordingly, factors that affect the biochemistry or histology of this axis emerge as risk
factors for AD [10].
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Figure 1. Thirty risk factors for Alzheimer’s disease: traditionally AD was regarded as a proteopathic
disease arising from protein misfolding and aggregation; however, immunopathy also contributes
to AD particularly as an excessive pro-inflammatory innate immune response. The 30 very diverse
risk factors for AD identified in this review are uniquely unified by their common ability to elicit
neuroinflammation, manifesting as microglial activation and pro-inflammatory cytokine (IL-1β,
IL-6, TNFα) release, ultimately causing neuronal loss and brain atrophy thereby contributing to the
pathogenesis of the disease. These risk factors cause an imbalance in immune homeostasis triggering
excessive pro-inflammatory activities which are neurotoxic.
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2. Thirty Risk Factors
2.1. Age

Although AD is not a normal long-term outcome of aging, age is regarded as the best
established risk factor for the disease. The number of people living with AD doubles every
five years after age 65 years; 40% of people aged 90 years and older have AD [11]. In the
preponderance of people diagnosed with AD, symptoms onset after they reach their mid-60
s in age or even later. When the disease manifests clinically before age 65, it is regarded
as uncommon.

The links between aging and AD are many and complex; however, neuroinflammation
is a key component of this link, with aging being associated with neuroinflammation
and neuroinflammation being associated with AD. D’Avila et al. established that aged
mice exhibit dystrophic pro-inflammatory microglia in the entorhinal cortex and hip-
pocampus within the medial temporal lobe [12]. Aged mice also release higher levels of
pro-inflammatory (IL-1β and IL-6) cytokines in the brain and higher levels of NADPH
oxidase 2 (Nox2) expression compared to younger animals [13].

In humans, aging and a chronic inflammatory state frequently co-exist in the periphery
and in the brain. Aging impairs functional interactions between the brain and the immune
system; microglia and astrocytes, functioning in their capacity as innate immune cells,
become more pro-inflammatory during aging [14]. This age-associated increase in innate
immune reactivity heralds an augmented inflammatory cytokine brain response after
activation of the innate immune system during the initiation and progression of AD,
leading to more severe long-lasting behavioural and cognitive deficits.

2.2. Sex

After age, sex is the other most commonly cited risk factor for AD. Women are more
likely to develop dementia over the course of their life (even after greater longevity is
considered); twice as many women have AD compared to men. A Swedish study by Beam
et al. followed 16,926 people and noted that commencing at age 80 years, women are more
likely to be identified as having AD than men at corresponding ages [15]. An analogous
Taiwanese study by Liu et al. concluded that the likelihood of developing AD throughout
a seven-year time duration was greater in women compared to men [16]. Finally, a meta-
analysis by Niu et al. studying the European incidence of AD calculated that, annually,
13 women out of 1000 developed AD, compared to only 7 men [17].

Immune-mediated neuroinflammatory responses are different between men and
women. Women are more susceptible to inflammatory pathological consequences than men
via neuroimmune alterations, including microglial activation, pro-inflammatory cytokine
expression and dysinformational synaptic plasticity [18]. In a study involving injecting
volunteers with immunogenic lipopolysaccharides (LPSs), Engler et al. ascertained that
women undergo a significantly enhanced pro-inflammatory response, with higher circulat-
ing levels of TNFα and IL-6; conversely, the LPS-triggered rise in anti-inflammatory IL-10
was significantly greater in men [19]. Finally, women constitute >80% of all diagnoses of
autoimmunity, particularly as demonstrated by differences in the incidence for Sjögren syn-
drome, systemic lupus erythematosus, Hashimoto thyroiditis, Graves’ disease, scleroderma
and myasthenia gravis [20]; Meier-Stephenson et al. argued that AD is an autoimmune
disease. Such sex-based neuroimmune differences provide a possible explanation for the
corresponding sex differences in the incidence and prevalence of AD [21].

2.3. Arterial Hypertension

Hypertension is a well-documented and accepted risk factor for AD. Multiple studies
have concluded the existence of a correlation between cognitive decline and systemic
arterial hypertension in different age cohorts [22,23]. Systemic arterial hypertension, par-
ticularly midlife high blood pressure (BP), has been related to a higher risk of dementia,
including AD. In the middle years of life (age 40–64 years), there is a positively correlated
relationship between BP elevation and cognitive dysfunction in AD, whilst in elderly popu-
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lations (age ≥ 65 years), this relationship is more controversial, with hypotension being
deleterious to intellectual function.

Not surprisingly, the link between hypertension and AD is multifactorial, with vascular
factors playing a major contributing role. However, neuroinflammation is another major
mechanism linking hypertension and AD [24]. Animal studies have established that
prolonged BP elevation culminates in neurotoxic glial activation and increased cerebral
inflammatory mediators, particularly pro-inflammatory cytokines, such as TNFα and
IL-1β. Solé-Guardia et al. observed that individuals experiencing chronic hypertension
had an enhanced neuroinflammatory response, manifesting as augmented microglial
activation and astrogliosis and more apparent perivascular inflammation compared to
non-hypertensives [25]. Carnevale et al. showed that hypertension induced microglial
activation, and interleukin IL-1β upregulation triggers neuroinflammation before Aβ

deposition [26].

2.4. Hypercholesterolemia

Dysregulated cholesterol biosynthesis and metabolism constitute a risk factor for AD
and multiple other diseases. In vivo and human-based investigations have concluded that
a high-cholesterol diet (HCD) induces A. In rats and mice, HCD produces significant cogni-
tive decline and AD-like disease [27,28]; in Japanese white rabbits on an HCD, alterations
in brain structure and function analogous to those of human AD were noted [29]. Epidemi-
ological investigations have also suggested a relationship between hypercholesterolemia
and AD [30]. Xu et al. suggested that high cholesterol levels were associated with increased
AD pathology severity, and that the mechanism for this enhanced pathology is not entirely
mediated by cerebrovascular conditions [31]. Thus, mounting evidence indicates that exces-
sive cholesterol accumulates in AD, driving AD-associated pathological changes, and that
hypercholesterolemia promotes AD development as a risk factor, especially with elevated
cholesterol levels in the middle years of life.

