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Abstract: The relationship between N6-methyladenosine (m6A) regulators and anoikis and their
effects on low-grade glioma (LGG) is not clear yet. The TCGA-LGG cohort, mRNAseq 325 dataset,
and GSE16011 validation set were separately obtained via the Cancer Genome Atlas (TCGA), Chinese
Glioma Genome Altas (CGGA), and Gene Expression Omnibus (GEO) databases. In total, 27 m6A-
related genes (m6A-RGs) and 508 anoikis-related genes (ANRGs) were extracted from published
articles individually. First, differentially expressed genes (DEGs) between LGG and normal samples
were sifted out by differential expression analysis. DEGs were respectively intersected with m6A-RGs
and ANRGs to acquire differentially expressed m6A-RGs (DE-m6A-RGs) and differentially expressed
ANRGs (DE-ANRGs). A correlation analysis of DE-m6A-RGs and DE-ANRGs was performed to
obtain DE-m6A-ANRGs. Next, univariate Cox and least absolute shrinkage and selection operator
(LASSO) were performed on DE-m6A-ANRGs to sift out risk model genes, and a risk score was
gained according to them. Then, gene set enrichment analysis (GSEA) was implemented based on risk
model genes. After that, we constructed an independent prognostic model and performed immune
infiltration analysis and drug sensitivity analysis. Finally, an mRNA-miRNA-lncRNA regulatory
network was constructed. There were 6901 DEGs between LGG and normal samples. Six DE-
m6A-RGs and 214 DE-ANRGs were gained through intersecting DEGs with m6A-RGs and ANRGs,
respectively. A total of 149 DE-m6A-ANRGs were derived after correlation analysis. Four genes,
namely ANXA5, KIF18A, BRCA1, and HOXA10, composed the risk model, and they were involved
in apoptosis, fatty acid metabolism, and glycolysis. The age and risk scores were finally sifted out to
construct an independent prognostic model. Activated CD4 T cells, gamma delta T cells, and natural
killer T cells had the largest positive correlations with risk model genes, while activated B cells were
significantly negatively correlated with KIF18A and BRCA1. AT.9283, EXEL.2280, Gilteritinib, and
Pracinostat had the largest correlation (absolute value) with a risk score. Four risk model genes
(mRNAs), 12 miRNAs, and 21 lncRNAs formed an mRNA-miRNA-lncRNA network, containing
HOXA10-hsa-miR-129-5p-LINC00689 and KIF18A-hsa-miR-221-3p-DANCR. Through bioinformatics,
we constructed a prognostic model of m6A-associated anoikis genes in LGG, providing new ideas for
research related to the prognosis and treatment of LGG.

Keywords: N6-methyladenosine; anoikis; low-grade glioma

1. Introduction

Glioma is the most common and fatal malignant tumor. Gliomas account for about
80% of all central nervous system malignancies. The WHO classification of the CNS
divides gliomas into I–IV grades, of which grades I and II are low-grade and grades III
and IV are high-grade [1]. Although low-grade glioma (LGG) accounts for only 20% of
cases, its treatment options are affected by many factors. The guidelines for the diagnosis
and treatment of LGG are still mainly based on surgery. Postoperative recurrence risk
grouping is based on a variety of factors, and subsequent adjuvant radiotherapy and
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chemotherapy are performed for patients in the high-risk group [2]. However, the molecular
characteristics of gliomas are significantly correlated with prognosis and efficacy. LGG
has great heterogeneity, and a single clinical diagnosis and treatment idea may not be
suitable for all patients [3]. With the deepening of research, it is necessary to divide LGG
into different subgroups and explore the new prognostic markers and their molecular
mechanisms in LGG. With these, a more targeted and individualized treatment strategy
can be developed.

