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Abstract: The dual-process theory of thought rests on the co-existence of two different thinking
modalities: a quick, automatic, and associative process opposed to a slow, thoughtful, and deliberative
process. The increasing interest in determining the neural foundation of the dual-process distinction
has yielded mixed results, also given the difficulty of applying the fMRI standard approach to tasks
usually employed in the cognitive literature. We report an activation likelihood estimation (ALE)
meta-analysis to investigate the neural foundation of the dual-process theory of thought. Eligible
studies allowed for the identification of cerebral areas associated with dual-process theory-based
tasks without differentiating between fast and slow thinking. The ALE algorithm converged on the
medial frontal cortex, superior frontal cortex, anterior cingulate cortex, insula, and left inferior frontal
gyrus. These structures partially overlap with the cerebral areas recurrently reported in the literature
about the neural basis of the dual-process distinction, where the PARCS theory-based interpretation
emphasizes the role of the right inferior gyrus. The results confirm the potential (but still almost
unexplored) common ground between the dual-process literature and the cognitive control literature.

Keywords: dual process; meta-analysis; left inferior frontal gyrus; insula; pre-SMA; DMN; PARCS theory

1. Introduction

Within cognitive psychology, a highly shared view is that human reasoning and
decision making depend on two distinct systems [1,2]. In the last 50 years, experimental
psychology has empirically investigated this duality in deductive and inductive reasoning,
decision making, and social judgement. The basic idea is that our responses are determined
by two conflicting processes, where the first is often described as fast, effortless, automatic,
and associative-based, whereas the second is slow, effortful, controlled, and rule-based.
Some authors have gone further into developing general theories about mental architectures
based on this distinction. According to these theories, human beings actually have two
minds. These systems have been called in several ways, depending on the authors (fast
thinking, associative, or System 1 vs. slow thinking, deliberative, or System 2). As Frankish
and Evans wrote, “These all-encompassing theories are sometimes referred to as dual-
system theories, in contrast to more localized dual-process ones, but ‘dual process theory’
is also used as an umbrella term for both” ([1], p. 1).

Nowadays, the dual-process framework has become a hallmark of the investigation
of human cognition, enjoying an ever-growing popularity in psychological research [3].
As a matter of fact, Sherman et al. [4] wrote that “the emergence of the dual-process
theories has been one of the most significant developments in the history of scientific
psychology” ([4], p. xi). A great amount of cognitive and decision-making research takes
place within this framework [5], with an extensive and dedicated work being aimed to
clarify how the two systems interact [6], including the debate about the necessity to include
a third system in the framework [7]. Psychometric research has focused on the development
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of a measure of propensity to employ these two styles of thinking [8–10]. More generally, the
dual-process framework has influenced a variety of fields, such as moral psychology [11,12],
social psychology [4,13], behavioral change and choice architectures [14,15], numerical
cognition [16], understanding how fake news propagate [17,18], religious and paranormal
beliefs [19–22], and even the scientific investigation of illusionist tricks [23]. Taking into
account the variety of specific theories and terminology, as well as the different fields of
investigation, in this paper, we will use the expressions fast and slow thinking to distinguish
the two forms of processing [24].

Given the importance of the dual-process theory framework, a great interest in in-
vestigating the neural basis of the dual-process distinction has emerged. Exploiting brain
imaging techniques, in recent years, several studies have been published with the aim
of understanding cortical areas associated with the two forms of reasoning. Despite the
increasing number of papers devoted to this issue, the overall picture remains fragmented
due to the variety of topics investigated, methodology, and approaches [25]. In the follow-
ing, after a brief description of the dual-process theory of thought, we will report an ALE
meta-analysis gathering data from studies which employed fMRI to investigate the neural
basis of the two systems of thinking.