As with hypertension, the link between hypercholesterolemia and AD is multifactorial,
with vascular factors playing a major contributing role. However, neuroinflammation is
another major mechanism linking hypercholesterolemia and AD [32]. For example, Thiru-
mangalakudi et al. demonstrated that hyperlipidemic mice showed increased expression of
pro-inflammatory microglia and cytokines/mediators, including TNFα, IL-1β, IL-6, NOS2
(Nitric oxide synthase 2) and COX2 (Cyclooxygenase-2) [33]. Chen et al. also showed, in
mice, that a high-cholesterol diet enhanced pro-inflammatory NLRP3 (NLR family pyrin
domain containing 3) inflammasome activation and IL-1β expression [34].

2.5. Smoking

Based on a comprehensive review, Durazzo et al. concluded that smoking tobacco
products gives rise to a significantly intensified risk for AD and dementia [35]. Cigarette
smoke/smoking is associated with AD neuropathology in both preclinical models and
human studies. Jeong et al. showed that smoking discontinuation resulted in a reduced
risk of dementia [36].

The negative consequences of smoking are numerous, providing multiple mechanisms
by which smoking contributes to pathology. However, immune-based inflammation is
a significant contributor to this pathology. Alrouji et al. concluded that smoking inflicts
complex immunological effects, which include enhancements in inflammatory responses
(activated microglia with increased pro-inflammatory cytokine responses) with a concomi-
tant lessening of immune defences, causing an increased vulnerability to the deleterious
effects of a chronic ongoing pro-inflammatory environment [37]. In a case–control study,
Liu et al. found that cigarette smoking was associated with elevated concentrations of
at-risk biomarkers for AD, as indicated by higher neuroinflammation biomarkers in the
cerebrospinal fluid of participants in the active smoking group [38].
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2.6. Physical Inactivity

Based on a comprehensive literature review, Meng et al. concluded that physical
inactivity is one of the most readily addressable and avoidable risk factors for AD and that
improved physical activity levels are linked to a diminished risk of AD development [39].
Physical exercise is also helpful in improving behavioural and psychiatric symptomatic
indicators of AD, notably via better cognitive function. Chen et al., likewise, concluded that
physical exercise is important in the prevention of AD, providing non-pharmacological
treatment options [40].

The case correlating physical inactivity with AD via a neuroinflammatory mechanism
is strong. Recently, Wang et al. demonstrated that exercise ameliorates AD by directly
and indirectly regulating brain immune responses and promoting hippocampal neuro-
genesis [41]. Similarly, Seo et al. showed that neuroinflammation-mediated microglia
activation with pro-inflammatory cytokine release is enhanced by physical inactivity and
downregulated by exercise [42]. Svensson and co-workers likewise showed that exercise
leads to the elevated biosynthesis and release of anti-inflammatory cytokines, and lower
concentrations of pro-inflammatory cytokines and activated microglia [43].

2.7. Obesity

Obese people exhibit a higher risk of acquiring age-correlated cognitive reduction,
mild cognitive impairment and AD [44,45]. An association between body mass index
(BMI) and AD has been described, with multiple groups studying the relationship between
elevated BMI and AD. Obesity is, thus, a recognized risk factor for AD [46–49].

Miller and Spencer suggested that neuroinflammation is the linkage that unites obesity
with AD; obesity (and high fat consumption) culminates in systemic inflammation as well as
elevated levels of circulating free fatty acids and inflammatory mediators. These circulating
cytokines and activated immune cells reach the brain and initiate local neuroinflammation,
including microglial proliferation and causing synaptic remodelling and neurodegenera-
tion [50]. Similarly, Henn et al. also suggested that immune dysregulation, including inflam-
maging (e.g., age-related increase in the levels of cytotoxic pro-inflammatory biomarkers
in blood and tissues) and immunosenescence (e.g., age-related reduction in the efficacy
of immune system function), commonly occur prematurely as a consequence of obesity,
promoting cognitive impairment and AD [51].

2.8. Dietary Factors

In recent years, numerous studies have confirmed that, especially with advancing age,
diet affects cognitive capacities and ultimate susceptibility to AD. In a systematic search of
randomized clinical trials, reviews and meta-analyses evaluating the connection between
diet and AD, Xu Lou et al. examined 38 studies and concluded that a Western diet pattern
is a risk factor for AD, whereas the Mediterranean diet, ketogenic diet and supplementation
with omega-3 fatty acids and probiotics are potentially neuroprotective diets [52]. The
Mediterranean diet, the related MIND diet (which incorporates constituents designed to
lower blood pressure) and other healthful dietary regimens are associated with cognitive
benefits in studies and a decreased probability of AD [53–56].

Kip and Parr-Brownlie noted that many dietary risks factors are linked to AD-promoting
neuroinflammation, particularly high saturated and trans-fat intake; indeed, dietary modifi-
cations in mice can influence levels of pro-inflammatory microglia and cytokines [57]. Con-
versely, dietary restriction (DR) has been shown to diminish age-related pro-inflammatory
activation of microglia, astrocytes and cytokines while prolonging lifespan in various
organisms [58,59].