For many years, the medical consensus has been that cancer is a genetic disease, and
almost all cancers are caused by genetic changes [4]. In 1974, it was found that influenza
viral mRNA contains internal N6-methyladenosine and 5′-terminal 7-methylguanosine in
cap structures [5]. Since then, m6A has been found to play an increasingly important role
in cancer. The results of pan-cancer analysis showed that there was a significant correlation
between m6A and clinical outcome, new epitope burden, immune infiltration, and stemness
of the tumor [6]. Anoikis is apoptosis that is induced by inadequate or inappropriate cell-
matrix interactions and is involved in tissue-homeostatic, developmental, and oncogenic
processes [7]. About 52–62% of patients have a recurrence within 5 years [8]. Resistance
to anoikis has been demonstrated to be an important mechanism in the process of glioma
invasion and the high recurrence rate [9]. Therefore, exploring the prognostic model of the
m6A-associated anoikis gene in LGG can provide a reference for the prognosis evaluation
and targeted therapy of LGG patients, improving their prognosis.

We obtained LGG-related data from TCGA, CGGA, and GEO databases and extracted
27 N6-methyladenosine (m6A)-related genes (m6A-RGs) and 508 anoikis-related genes
(ANRGs) from the literature, respectively [10–13]. Finally, we sifted out the risk model
genes by differential expression analysis, univariate Cox hazard analysis, and LASSO
analysis. and they were subjected to GSEA. Then, an independent prognostic model was
constructed, and immune infiltration analysis and drug sensitivity analysis were also
performed. Finally, we constructed an mRNA-miRNA-lncRNA regulatory network. The
role of the m6A-related anoikis gene prognostic model in LGG was deeply explored, which
had great significance for the prognosis and treatment of LGG.

2. Materials and Methods
2.1. Acquisition of Data

The mRNA expression profiles and clinical information of the TCGA-LGG cohort
(5 normal samples, 168 glioblastoma (GBM) samples, and 525 low-grade gliomas (LGG)
samples (506 samples with complete survival information and survival time > 0 days))
were acquired via the cancer genome atlas (TCGA) (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga, accessed on 20 January 2022)
database. The mRNAseq 325 dataset (PRJCA001746, HRA000073) (182 LGG samples
(172 samples with complete survival information)) was downloaded via Chinese Glioma
Genome Altas (CGGA) (http://www.cgga.org.cn/index.jsp, accessed on 29 September
2019). The GSE16011 validation set (8 normal samples and 276 grade gliomas (GG)
samples (including 24 LGG samples)) was obtained via the Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/gds/?term=GSE16011, accessed on 26 April 2022)
database. 27 N6-methyladenosine (m6A)-related genes (m6A-RGs) and 508 anoikis-related
genes (ANRGs) were extracted from 3 [10–12] and 1 [13] published articles, separately.

2.2. Differential Expression Analysis and Functional Enrichment Analysis

Differentially expressed genes (DEGs) between LGG and normal samples in the TCGA-
LGG cohort were acquired by the DESeq2 package (Version 1.26.0). [14] setting p < 0.05
and |Log2FoldChange| > 0.5. Then, differentially expressed m6A-RGs (DE-m6A-RGs) and
differentially expressed ANRGs (DE-ANRGs) were gained by taking the intersection of
DEGs and 27 m6A-RGs, DEGs, and 508 ANRGs separately. Moreover, gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.cgga.org.cn/index.jsp
https://www.ncbi.nlm.nih.gov/gds/?term=GSE16011
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of DE-m6A-RGs and DE-ANRGs were respectively implemented by the clusterProfiler
package (Version 4.0.2). [15] setting p < 0.05 and count > 1.

2.3. Analysis of Protein-Protein Interaction (PPI)

The correlation analysis between DE-m6A-RGs and DE-ANRGs was implemented
to acquire DE-m6A-ANRGs by Spearman correlation analysis setting |Cor| > 0.3 and
p < 0.05. In order to investigate the interaction among DE-m6A-ANRGs, the STRING
(https://string-db.org, accessed on 8 February 2023) website was applied to construct the
PPI network of them with a confidence level = 0.4.