1.1. The Dual-Process Theory of Thought

The basic idea that cognitive processes may be subdivided into the two broad cat-
egories of slow and fast thinking is supported by extensive empirical evidence. A task
commonly employed to investigate the dual-process distinction is related to the so-called
belief bias (i.e., judging a believable conclusion as more acceptable than an unbelievable
conclusion regardless of the logical validity of the argument). For example, Evans et al. [26]
presented categorical syllogism (e.g., Premise 1: All birds have wings; Premise 2: All crows
are birds; Conclusion: Therefore, all crows have wings), manipulating the logical validity
of the syllogism and the believability of the conclusion. When asking about the level of
acceptability of the conclusion, the authors observed that the participants’ responses were
determined by the interaction of both believability and the logical validity of the argument.
Decades of research [27–29] confirmed the interpretation that slow thinking is responsible
for the evaluation of the logical structure of the argument regardless of content, whereas
fast thinking automatically forms the sensation that believable conclusions are acceptable
(e.g., all crows have wings) and unbelievable conclusions are not (e.g., all apples are meat
products); see [27] for a discussion. In the case of incompatibility between believability
and logical validity, a conflict between fast and slow thinking emerges. The nature of this
conflict and the more general questions related to how the two systems interact are at the
core of the current debate in the dual-process theory literature. According to serial models
(namely, the default–interventionist model [30,31]) fast thinking generates responses by
default. Then, slow thinking may be activated and potentially intervene, assuming the
availability of adequate resources. On the contrary, parallel models [32,33] postulate that
fast and slow thinking occur simultaneously with continuous monitoring. A third option is
represented by the “hybrid two-stage model”, which splits the function of slow thinking in
two distinct processes: an always active, shallow, and analytics-based monitoring process
and an optional, deeper, slow process. The former detects potential conflicts, with fast
thinking activating the latter in case of necessity [30,34,35].

Taking into account the differences among these models, a pretty common feature is
the inhibitory role carried out by slow thinking (or an equivalent counterpart; see [36] for a
discussion) with respect to the fast-thinking response. This crucial aspect emerges clearly
in the parallels between dual-process research and inhibitory control executive functioning
research [36]. The former deals with high-level reasoning tasks with response times of
tens of seconds, whereas the cognitive control literature deals with reaction times in the
range of milliseconds; however, in both cases, a dominant automatic response must be
inhibited to complete the requested task. Several examples can be found in the executive
functioning literature (Stroop task, stop-signal task, go–no go [37–39]), as well as in the
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dual-process framework (the belief bias, the Linda problem, the cognitive reflection test [8]).
The cognitive reflection test (CRT) is a gold standard in the psychometric approach to the
dual-process distinction. Its original form comprises three reasoning questions, where
each one has a (normatively wrong) obvious intuitive answer and a less accessible (but
normatively correct) answer that requires some analytical deliberation. The general view
is that slow thinking (i.e., an effortful and analytical modality) attempts to inhibit the
apparently natural response (induced by effortless fast thinking).

1.2. Neural Correlates of Fast and Slow Thinking

Research on the neural correlates of high-level reasoning and decision-making tasks is
comparatively less frequent than studies about shorter-time-course tasks related to basic
cognitive processes [40]. Nevertheless, in recent years, an increasing number of researchers
have challenged the methodological issues which arise when investigating the neural
activity underpinning fast and slow thinking.

The neural basis of dual-process theory has been investigated by means of electro-
physiology (see [40] for a review) and the functional magnetic resonance imaging (fMRI)
technique. Focusing on the latter, most studies have found patterns of activation of the
prefrontal cortex, particularly in regions involved in cognitive control processes [36,41–43].
A shared view is summarized by Evans and Stanovich [31] as follows: “conflict detection
is indicated by activation of the anterior cingulate cortex and the override of belief-based
responding with reasoning signaled by activation of the regions of the right prefrontal
cortex known to be associated with executive control.” ([31], p. 233).

However, the specific structures associated with the two systems are still controversial.
For example, De Neys et al. [44] found that problems characterized by a conflict between the
two systems were associated with greater activation of the anterior cingulate cortex (ACC)
and, in case of a positive resolution, with the additional activation of the right inferior
frontal gyrus (r-IFG). These structures are commonly associated with conflict detection and
response inhibition, respectively [45–48]. On the contrary, Vartanian et al. [49] found that
the resolution of CRT scores predicted activation of the posterior cingulate cortex (PCC)
with the same problems inducing a conflict between the two systems.

The PCC is a cerebral structure associated with the default-mode network (DMN),
the role of which within the dual-process theory of thought has been proposed by several
authors [25,49,50]. Besides the PCC, the DMN includes the medial prefrontal cortex, the
inferior parietal lobule, the lateral temporal cortex, the dorsal medial prefrontal cortex,
and the hippocampal formation. This neural system is active during passive rest and
mind wandering, and it is thought to have a role in different functions, including thinking
about others and the self, remembering the past, and thinking about the future. DMN
activation at rest in the absence of external stimulation or a task to perform is believed to
act as an autopilot, as opposed to the anterior insula, which is associated with awareness
and task-related attention [51,52]. For this reason, the DMN has been hypothesized to
be a possible neural foundation of fast thinking, which could act as a sort of automatic
decision-making mode [25,49,50].