The microbiome also plays an essential role in the link between diet and AD. Dietary
changes (either deleterious or beneficial) influence the microbiome composition, thereby
altering the gut–brain homeostatic axis with the release of pro-inflammatory bacterial
metabolites, which predispose people to AD progression [60].
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2.9. Cerebrovascular Disease

Cerebrovascular disease, manifesting as cerebral atherosclerosis and arteriolosclerosis,
is a risk factor associated with AD; thus, cerebral vasculopathy is a pervasive risk factor
for both vascular dementia and AD [61]. A number of midlife vascular risk factors are
significantly associated with AD—findings consistent with a role of vascular disease in
the development of AD [62]. Stroke is a common pathology associated with AD among
elderly individuals—a co-morbid relationship at its fullest when accompanied by a plethora
of commonly acknowledged vascular risk factors [63]. Vascular risk factors associated
with AD include the conventionally recognized risk factors (hypertension, cholesterolemia)
which contribute to atherosclerotic vascular change, as well as amyloid angiopathy, in
which amyloid deposits in the walls of small to medium cerebral blood vessels lead to
microhaemorrhages with consequent neurologic deficits, which may include impairments
in memory or cognition.

Beyond the obvious vascular contributions (ischaemia, hypoxemia) to dementia, neu-
rotoxic brain inflammation (pro-inflammatory microglia and cytokines) accompanies the
ischaemic conditions of cerebrovascular disease, thereby contributing to AD pathogene-
sis [64–66]. Jurcau and Simion showed that neuroinflammatory mechanisms significantly
contribute to neuronal injury during cerebral ischemia, ultimately further increasing the
extent of cerebral damage and neurological deficits in AD [67].

2.10. Diabetes Mellitus

Numerous studies have shown that people with diabetes, especially Type 2 Diabetes,
are at higher risk for AD; indeed, AD has even been referred to as Type 3 Diabetes [68–70].
Among people with diabetes, the risk for AD is 65% higher than in non-diabetic controls.
Conversely, but analogously, in people with AD, the prevalence of diabetes is higher than
anticipated, approaching 35%. An even greater number of people with AD (46%) have
glucose intolerance, which is often a metabolic predictor of diabetes. Even without overt
clinically demonstrated diabetes, dysregulation of the glucose metabolism is associated
with cognitive decline and AD risk.

Given the complexity of diabetes, the possible mechanistic links between diabetes
and AD are multi-fold and include Aβ misfolding and oligomerization, tau hyperphos-
phorylation and aggregation, neuroinflammation, damaging pro-oxidative processes and
dysfunctional mitochondria. Amongst these, Van Dyken and Lacoste argued that neu-
roinflammation is one of the key mechanistic connectors between diabetes and AD [71].
Similarly, based on a systematic review of in vitro, preclinical and clinical studies, Vargas-
Soria et al. concluded that diabetes triggers specific responses that include the upregulation
of activated microglia and secretion of a wide variety of pro-inflammatory cytokines and
chemokines [72]. Pathways commonly activated by diabetic pathological changes include
the NLRP3 inflammasome.

2.11. Oral Hygiene (Porphyromonas gingivalis)

Bacteria and their associated inflammatory molecules are able to travel from regions
of mouth infections to the brain via the bloodstream [73]. Researchers in the School of
Dentistry, University of Central Lancashire, initially drew attention to the link between
oropharyngeal disease and AD, concluding that periodontitis/gingivitis is a risk factor for
AD [74]. The mouth contains 700 bacterial species, including ones that cause periodontal
gingivitis; Porphyromonas gingivalis, a Gram-negative, rod-shaped, pathogenic anaerobic
bacterium from the phylum Bacteroidota, is the most common culprit of gum disease.
Recent studies indicate that Aβ oligomerization and its associated neuroinflammatory
responses may be triggered in response to this infection. Porphyromonas gingivalis and the
gingipains enzyme which it produces have been identified in AD brains. Thus, periodontitis
is an anatomically specific infection and risk factor for AD [75,76].

Neuroinflammatory processes constitute the connection between chronic, inflamma-
tory disease of the oropharyngeal cavity and gums (periodontitis) and AD [77]. This
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neuroinflammation may occur through two basic processes: a. local (oral) and/or its asso-
ciated systemic inflammation, triggering a neuroinflammatory reaction within the brain
via the distribution of pro-inflammatory mediators; or b. direct entry of bacteria into the
cranial space, eliciting a protective innate immune response manifesting as neuroinflamma-
tion. Also, pathogenic oropharyngeal bacteria release structurally diverse metabolites and
inflammatory mediators into the bloodstream, ultimately crossing the brain–blood barrier
(BBB); these bacteria can instigate alterations in gut microbiota, further enhancing inflam-
mation and affecting brain function via the gut–brain axis. The fifth cranial (trigeminal)
nerve has been proposed as an alternative route for connecting oral bacterial products to
the brain. Whatever the mechanism, periodontitis/gingivitis leads to microglial activation
and pro-inflammatory cytokine release in the brain, thereby triggering and promoting AD
pathogenesis [78,79] (see Figure 2).
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Figure 2. Risk factors for Alzheimer’s disease: although AD is a disease of the central nervous
system, the diverse risk factors that contribute to its initiation and progression are not confined
to the brain and often are systemic disorders such as diabetes mellitus, arterial hypertension or
chronic inflammation. Non-systemic localized factors, anatomically distinct from brain, such as
chronic periodontitis/gingivitis dental inflammation, are also emerging risks. May of the risk factors
are interconnected (e.g., vascular disease, hypertension, hypercholesterolemia and diabetes) and
mutually self-sustaining; these factors also contribute to the pathogenesis of AD via a multi-factorial
route, through not only neuroinflammatory processes, but also vascular dysfunction.
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2.12. Peptic Ulcer Disease (Helicobacter pylori)

There is also an association between peptic ulcer disease and AD, analogous to the
connection between oral bacteria and AD, but with the peptic ulcer bacterium (Helicobacter
pylori) being further down the gastrointestinal tract [80,81]. Studies have shown that peptic
ulcer disease increases the risk of AD via the mechanisms of systemic inflammation and
altered gut microbiota [82]. In a population-based study, Chang et al. showed that the
suppression of Helicobacter pylori yields decreased progression of dementia [83]. Thus,
periodontitis and peptic ulcer disease are two anatomically specific infections implicated as
risk factors for AD.