2.4. Construction of the Risk Model

Univariate Cox analysis was implemented based on DE-m6A-ANRGs to sift out genes
that had a survival correlation with LGG patients (p < 0.05), and 506 LGG samples in the
TCGA-LGG cohort were randomly divided into a training set (355 cases) and an internal
validation set (151 cases) at 7:3. Then, in the training set, the least absolute shrinkage and
selection operator (LASSO) (famil = binomial, type measure = class) was executed based
on the genes gained in the previous step to sift out risk model genes. Furthermore, the
risk score of each LGG patient was acquired according to the expression of risk model
genes and the risk coefficient (obtained via LASSO), and LGG patients were classified into
high/low-risk groups through the median risk score (Risk score = α1 × X1 + α2 × X2 + . . .
+ αn × Xn), then, a survival analysis was then conducted for these 2 groups. In order to
further assess the validity of the risk model, we plotted the receiver operating characteristic
(ROC) curve. Finally, the results were validated in the same way in the TCGA internal
validation set and the mRNAseq 325 external validation set.

2.5. Analyses of Risk Model Genes

First, survival analysis of risk model genes was conducted in the TCGA-LGG cohort,
and Kaplan–Meier (K–M) curves were plotted. After that, the positions of risk model genes
on chromosomes were analyzed. The risk model genes were treated as target genes, and
the correlation coefficients between the expression of all genes in the training set and target
genes were calculated and ranked. Gene set enrichment analysis (GSEA) of risk model
genes was conducted by clusterProfiler package (Version 4.0.2) [15] setting adj. p < 0.05
(50 human hallmarks were selected as gene sets).

2.6. Clinical Correlation Analysis

In order to assess the relationship between risk score and risk model genes, we
plotted correlation scatter plots. Next, the differences in risk scores in different clinical
characteristics groups (age (Years >60 and ≤60), asthma history (NO, YES), eczema history
(NO, YES), grade (G2, G3), seizure history (NO, YES), sex (female, male), OS status (0, 1))
were compared separately. At last, we performed a stratified survival analysis on the basis
of clinical characteristics.

2.7. Construction of the Independent Prognostic Model

Independent prognostic factors were sifted out by including clinical characteris-
tics (gender, age, grade, seizure history, risk score) and risk score into univariate and
multivariate Cox. Next, the independent prognostic model was constructed via the
cph function, and the nomogram, calibration curve, and ROC curve of it were plot-
ted. Moreover, in order to analyze the effect of high/low-risk groups on LGG pro-
gression, we downloaded 50 human gene sets via MSigDB of the Broad Institute (https:
//www.gsea-msigdb.org/gsea/msigdb/index.jsp, accessed on 8 February 2023), and gene
set variation analysis (GSVA) of all genes in these 2 groups was implemented by GSEA
(version 3.0.3) software.

https://string-db.org
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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2.8. Immune Infiltration Analysis and Drug Susceptibility Analysis

In this study, we utilized the ESTIMATE algorithm to infer the proportion of stromal
and immune cells in LGG samples of the training set based on gene expression, and the
stromal score, immune score, and ESTIMATE composite score were gained after. The
ssGSEA (28 immune cell types) and CIBERSORT (20 immune cell types) algorithms were
utilized to acquire the infiltration proportions of immune cells in samples, and we analyzed
their differences between high/low-risk groups to extract significantly differential immune
cells. Then, a correlation analysis between risk model genes and significantly differential
immune cells was carried out. Additionally, in order to find potential therapeutic agents for
LGG, we calculated the 50% inhibitory concentration (IC50) of common chemotherapeutic
agents in LGG samples and compared the differences in IC50 of chemotherapeutic agents
(N = 56) between high/low-risk groups by rank sum test. Finally, 198 drugs were identified
via genomics of drug sensitivity in cancer (GDSC), and their IC50 in each LGG sample
was predicted. Then, we analyzed the correlation between drug IC50 and risk score by
Spearman correlation analysis.