With regard to the right prefrontal cortex, some studies emphasized the role of the
r-IFG [53–55], an area that plays a crucial part in the reactive circuit that responds to novel
and salient stimuli [51,52]. From this perspective, the r-IFG should override the System 1
response. This hypothetical role of the r-IFG has induced researchers to find a correlation
between the dual-process theory of thought and the PARCS (predictive and reactive control
systems) theory [51,52,56,57]. According to the latter, the brain employs a reactive control
system with feedback-guided mechanisms for handling novelty. The cerebral areas in-
volved are the anterior insula, temporo-parietal junction, anterior hippocampal formation,
ventral striatum, amygdala, and r-IFG. In particular, the r-IFG is engaged in the appraisal
of stimuli, which is related to prediction and performance errors, novelty, and incongruity
and induces the transition from model-guided feedforward control to momentary feedback-



Brain Sci. 2024, 14, 101 4 of 14

guided control [57]. This interpretation of the r-IFG’s role is consistent with its potential
role in the inhibition of fast thinking.

Given the current debate and still uncertain results about the cerebral structures
which underlie the two modalities of reasoning, in the following, we will describe a
systematic meta-analysis about fMRI studies aimed at investigating the dichotomy of the
dual process of thinking. Through the application of the activation likelihood estimation
(ALE) algorithm, we aim to determine the pattern of activation associated with fast and
slow thinking.

2. Materials and Methods
2.1. Literature Search and Selection

We conducted a systematic and comprehensive literature search to select relevant
neuroimaging studies published up to 15 June 2022 using the databases PubMed (https:
//pubmed.ncbi.nlm.nih.gov/) and Web of Science (https://webofknowledge.com). The
selected keywords were combined using the Boolean operators AND and OR. The PubMed
search input was (“deductive reasoning” OR “inductive reasoning” OR “Wason selection
task” OR “conditional rule*” OR “probabilistic reasoning” OR “normative reasoning” OR
“belief bias” OR “heuristic*” OR “base rate neglect” OR “conjunction fallacy” OR “dual-
process theory” OR “dual process theory” OR “fast thinking” OR “slow thinking” OR
“cognitive reflection test” OR “analytical thinking” OR “intuitive thinking” OR “associative
thinking” OR “deliberative thinking” OR “System 1” OR “System 2” OR “contextual effect”
OR ”content effect”) AND (“fMRI” OR “PET” OR “neuroimaging”).

Additional studies were searched from the references of all identified publications.
Eligibility was determined through a two-step procedure performed by three of the au-
thors (G.Ga., G.Gr., and F.G.). First, the titles and abstracts of all identified articles were
screened. In the second step, the full texts of the studies, according to predefined eligibil-
ity criteria, were independently examined (consistency was high: the number of papers
with disagreement was <5%), and agreement was reached after a discussion (consistency
among the authors was high: the number of papers with disagreement was <5%). Our
study was conducted following the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) guidelines (Supplementary Materials) [58].

The studies were included for the quantitative analyses if they met the following crite-
ria: (1) whole-brain analysis (we excluded studies in which only results from ROI analyses
were reported); (2) availability of coordinates of activation foci clearly provided either in
Montreal Neurological Institute (MNI) or Talairach reference space; (3) clear interpretation
of results in terms of fast and slow thinking reported in the paper. Typical examples are
those of task contrasts: (i) normatively correct answers with belief-based responses; (ii)
abstract, rule-based, and reflective strategies vs. heuristic, superficial strategies; (iii) dis-
tinction between slow and fast thinking obtained by means of fitting data to respective
models of response. Studies conducted using relational and/or spatial reasoning tasks
were excluded. Other exclusion criteria were different neuroimaging data analyses or
procedures and samples including children or adolescents.

The MRI quality of the included studies was assessed based on a set of guidelines for
the standardized reporting of MRI studies (Supplementary Table S1) [59,60].