Noori et al. showed that Helicobacter pylori infection contributes to the expression of
AD-associated risk factors and neuroinflammation, particularly enhanced concentrations
of activated microglia and pro-inflammatory cytokines [84]. In a rat model of peptic ulcer
disease, increased levels of circulating pro-inflammatory cytokines such as IL-1β were
documented [85].

2.13. Systemic Infection

The relationship between systemic non-CNS infections and AD is complex, but a
preponderance of evidence supports the supposition that systemic infection is a risk factor
for AD [86]. Giridharan et al. showed that infection-induced systemic sepsis accelerates
cognitive decline and neuropathology in an AD mouse model [87]. Based on a systematic
review and meta-analysis of human studies, Lei et al. showed that surviving sepsis was
linked to a greater risk of dementia (OR = 1.62, 95% CI = 1.23–2.15, I2 = 96.4%, p = 0.001) and
that septicaemia is associated with increased risk for dementia and AD [88]. Though many
microorganisms have been implicated, Herpes simplex virus 1, Chlamydia pneumonia and
Borrelia burgdorferi have been discussed as infectious agents, which are possible specific
microbiological risk factors for AD. Conversely, systemic infection exacerbates pre-existing
AD, accelerating cognitive decline and disease progression.

Systemic infections provoke a systemic inflammatory response, which, in turn, elicits
neuroinflammation. In a prospective human pilot study, Holmes et al. demonstrated
that cognitive function is negatively impacted for two months or longer following the
resolution of a systemic infection and that elevated serum levels of IL-1β herald this
cognitive impairment [89]. In a post-mortem study, Asby et al. provided evidence that
systemic infection raises the levels of multiple cytokines (TNFα, IL-1β, IL-6, IL-8 and IL-15)
in the brain [90].

2.14. Systemic Inflammation

Acute and chronic systemic inflammation is characterized by the systemic production
of pro-inflammatory cytokines (e.g., TNFα) that play a role in immune to brain communi-
cation; systemic inflammation increases pro-inflammatory cytokine secretion in the brain,
which, in turn, causes an increase in cognitive decline and disease progression in AD [91].
Walker et al. discussed how systemic pro-inflammatory cytokines can traverse the BBB and
enter the brain to regionally promote a pro-inflammatory environment, via a process which
also involves signalling through endothelial cells and/or activating the vagus nerve [92].
Systemic inflammation, thereby, induces phenotypically reactive pro-inflammatory mi-
croglia and astrocytes, which further can foster β-amyloid oligomerization, tau hyper-
phosphorylation and complement activation. Similarly, Xie et al., likewise, discussed how
peripheral inflammation is a risk factor contributing to AD by means of neuroinflamma-
tion [93]. Finally, diseases typically associated with chronic systemic inflammation, such as
rheumatoid arthritis, are regarded as risk factors for AD [94,95].

2.15. Allergies

Joh et al. studied 6,785,948 adults aged ≥40 years who participated in a national health
examination without any history of dementia before baseline; during 8.1 years of follow-up,
260,705 dementia cases (195,739 AD) were identified, and three allergic diseases (asthma,
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atopic dermatitis, allergic rhinitis) were positively associated with dementia risk [96].
Compared with individuals without allergies, those with all three allergic diseases had
a substantially increased risk of AD (multivariable hazard ratios 1.46; 95% CI 1.25–1.70).
Bożek et al. also noted a similar correlation between allergies and AD [97]. Conversely,
allergies can exacerbate existing health issues for older adults with AD.

Not surprisingly, there is a relationship between allergies and inflammation [98].
Kabata and Artis described how allergies affect a variety of cytokines, inflammatory media-
tors and neuropeptides to yield an enhanced neuroinflammatory response [99]. Similarly,
Mirotti et al. extensively reviewed the relationship between allergies and brain inflamma-
tion, particularly microglial activation and pro-inflammatory cytokine release [100].

2.16. Migraine Headache

In a nationwide (South Korea) cohort study, Kim et al. showed that the overall inci-
dence of AD was greater in people with a chronic migraine history than in non-migraineurs
(8.0 per 1000 person-years vs. 4.1 per 1000 person-years) [101]. Similarly, in a population-
based cohort study involving 88,390 participants, Hurh et al. concluded that migraine is
associated with an increased risk of subsequent AD [102]. Multiple other epidemiological
studies support the observation that migraine is a risk factor for AD [103,104].

Migraine is a neuroinflammatory disorder [105], with evidence of neuroinflammation
in vascular and perivascular spaces. The implications of co-existing migrainous neurogenic
inflammation and neuroinflammation in the histochemical pathophysiology of migraine
have been repeatedly demonstrated in preclinical models involving dural vessels and
trigeminal endings within the trigemino-vascular system. Neuroinflammatory pathways,
especially those invoking inflammasome protein involvement, are regarded as clinical
biomarkers and promising druggable targets for migraine [106].

2.17. Chronic Pain

In a France-wide propensity-matched cohort group, Bornier et al. noted that among
64,496 people, the incidence of AD was higher in the chronic pain population than in a
control group (1.13% vs. 0.95%, p < 0.001); chronic pain increases the risk of AD [107].
Supportively, in a systematic review, Innes and Sambamoorthi documented the possible
involvement of chronic pain to cognitive impairment and subsequent dementia including
AD [108]. Also, Cao et al. provided evidence that supports a risk factor link between
chronic pain and AD [109].