2.9. Construction of Competing Endogenous RNA (ceRNA) Network

In the TCGA-LGG cohort, differentially expressed miRNAs (DE-miRNAs) and differ-
entially expressed lncRNAs (DE-lncRNAs) between LGG (N = 525) and normal samples
(N = 5) were screened out, respectively, by the DESeq2 package (Version 1.26.0) [14] setting
p < 0.05 and |Log2FC| > 1. Secondly, the Starbase website (http://starbase.sysu.edu.cn/,
accessed on 8 February 2023) was utilized to predict the miRNAs of risk model genes, and
we took the intersection of down-regulated DE-miRNAs and miRNAs to acquire inter-
sected miRNAs. Then, lncRNAs of intersected miRNAs were predicted via the Starbase
website, and intersected lncRNAs were gained by taking the intersection of up-regulated
DE-lncRNAs and lncRNAs. Finally, we constructed an mRNA-miRNA-lncRNA regula-
tory network.

2.10. External Validation of Risk Model Genes

In order to further validate the expression of risk model genes between LGG and nor-
mal samples, expression analysis of them in the TCGA dataset was carried out, and results
were validated in the GSE16011 validation set. Finally, the protein expression levels of risk
model genes between glioma and normal tissues were analyzed in the public human protein
atlas (HPA) database (https://www.proteinatlas.org/, accessed on 10 February 2023).

3. Results
3.1. Identification and Functional Annotation Analysis of DE-m6A-RGs

There were 6901 DEGs between LGG and normal samples (Figure 1a,b, Table S1). The
DEGs and 27 m6A-RGs were intersected to yield six DE-m6A-RGs, such as ALKBH5 and
HNRNPC (Figure 1c). The intersection of DEGs and 508 ANRGs was taken to acquire
214 DE-ANRGs (Figure 1d). DE-m6A-RGs were enriched in 67 GO entries, including
regulation of mRNA stability, nucleobase-containing compound catabolic processes, and
ribonucleoprotein complex biogenesis (Figure 1e, Table S2). DE-ANRGs participated in
2363 GO entries, such as response to reactive oxygen species, regulation of nervous system
development, peripheral nervous system development, cellular response to nerve growth
factor stimulus, and response to nerve growth factor (Figure 1f, Table S3). DE-ANRGs were
engaged in 151 KEGG pathways, including the neurotrophin signaling pathway, glioma,
T cell receptor signaling pathway, cellular senescence, and choline metabolism in cancer
(Figure 1g, Table S4).

http://starbase.sysu.edu.cn/
https://www.proteinatlas.org/
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3.2. Characterization of DE-m6A-ANRGs and Construction of the PPI Network

A total of 149 DE-m6A-ANRGs were derived after correlation analysis, such as
METTL3, HNRNPC, and ZCCHC4 (Figure 2). Altogether, 149 nodes and 1447 edges
formed the PPI network, including LGALS8-ITGA4, EFHD2-FBLIM1, CXCL14-UCHL1,
and other interaction pairs (Figure S1a). Figure S1b illustrates the DE-m6A-ANRGs with a
top-20 interaction degree.
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3.3. Acquisition and Assessment of the Risk Model