2.2. Activation Likelihood Estimation (ALE)

The analysis of all data was carried out using the activation likelihood estimation
(ALE) meta-analysis algorithm, which was implemented in GingerALE 2.3.6 software
(www.brainmap.org/ale). The ALE algorithm, as described in previous methodological
papers [61–64], is a coordinate-based meta-analysis that uses peak coordinates from func-
tional studies as input. The procedure of ALE meta-analysis is summarized here, as it
has been well documented in previous papers [62,65]. The ALE algorithm evaluates the
convergence of activation foci from various neuroimaging studies, modeled as probabil-
ity distributions, against null distributions of random spatial associations among studies
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while controlling for sample size. The non-additive algorithm [64] was used to minimize
within-experiment effects. Inference was performed at the cluster level, which provides a
better balance between sensitivity and specificity [62] compared with other methods. The
cluster-forming threshold was set to p < 0.005, and the size of the resulting supra-threshold
clusters was compared (with a threshold of p < 0.05) to a null distribution determined by
5000 permutations of the data. The studies selected are detailed in Table 1.

Table 1. Characteristics of studies included in the analysis.

Study Year
Sample

Task
fMRI

Number Age (Mean,
SD or Range)

Gender
(f/m) Contrast Number of

Foci

1 Goel et al. [66] 2003 14 30.8 ± 4.3 7/7

Deductive reasoning task. A total of
120 syllogisms (15 different forms) and
40 baseline items organized in a nested
2 × 2 design (Belief × Task). The belief factor
consisted of two levels: belief-laden
(80 syllogisms and 40 baseline items) and
belief-neutral (40 syllogisms and 20 baseline
items) items. In the task factor, the first level
(a reasoning condition) involved stimuli that
constituted arguments (120 trials, as in the
examples above and below). Half of these
were valid, while the other half were not valid.
The second-level (baseline condition) trials
were generated by taking these arguments
and switching around the third sentence, such
that the three sentences did not constitute
arguments.

Slow vs. Fast
Fast vs. Slow 1/1

2 Canessa et al.
[67] 2005 12 23.5 (21–26) 7/5

Deductive reasoning task. Two versions of the
Wason selection task: the first version
described an arbitrary relation between two
actions (descriptive (DES): “If someone does
. . ., then he does . . .”), whereas the other
described an exchange of goods between two
persons (social exchange (SE): “If you give me
. . ., then I give you . . .”).

Fast vs. Slow 9

3 Beierholm et al.
[68] 2011 23 n.r. n.r.

Novel economic task, where three doors were
visually presented. Participants were
instructed to choose the order of the doors.
After 6–8 s, the location of the money was
revealed behind one of the doors, and subjects
were rewarded according to the following:
0.50 USD if the money was behind their first
choice, 0 USD if it was behind their second
choice, and −0.50 USD if the money was
behind the third choice. They were explicitly
instructed to ignore anything they learned
about the distribution of money and that the
sequence of locations for the money was
random. Behavioral data were employed to fit
two models aimed at quantifying subjective
valuation and updating signals corresponding
to fast and slow thinking.

Fast vs. Slow 40

4 Liu et al. [69] 2012 14 21.8 (17–25) 6/8
Deductive reasoning task. Twenty-eight
conditional reasoning statements (based on
the Wason selection task).

Slow vs. Fast 9

5 Liang et al.
[70] 2014 15 23.6 ± 3.1 7/8

Inductive reasoning task. One hundred
twenty trials of a categorical induction task
(modeled on stimuli from Osherson et al.,
1990 [71]). Each trial was composed of pairs of
arguments, and participants were instructed
to indicate which one of the two arguments
was stronger. Stimuli were divided into two
conditions (explicit quantification vs. implicit
quantification). Subjects’ responses to each
trial were used to further divide the stimuli
into fallacy or non-fallacy response trials.

Fast vs. Slow 6
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Table 1. Cont.

Study Year
Sample

Task
fMRI

Number Age (Mean,
SD or Range)

Gender
(f/m) Contrast Number of

Foci

6 Liang et al.
[72] 2014 23 24.1 ± 3.7 11/12

Inductive reasoning task. Thirty
number-series induction tasks, thirty
letter-series induction tasks, twenty-four
number judgment baseline tasks and
twenty-four letter judgment baseline tasks
were organized into a 2 × 2 factorial design
(Content × Task). Content factor:
number-related vs. letter-related content. Task
factor: series completion task vs. baseline
condition.