In mechanistic considerations, Vergne-Salle and Bertin discussed how sensory pe-
ripheral nerve fibres conveying pain messages are able to mediate peripheral sensitization
processes, which, in turn, are linked to the elaboration of inflammation molecules; these
afferent nerve fibres trigger neurotransmitter release in spinal cord dorsal root ganglia and
dorsal horns, thereby activating microglia and producing pro-inflammatory cytokines and
chemokines throughout the CNS [110]. Moreover, as with many of these risk factors, the
relationship is bidirectional, self-sustaining and mutually triggering, as evidenced by the
fact that neuroinflammation enhances chronic pain perception [111].

2.18. Head Trauma

Young adults who experience moderate to severe head trauma have a greater-than-
two-fold enhanced risk for developing AD or a related dementia later in life [112]. In a
study based on a population-based prospective historical cohort design, Plassman et al.
showed that both moderate head injury (hazard ratio (HR) = 2.32; CI = 1.04 to 5.17) and
severe head injury (HR = 4.51; CI = 1.77 to 11.47) were associated with an increased risk of
AD [113]. Thus, there is evidence for an association between a history of previous head
injury and the risk of developing AD.

Schimmel et al. showed that neuroinflammation following traumatic brain injury
is a chronic response to an acute injury [114]. Simon et al. demonstrated that some
individuals with traumatic brain injury develop chronic neuroinflammation, which can
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last for years after the injury, and is associated with activated microglia and the release
of pro-inflammatory cytokines—a conclusion also supported by Xiong et al. and Zheng
et al. [115–117].

2.19. Domestic Violence

Intimate partner violence (IPV; also termed spousal abuse or domestic violence) forms
a sub-group of head trauma scenarios uniquely correlated with AD [118]. However, IPV
is more than a focussed sub-type of head trauma. Unlike the head trauma typically
seen during accidents or in professional athletes, IPV also comprehensively encompasses
psychological, sexual and financial abuse and, not infrequently, is accompanied by alcohol
or substance abuse; the nature of the physical violence in IPV is also different, frequently
involving manual or ligature partial strangulation.

A 1990 case report by Roberts et al., describing a 76-year-old woman with dementia,
connected IPV and AD [119]. A woman was found unconscious with head contusions;
her relatives disclosed that her husband had been abusive for years. A post-mortem
brain examination revealed morphological and immunological characteristics showing that
the woman’s IPV-associated brain trauma contributed significantly to the development
and progression of her dementia. The consequences of traumatic brain injuries (TBIs)
are significant, with evidence suggesting a single TBI may double one’s likelihood of
developing dementia. Traumatic brain injuries are highly prevalent amongst victims of
IPV, arguably leaving hundreds of millions of women worldwide at increased risk for
developing dementia.

The connection between IPV and AD is clear and involves multiple mechanisms
including neuroinflammation. Newton et al. showed that IPV histories are associated with
biologic mediators of inflammation, particularly elevated levels of IL-6 [120]. Similarly,
Madison et al. showed that IPV is associated with augmented pro-inflammatory cytokine
responses including IL-6 and TNFα [121].

2.20. Depression

Arguably, depression and dementia (AD) share a continuum as a single spectrum
disorder: depression leads to dementia and dementia leads to depression. Depression is,
thus, a risk factor for AD—an assertion supported by multiple studies. Moreover, emerging
evidence is indicating that the time-point in life during which the depression occurs is
crucial in determining the nature of this mutually triggering association between AD and
depression. In particular, earlier-life depression is associated with a more-than-doubled
increase in risk for AD and related dementias; in contrast, analyses of geriatric-onset depres-
sion are less definitive but, in general, they too support the notion of a depression–dementia
co-dependency [122]. A variety of studies support these conclusions that depression is a
risk factor for AD [123–128].

Multiple studies suggest that neuroinflammation is the key process linking depression
to dementia [129]. In depression, chronic activation of innate immunity accelerates central
inflammation, leading to higher levels of inflammatory cytokines, most consistently IL-1β,
IL-6 and TNFα, which, in turn, correlates with greater depressive symptomatology [130].
Neuroinflammation is involved in the pathophysiology of depression through the actions
of pro-inflammatory cytokines, which influence interneuronal cross-talk via serotonergic
pathways as well as neurogenesis and neuroplasticity in mood-related cerebral regions;
these cytokines also stimulate the hypothalamus–pituitary–adrenal axis, exerting influence
on hormonal-mediated mood alterations [131].

2.21. Anxiety

Based on a comprehensive literature review, Becker et al. concluded that anxiety is a
risk factor for AD (n = 26193, hazard ratio 1.53, 95% CI 1.16–2.01, p < 0.01) [132]. Similarly,
based on a meta-analysis of prospective cohort studies, Santabárbara et al. evaluated nine
prospective cohorts representing 29,608 participants and identified an overall relative risk
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of dementia of 1.24 (95% CI: 1.06–1.46) and a population fraction of dementia attributable
to anxiety of 3.9%; they concluded that anxiety is extensively connected with an enhanced
risk for AD [133].

The relationship between anxiety, neuroinflammation and AD is complex and bi-
directional: anxiety causes neuroinflammation and neuroinflammation causes anxiety
(analogous to the depression–dementia spectrum). Studies by Won and Kim suggest that
anxiety disrupts the hypothalamic–pituitary–adrenal axis and affiliated autonomic nervous
system activities; in turn, this mutually induces enhanced pro-inflammatory cytokine
levels from activated microglia, particularly in prefrontal and limbic brain structures. The
resulting enhanced neuroinflammatory conditions contribute to AD progression [134].
Conversely, based on animal and clinical studies, Zheng et al. and Guo et al. concluded
that neuroinflammation induces anxiety by modulating neuronal plasticity in multiple
brain regions but, particularly, the basolateral amygdala [135,136]. Thus, anxiety triggers
neuroinflammation central to the pathogenesis of AD.

2.22. Insomnia

Sleep disorders, including insomnia, are a well-documented risk factor for AD [137].
In general, neurodegenerative diseases cause sleep disruption, also exemplified by clinical
events such as “sundowning” and nocturnal wandering; conversely, chronic insomnia is
itself a risk factor for neurodegenerative diseases, including AD. This is not surprising
given that sleep has important roles in learning and memory consolidation. Also, sleep
deprivation affects not only the symptoms but also the molecular pathogenesis of AD. Sleep
contributes to the sequestration and removal of Aβ from neural tissue: Kang et al. showed
in transgenic mice that chronic insomnia leads to Aβ accumulation and symptomatic
disease progression [138]. Thus, multiple studies have now convincingly demonstrated
that sleep deprivation is a risk factor for AD [139–144].

Neuroinflammation is the central cellular and molecular connection between insomnia
and AD. Zhu et al. showed that disturbed sleep architecture increased pro-inflammatory
IL-6 cytokine levels and induced the phenotypic activation of microglia in the mouse
hippocampus, impairing learning and memory, which are hippocampus-dependent pro-
cesses [145]. Zielinski and Gibbons described the neurotoxic pro-inflammatory role of the
IL-1β and TNFα inflammatory cytokines and the NLRP3 inflammasome during periods
of dysregulated sleep [146]. Chronic insomnia has also been associated with compro-
mised structural integrity of the BBB, which permits increased entry of peripheral immune
cells (macrophages) and inflammatory cytokines into the CNS, further contributing to
the ongoing neuroinflammation implicated in AD pathogenesis [147]. Therefore, sleep
impairment leads to neuroinflammation through increasing levels of pro-inflammatory
cytokines (TNFα, IL-6 and IL-1β) and enzymes (COX), which catalyse inflammatory neuro-
chemical processes.

2.23. Ethanol Abuse

Alcoholism is a substance abuse disorder clinically associated with multiple and varied
cognitive problems, including acute intoxication, delirium, Wernicke’s psychosis, alcoholic
dementia and AD. Not surprisingly, chronic ethanol abuse has been identified as a risk
factor for cognitive decline, AD and dementia [148]. Ethanol is a small lipophilic molecule
capable of altering multiple neurochemical pathways, which subserve the cognition and
memory processes essential to normal brain function; chronic ethanol toxicity, thus, shares
and enhances negative effects on normal brain psychology with AD. In turn, this justifies
the assertion that alcohol abuse increases the risk of developing AD [149–153].

Neuroinflammation is a major histochemical component of alcohol-induced neural
damage [154]. Alcohol abuse triggers peripheral inflammation and central neuroinflam-
mation; the receptor-mediated enabler of this diffuse inflammatory response is the up-
regulation of the innate immunity TLR4 (Toll-Like Receptor 4) protein with subsequent
microglial and inflammatory cytokine involvement. Based on mouse studies, Lowe et al.
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established that chronic ethanol use and abuse promote the pathological entry of periph-
eral macrophages into the brain, with accompanying microglia activation mediated by
stimulation of the CCR2/5 (C-C chemokine receptor types 2 and 5) immune receptor
axis [155].

2.24. Social Isolation

Loneliness and social isolation are widespread and significant public health risks
affecting many people and placing them at enhanced risk for AD. In an analysis of
502,506 British Biobank participants and 30,097 Canadian Longitudinal Study of Aging
participants, Shafighi et al. evaluated risk factors for developing AD in the context of
loneliness and aberrant social networking support; they identified strong links between
social isolation and AD [156]. Similarly, in a study to establish Cox proportional hazard
models with social isolation and loneliness as separate exposures, Shen et al. concluded
that social isolation is a risk factor for AD that is independent of loneliness [157].

Neuroinflammation is a definite immunological concomitant of the psychosocial
problems inflicted by social isolation. In a study on eight-week-old male C57BL/6 mice, Al
Omran et al. showed that social isolation resulted in microglial activation and the release of
pro-inflammatory cytokines [158]. Analogously, in a study with BALB/c mice, Ayilara and
Owoyele demonstrated evidence of neuroinflammation manifesting as increased activated
microglial count and elevated IL-1β and TNFα cytokine levels in a social isolation rearing
model [159]. Also, Vu et al. showed that social isolation produces brain region-specific
activation of the microglia state in C57Bl/6 mice [160].

2.25. Glaucoma

Glaucoma is the collective diagnostic term for a group of ocular diseases characterized
by optic neuropathies linked to degeneration of the retinal ganglion cells; though glaucoma
is conventionally conceptualized as a disorder of intraocular pressure, it is better regarded
as primarily a disorder of neural tissue within the optic nerve, leading to visual impairment
and blindness. Evidence of a link between AD and glaucoma has arisen from epidemio-
logical analyses, revealing that people with AD have a significantly increased incidence
of glaucoma [161]. Cesareo et al. studied 51 AD subjects and 67 sex-matched controls:
subjects underwent measurements of intraocular pressure, visual field testing and retinal
nerve fibre layer thickness assessment by slit-lamp biomicroscopy—patients with AD had a
higher frequency of glaucoma-like alterations [162]. Crump et al. studied 324,730 persons
diagnosed with glaucoma from 1995 to 2017 in Sweden and 3,247,300 age- and sex-matched
population-based controls without prior dementia: in 16 million person-years of follow-up,
32,339 (10%) persons with glaucoma and 226,896 (7%) controls were diagnosed with de-
mentia [163]. Persons with glaucoma had increased risks for AD (adjusted HR, 1.39; 95%
CI, 1.35–1.43); among glaucoma subtypes, both primary open-angle and normal-tension
glaucoma was associated with an increased risk for AD. Thus, people with glaucoma have
an increased risk of developing AD [164,165].

Preclinical and clinical evidence supports the notion that glaucoma is a widespread
neurodegenerative condition, whose shared pathogenic mechanism with AD is neuroin-
flammation. Williams et al. showed that the neuropathology of glaucoma extends beyond
the visual pathways and involves pro-inflammatory neuroinflammation at both a cellular
(microglia, astrocyte) and molecular (cytokine) level in other CNS locations [166]. Studies
by Rolle et al., Rutigliani et al. and Soto and Howell reached similar conclusions [167–169].