Fast vs. Slow 17

7 Luo et al. [73] 2014 16 23 (20–28) 8/8

Deductive reasoning task. One hundred
twenty items (encompassing four different
conditional reasoning forms) for the condition.
Participants were required to draw a
conclusion based on the premises. This study
was organized into a 2 × 2 design (Type of
Problem × Logical Training).
Type-of-problem factor: conflict problems (in
which the logical conclusion is inconsistent
with one’s beliefs) and non-conflict problems
(in which the logical conclusion is consistent
with one’s beliefs). Logical training factor:
naive participants vs. post logic training.

Slow vs. Fast 5

8 von Helversen
et al. [74] 2014 23 20.13 ± 2.67 17/6

Categorial induction task. Participants were
required to make fictitious quantitative
judgements on 9 items (3 for each scenario)
using a scale with 100 possible values. Each
item was described by six binary cues and a
criterion value. The task was based on
learning to estimate the correct criterion value
of items given the item’s cue values.
Participants were instructed to use either a
similarity-based exemplar strategy or a
rule-based strategy. The actual use of the two
strategies was determined by means of a
computational model.

Slow vs. Fast
Fast vs. Slow 7/9

9 Durning et al.
[75] 2015 10 * 29.6 ± 2 3/7

Medical diagnosis task. Participants were
presented with medical scenarios, and they
were required to answer “what is the most
likely diagnosis?” by choosing among
5 options. Participants were then given seven
seconds to choose an answer option using
finger response items, which would be
expected to require both analytical and
non-analytical reasoning. The final phase
(“reflection” phase) was then entered; in this
phase, participants were instructed to reflect
on how they had arrived at the diagnosis,
which primarily required (or accentuated)
analytical reasoning.

Fast vs. Slow 17

10 Megìas et al.
[76] 2015 56 22.24 ± 2.7 39/17

Novel risky driving evaluation task.
Participants performed an urgent task (to
brake or not in a given traffic situation) and
an evaluative task (to evaluate whether the
traffic situation entailed risk or not) during
the experiment. Each task comprised
140 trials (70 risky situations and 70 non-risky
situations).

Fast vs. Slow 21

11 Vartanian et al.
[49] 2018 44 35.5 ± 11.3 13/31

Probabilistic reasoning task. Forty-eight base
rate problems (24 conflict, 24 non-conflict)
selected from Cheyne, et al.’s (2014) [77]
item pool.

Slow vs. Fast 7

12 van den Berg
et al. [78] 2020 16 51 (46–57) 4/12

Novel medical diagnosis task. Participants
were required to diagnose 26 neurological
cases. Each case had both fast-thinking
(prototypical information) and slow-thinking
(ambiguous information) versions to elicit the
different types of reasoning.

Slow vs. Fast
Fast vs. Slow 8/9

* Only data on novices were included.

The neuroanatomical coordinates reported in Talairach space [79] were transformed
into MNI space for all analyses. Whole-brain maps of the thresholded ALE images were



Brain Sci. 2024, 14, 101 7 of 14

visualized in Mango V.4.0.1 (http://rii.uthscsa.edu/mango/), an anatomical image overlay
program, superimposed onto a standardized anatomical template.

3. Results

The PRISMA flow chart of article selection is illustrated in Figure 1. Our search
yielded 69 potentially eligible studies. After full assessment of the papers, we found an
inadequate number of studies that separately presented the activation of each thinking
process compared with a baseline. Finally, 12 studies (for a total of 15 contrasts) from 2003
to 2020 presented contrasts of slow vs. fast thinking (or contrasts of fast vs. slow thinking)
and allowed for the identification of the neural correlates associated with dual-process
theory-based tasks in general, without differentiating between the two forms of thinking.
From these studies, a cumulative number of 320 healthy subjects and 166 foci resulted. The
main characteristics of the studies included in the analysis are reported in Table 1.
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The ALE meta-analysis of the studies included (Figure 2, Table 2 and Supplementary
Table S2) identified the largest-sized cluster (2376 mm3) to be centered in the medial frontal
gyrus (mFG) and the superior frontal gyrus (sFG—pre-SMA) extending in the dorsal
anterior cingulate cortex (dACC), followed by a cluster (1464 mm3) located in the left insula
(Ins) including the left inferior frontal gyrus (l-IFG).

http://rii.uthscsa.edu/mango/
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Table 2. Results from ALE meta-analysis. Foci are reported in MNI coordinates. BA = Brodmann area.