2.26. Hearing Loss

Hearing loss at ages 45–65 is a significant risk factor for dementia, possibly accounting
for 8 percent of all dementia cases; a 2020 Lancet report determined that hearing loss across a
wide variety of types and aetiologies approximately doubles the risk of dementia, with even
subclinical hearing loss enhancing AD risk [3]. Extensive studies by Lin et al. concluded
that hearing loss is associated with increased cognitive decline and incident AD and other
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dementias in older adults [170]. Based on an analysis of a UK biobank cohort, Jiang et al.
concluded that in people with hearing loss, restorative hearing aid use is associated with a
reduced risk of dementia of a similar level to that of people without hearing loss, thereby
highlighting the urgent need to take measures to address hearing loss as a remediable risk
factor for AD [171].

Seicol et al. showed that age-related hearing loss is accompanied by chronic inflam-
mation in neural structures, with elevated expression of pro-inflammatory cytokines and
microglial activation [172]. Similarly, Frye et al. demonstrated that pro-inflammatory
cytokines including TNFα and IL-1β, and chemokines including CCL2, are induced by
hearing loss [173].

2.27. Noise Pollution

Despite their obvious interconnection, hearing loss and exposure to noise pollution
are regarded as separate risk factors. Hearing loss caused by factors other than noise
exposure is a risk factor for AD; chronic noise exposure of insufficient magnitude to
cause obvious hearing loss is, likewise, a risk factor for AD. Epidemiological studies
are increasingly identifying the association between external noise exposure (via noise
pollution) and dementia [174]. Weuve et al., for example, showed that an increment
of 10 A-weighted decibels (dBA) in noise corresponded to 36% and 29% higher odds of
prevalent mild cognitive impairment (MCI; odds ratio (OR) = 1.36; 95% confidence interval
(CI), 1.15 to 1.62) and AD (OR = 1.29, 95% CI, 1.08 to 1.55) [175]. Cantuaria et al. estimated
that as many as 1216 out of the 8475 cases of dementia registered in Denmark in 2017
could be attributed to noise exposures, indicating a great potential for dementia prevention
through reductions in ambient noise such as that arising from roadway traffic [176].

As with hearing loss, neuroinflammation is a central mechanistic player in the patho-
genesis of noise-induced AD. Wang et al. showed that noise exposure is associated with
elevated expression of pro-inflammatory cytokines and microglial activation in the primary
auditory cortex; genetic knockout of TNFα or pharmacologically blocking TNFα expression
prevented this neuroinflammation [177]. Similarly, Cui et al. showed that chronic noise
exposure acts cumulatively to exacerbate neuroinflammation and AD pathology in the rat
hippocampus [178].

2.28. Air Pollution

Based on a systematic literature review, Peters et al. concluded that greater exposure to
PM2.5, NO2/NOx and CO was associated with an increased risk of dementia, where PM2.5
is airborne particulate matter ≤2.5 µ in size [179]. Subsequently, Peters and Li reaffirmed
this observation, claiming that constituents of PM2.5, namely black carbon, organic matter,
sulphates (SO4

2−) and ammonium (NH4
+), from traffic and fossil fuel combustion are

significantly associated with the development of AD [180]. Also, a national cohort study
(2000–2018) of long-term air pollution exposure and incident dementia in older adults in
the United States showed that exposures to PM2.5 and NO2 are associated with an increased
incidence of AD [181,182].

Campbell et al. showed that exposure to particulate matter in polluted air increases
biomarkers of inflammation in the mouse brain, including activated microglia, and levels
of pro-inflammatory cytokines such as IL-1β and TNFα [183]. Tin-Tin-Win-Shwe et al.,
likewise, showed changes in pro-inflammatory cytokine mRNA expressions in mice fol-
lowing nanoparticle air pollution exposure [184]. These data and others led Block and
Calderón-Garcidueñas to conclude that the emerging evidence implicates air pollution as a
chronic source of neuroinflammation, instigating AD with activation of microglia as key to
this process [185].

2.29. Global Warming

In 2021, the World Health Organization (WHO) announced that climate change is the
biggest global health threat to humanity’s future. A 1.5 ◦C ambient temperature increase
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may seem trivial when one considers diurnal and seasonal variations, but it does induce
subtle but tangible effects on neural pathways and mechanisms that underlie normal brain
functioning; these pathways, including neuroinflammation, are implicated in neurodegen-
eration [186]. Thus, it is possible that global warming secondary to climate change will
emerge as a risk factor for AD by facilitating a state of chronic neuroinflammation. In
addition, climate warming puts people with AD at risk for symptom worsening and disease
progression [187–189]. Gong et al. predicted a 4.5% increase in the risk of dementia hospital
admission per 1 ◦C increase above 17 ◦C and a 300% increase in hospital admissions for
AD by 2040 because of climate change [190]. Although risk factors such as diet and obesity
are personally modifiable, risk factors such as climate change are problems which require
societal solutions at an international level (Table 1).

Table 1. Risk factors for AD.