Cluster x y z p Z Label (Nearest Gray Matter within 5 mm)

1

−2 26 44 5.20 × 10−7 4.884085 Left cerebrum. Frontal lobe. Medial frontal
gyrus. Gray matter. Brodmann area 8

12 30 52 4.88 × 10−4 3.2970774 Right cerebrum. Frontal lobe. Superior
frontal gyrus. Gray matter. Brodmann area 6

8 24 34 0.0013236 3.0059886 Right cerebrum. Frontal lobe. Cingulate
gyrus. Gray matter. Brodmann area 32

2
−30 24 4 1.68 × 10−6 4.6475234 Left cerebrum. Sub-lobar. Insula. Gray matter.

Brodmann area 13

−34 30 −2 9.45 × 10−4 3.1068544 Left cerebrum. Frontal lobe. Inferior frontal
gyrus. Gray matter. Brodmann area 45

4. Discussion

The investigation of the neural basis of the dual-process theory of thought began with
the pioneering studies by Goel and collaborators [41,80,81]. In the following twenty years,
there has been an ever-growing interest in this issue from the neuroscience viewpoint.
Studies based on fMRI have attempted to clarify some aspects, with all the same limitations
of applying brain imaging techniques to tasks with a long time course as the ones employed
within the cognitive literature. The general overview is a fragmented picture that, on
the one hand, confirms the role of prefrontal structures in the thought process, but, on
the other hand, failed to find a consensus about specific areas associated with the two
thinking systems.

To the best of our knowledge, this is the first attempt to perform a meta-analysis
with the ALE algorithm aimed at determining the brain areas involved in dual-process
theory-based tasks. The algorithm converged on the medial frontal cortex, superior frontal
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cortex (two areas often considered crucial to performing inhibitory function [82]), anterior
cingulate cortex (crucial to detecting and processing conflicting situations due to external
stimuli; see [83,84]), insula (alertness and salience processes [85–88]), and left inferior frontal
gyrus (an area that plays a role in inhibitory processes, among other functions [89–91]).
As expected, we observed the activation of prefrontal regions associated with thought
and cognitive control that are recurrently cited in the literature about the neural basis
of dual-process theory (for example, the anterior cingulate cortex and its role in conflict
detection; see [31]). Importantly, the identification of some of these specific regions may
help to discriminate among different interpretations of the neural basis of the dual-process
theory of thought.

As described in the introduction, the r-IFG’s role is supported by several studies [53–55],
in line with the PARCS theory-based interpretation of the dual-process distinction [52,92].
However, the ALE algorithm did not converge on the r-IFG; this may be explained by the
inability of the eligible studies to explicitly differentiate between fast and slow thinking.
Instead, our results highlighted the role of the l-IFG in dual-process tasks. According to
the PARCS theory, the l-IFG could integrate inconsistent information with internal repre-
sentations employed by fast thinking [52,57]. Also, the role of the l-IFG is coherent with a
recent meta-analysis, where Pan et al. [93] reported that participants exhibiting traits of im-
pulsivity showed morphometric differences in the left inferior frontal gyrus. Behaviorally,
fast-thinking responses are mostly produced by cognitively impulsive individuals (mea-
sured by means of the CRT [8]; see also Baron et al. [94]) as defined by the psychometric
approach in the dual-process framework. Indeed, different thinking dispositions based
on fast and slow thinking are measured in terms of resistance to impulsive answers in an
intuitive but incorrect way. It is important to note that although the relationship between
impulsivity traits and cognitive style is somewhat controversial [95], there is evidence of a
relationship among impulsivity, the CRT, and inhibitory processes [96].

As pertaining to DMN involvement in the dual-process theory of thought [25,49,50],
we only observed a partial overlapping between the areas involved in the DMN and the
areas found by the ALE algorithm application. Even in this case, this does not necessarily
represent evidence against the DMN hypothesis, given that our meta-analysis was able
to identify the cerebral areas associated with dual-process theory-based tasks without
differentiating between fast and slow thinking. Specifically, the DMN hypothesis regards
the neural basis of fast thinking and not dual-process theory in general, so the fact that our
algorithm did not converge on the whole DMN circuit is compatible with this idea.

Overall, the areas identified in this study are generally associated with the cognitive
control circuit [46,47,97,98]. Keeping in mind the fundamental differences between dual-
process research and inhibitory control (high-level tasks with response times lasting up to
15–30 s for the former vs. low-level tasks with a time course of milliseconds for the latter),
these results are not surprising, given the similarities (i.e., conflict detection, the role of
inhibition) in the theorization of these two fields [36,99–101]. However, the relationship
between the measures and tasks commonly employed in the cognitive literature and the
perceptual and attentional tasks utilized in inhibitory control research is far less investigated.
Regarding this topic, a recent paper by Dorigoni et al. [102] observed that the connection
between the dual-process theory of thought and attention processes is difficult to evidence
given the complexity of measuring cognitive reflection (e.g., issues such as determining if it
is a single construct; see [103,104]) and the presence of confounding variables (e.g., working
memory, intelligence) that may mediate the relationship between thinking processes and
tasks related to inhibitory control. More broadly, our results confirm the evident relationship
between the tasks employed within the framework of the dual-process theory of thought
and the literature on basic attentional processes, particularly cognitive control. This is, of
course, not surprising, considering that Daniel Kahneman himself, in the late 1960s, delved
into attentional processes, especially the interplay between attention and effort [24]. These
reflections played a significant role in prompting Kahneman, along with their colleague,
Amos Tversky, to initiate a research program on heuristics and biases. Thus, future research
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could benefit from a more intense dialogue between these seemingly distinct fields. This
could include new research lines aimed at determining the neural underpinnings of the
common ground between thought and attentional processes within cognitive neuroscience.

Despite the limited number of eligible studies in the literature, the total number
of contrasts considered in this meta-analysis is 15, a quantity that guarantees sufficient
statistical power [59–62]. However, the papers amenable to ALE analysis did not allow for
contrasting fast-thinking- and slow-thinking-based decisions. This issue may be ascribed
to methodological limitations that intrinsically characterize literature dual-process tasks.
Indeed, fMRI features (temporal resolution limited by hemodynamic response time; need to
make repeated measures over time) are generally incompatible with standard approaches
in cognitive psychology, where response tasks may range in length up to 30 s. Another
point is that reasoning tasks are generally not suitable to be administered over tens or
hundreds of trials (as opposed to classic cognitive control tasks).

The current results do not allow for discrimination among serial, parallel, and hybrid
frameworks [6]. The observed activation of areas associated with conflict detection (such
as the ACC) is not discriminative, because conflict detection is a shared feature among the
variety of specific dual-process models [30,31,33–35]. Indeed, the possibility of discrimi-
nating among models in light of neural activation requires (i) understanding which areas
are active when the cognitive system is employing fast and slow thinking, respectively,
and (ii) determining the time course of such activation instances with a high temporal
resolution. Noteworthily, dual-process theory is a psychological construct, and it could be
misleading to expect a one-to-one relationship between each system and a specific cerebral
area [24]. The investigation of the neural basis of thinking should consider that we are
dealing with two distinct planes: psychological theories on one hand and neuroscientific
explanation on the other. As a matter of fact, despite the popularity of the dual-process
theory of thought, evolutionary psychologists challenge certain aspects of this theory, such
as its being overly simplistic or the existence of a domain-general processing mechanism
(slow thinking) (see [2] for see for an up-to-date review of this debate). So, the complexity
of thought processes and human decision making makes it necessary to approach any
evidence on the neural correlates of related psychological processes with great caution.

Also, we must point out that the aim of a meta-analysis consists in answering specific
research questions by combining results from multiple studies, with advantages such
as enhanced statistical power, heightened precision, and comprehensive integration of
findings. However, meta-analytic results should take into account the several issues by
which they can be affected, such as study quality, heterogeneity, selection bias, and data
availability [2]. In our case, the intrinsic limitations of the literature of the neural correlates
of thinking surely affect the scope of the meta-analytic results. Future research should
overcome this limitation, increasing the quality of these studies. For example, a first step
could be promoting fMRI research that also includes conditions where specific systems’
activation is contrasted with a common baseline in order to apply an ALE meta-analysis
able to differentiate between fast and slow thinking.

Concluding, this study represents further evidence of the strong connection between
cognitive control processes and the dual-process theory of thought. We hope that this
contribution may represent a first step in the direction of integrating the fMRI methodology
employed in the cognitive control literature with the thinking and reasoning area of investi-
gation. In this regard, future research will focus on similarities and differences between
these two distinct fields in view of a better understanding of our thought processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci14010101/s1, PRISMA checklist, Table S1: Quality as-
sessment of the included studies based on guidelines for the standardized reporting of MRI studies,
Table S2: Studies’ contributions to the clusters.
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