Constitutive Factors
1. Age (neuroinflammation, proteopathy, vascular)

2. Sex (neuroinflammation, proteopathy, vascular)
Personal Modifiable Factors
3. Arterial Hypertension (vascular, neuroinflammation, proteopathy)

4. Hypercholesterolemia (vascular, neuroinflammation, proteopathy)

5. Smoking (vascular, neuroinflammation, proteopathy)

6. Physical Inactivity (vascular, neuroinflammation, proteopathy)

7. Obesity (vascular, neuroinflammation, proteopathy)

8. Diet (vascular, neuroinflammation, proteopathy)

9. Diabetes Mellitus (vascular, neuroinflammation, proteopathy)

10. Cerebrovascular Disease (vascular, neuroinflammation, proteopathy)

11. Oral Hygiene (neuroinflammation, proteopathy)

12. Peptic Ulcer Disease (neuroinflammation, proteopathy)

13. Head Trauma (trauma, neuroinflammation, proteopathy)

14. Depression (neuroinflammation, proteopathy)

15. Anxiety (neuroinflammation, proteopathy)

16. Insomnia (neuroinflammation, proteopathy)

17. Ethanol Abuse (neuroinflammation, proteopathy)

18. Social Isolation (neuroinflammation)

19. Hearing Loss (neuroinflammation)
Societal Modifiable Factors
20. Domestic Violence (trauma, neuroinflammation, proteopathy)

21. Noise Pollution (neuroinflammation)

22. Air pollution (neuroinflammation)

23. Global Warming (neuroinflammation)

24. Educational Level (neuroinflammation, proteopathy)
Comorbidity or Concomitant Risk Factors
25. Systemic infection (neuroinflammation)

26. Systemic inflammation (neuroinflammation)

27. Chronic Pain (neuroinflammation)

28. Chronic Migraine (neuroinflammation, proteopathy)

29. Chronic Allergies (neuroinflammation)

30. Glaucoma (neuroinflammation, proteopathy)
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As with the other risk factors, neuroinflammation is a key consideration in ascribing a
mechanistic explanation for climate change as an AD risk factor. Given the relationship
between ambient temperatures and inflammation, it is probable that neuroinflammation is
part of the pathological spectrum response to global warming [191,192]. For example, in
mice subjected to heat exposure, Lee et al. found: (1) an increased number of glial fibrillary
acid protein (GFAP)- and macrophage-1 antigen (Mac-1)-positive cells, (2) up-regulated
nuclear factor (NF)-κB, a master regulator of inflammation, and (3) marked increases in
COX-2, inducible nitric oxide synthase (iNOS),and cytokine IL-1β and TNFα in the mouse
hippocampus [193].

2.30. Educational Level

Lower education is associated with a greater risk for AD and related dementias [194].
The 2020 Lancet Commission that examined dementia risk factors found 7% of worldwide
dementia cases could be prevented by increasing early-life education [3]. This analysis also
concluded that higher childhood education levels and higher lifelong educational attain-
ment could reduce AD and dementia risk. A focussed sub-type of educational attainment
is the ability to speak multiple languages; multiple studies indicate that bilingualism or
multilingualism offer a degree of protective delay against the development of AD [195–197].

The correlation of educational level with neuroinflammation is not as immediately
apparent as for other risk factors, such as head trauma. Nonetheless, there are data clearly
supporting a relationship between education and brain inflammatory markers. Steinvil
et al. found a statistically significant inverse association between number of school years
and high-sensitivity C-reactive protein (CRP), fibrinogen and erythrocyte sedimentation
rate (ESR), concluding that level of education was inversely associated with inflammatory
biomarkers, even within highly educated populations [198]. Similarly, Maurel et al. found
a relationship between educational attainment and five inflammatory biomarkers (CRP,
fibrinogen, IL-1β, IL-6 and TNFα), whereby a low educational attainment was associated
with higher inflammation, even after adjusting for health behaviours and body mass
index [199]. A 2015 study by Okonkwo and co-workers showed that older adults who
completed at least 16 years of education had less evidence of AD biomarkers in their
cerebrospinal fluid (CSF) than people with fewer years of education [200].

However, education is a complex societal phenomenon. Thus, it is also possible
that education is associated with a higher socioeconomic status and quality of life (i.e.,
less obesity, better diet, better access to healthcare for hypertension, diabetes, depression,
deafness) that helps keep people healthy and lowers AD risk.

3. Conclusions

The development of effective diagnostics and therapeutics for AD is one of hu-
mankind’s pressing neuropharmacologic priorities. A hurdle in the successful attainment
of these priorities is the immense cellular and molecular complexity of AD. This complexity
is reflected by the equally complex diversity of risk factors associated with AD. However,
more than merely mirroring disease complexity, risk factors also provide fundamental
insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since
they are central to disease initiation and subsequent propagation. Based on a systematic
literature review, this analysis identified 30 risk factors for AD and then extended the
analysis to further identify neuroinflammation as a unifying mechanism present in all
30 risk factors. Although other mechanisms (e.g., vasculopathy) were present in multi-
ple risk factors, dysfunction of the neuroimmune–neuroinflammation axis was key to
all 30 identified risk factors. Though the nature of the neuroinflammatory involvement
varied, activation of microglia and the release of pro-inflammatory cytokines were common
pathways shared by all risk factors. This observation provides further evidence for the
importance of immunopathic mechanisms to aetiopathogenesis of AD.

Neuroinflammation is “bad for brain”. The identification of these 30 risk factors for
neuroinflammation (and, therefore, AD) is, thus, also a call to action. By 2050, more than
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150 million people will be living with AD—the health and socioeconomic impacts of this
statistic will be truly immense. Since humanity is struggling to devise curative therapeutics
for AD, prophylactically addressing risk factors is and will continue to be an essential
step in reducing the global burden of AD. This review identified 30 risk factors. Some
are modifiable and can be addressed at the level of the individual (depression, diabetes,
diet, educational level, excessive alcohol consumption, hearing impairment, hypertension,
low social contact, obesity, oral hygiene, peptic ulcer disease, physical inactivity, smoking,
traumatic brain injury); others need to be addressed at a societal or international level
(air pollution, climate change, noise pollution, intimate partner violence). Meaningfully
addressing these risk factors requires multi-level educational goals, targeting individuals,
healthcare providers, school teachers, politicians and policy makers. Hopefully, we—
individually and collectively—have the commitment to attain these goals, thereby reducing
the neuroinflammation that mediates the transformation of lifestyle/societal circumstances
into risk factors for a devastating disease.
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