A total of 98 genes were identified after univariate analysis, and the top 10 of them
are displayed in Figure 3a. When lambda min = 0.12, the error of cross-validation was the
lowest, and we acquired 4 risk model genes (ANXA5, KIF18A, BRCA1, and HOXA100)
at this point (Figure 3b). It could be seen in the survival curve that LGG patients in the
high-risk group had a worse survival (Figure S2a and Figure 3c). The area under the curve
(AUC) of 1 (AUC = 0.839), 3 (AUC = 0.846), and 5 (AUC = 0.792) years were all greater than
0.7, indicating that the risk model had good predictive efficacy (Figure 3d). The results
of the TCGA internal validation set and the mRNAseq 325 external validation set were
consistent with the training set (Figure S2b,c).
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Figure 3. A prognostic model was established based on four risk model genes. (a) Univariate Cox
regression analysis to screen 10 survival-related genes. Green (HR < 1) indicates the protective factor,
red (HR > 1) indicates the risk factor. (b) A least absolute shrinkage and selection operator (LASSO)
regression model was built based on four risk model genes, including Cross-validation diagram (left)
and LASSO coefficients profiles (right). The two vertical dashed lines in the chart are the logλ values
corresponding to λmin (the logarithm of the minimum mean square error lambda, the left dashed line)
and λ1se (the logarithm of the standard error of the minimum distance lambda, the right dashed line).
From left to right along the x-axis, with the increases of lambda, the compression parameter increases
and the absolute value of the coefficient decreases. The number on top are the number of variables
with non-zero regression coefficients in the LASSO model. Variables with non-zero coefficients are
important features for our screening. A line indicates a gene. (c) Kaplan–Meier survival curves of the
risk model in LGG patients (p < 0.0001). Green indicates the low risk groups, red indicates the high
risk groups. (d) Receiver operating characteristic (ROC) curves for the predictive accuracy of the risk
model in LGG patients Different colors indicate the different followed-up years.
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3.4. Risk Model Genes

As seen from the K–M curves, the prognosis in the high-expression group of all
4 risk model genes was worse (Figure S3a). ANXA5, KIF18A, BRCA1, and HOXA10 were
distributed on No. 4, 11, 17, and 7 chromosomes, respectively (Figure S3b). ANXA5 was
involved in apoptosis, IL2 STAT5 signaling, and the inflammatory response (Figure 4a,
Table S5). KIF18A is enriched in oxidative phosphorylation, fatty acid metabolism, and E2F
target pathways (Figure 4b, Table S6). BRCA1 was associated with epithelial-mesenchymal
transition, mitotic spindle, glycolysis, and so on (Figure 4c, Table S7). HOXA10 was
engaged in the G2M checkpoint, IL6 JAK STAT3 signaling, and interferon alpha response
(Figure 4d, Table S8).
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3.5. Correlation Analysis of Clinical Characteristics

ANXA5, BRCA1, HOXA10, and KIF18A were all positively correlated with the risk
score, with ANXA5 having the highest correlation (R = 0.83) (Figure 5a). From the box plot,
it could be concluded that the risk score was dramatically different in age, grade, and OS
status (Figure 5b). Figure 5c showed that the survival between high/low-risk groups in age
(Years > 60 and ≤60), grade (G2, G3), seizure history (NO, YES), and sex (Female, Male)
were significantly different.
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3.6. Acquisition of the Independent Prognostic Model and GSVA

The age and risk score were finally identified as independent prognostic factors via
univariate and multivariate Cox (Figure 6a,b). The C-index of the nomogram was 0.66,
indicating that the independent prognostic model had a good prediction of survival at 1-, 3-,
and 5-year intervals, and the calibration curve further verified the correctness of the model
prediction (Figure 6c,d). The AUC of the nomogram at 1- (AUC = 0.884), 3- (AUC = 0.900),
and 5- (AUC = 0.794) years were all higher than those of the age and risk scores, illustrating
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the best prediction of the nomogram (Figure 6e). The high-risk group was enriched in
15 pathways, including coagulation, estrogen response late, interferon-gamma response,
and others. The low-risk group was involved in 14 pathways, such as hypoxia, the P53
pathway, and DNA repair (Figure 6f, Table S9).
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Figure 6. Construction of the nomogram and the effect of high/low-risk groups on LGG progression
(a) Univariate and (b) Multivariate Cox regression analysis to screen independent prognostic factors,
including age and risk score. (c) The nomogram was built based on the independent prognostic
factors. (d) Calibration curves of the nomogram to predict survival at 1, 3, and 5 years (e) ROC
curves to evaluate the predictive accuracy of the nomogram at 1, 3, and 5 years. (f) Gene set variation
analysis (GSVA) of all genes in the high/low-risk groups.
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3.7. Immune Microenvironment Analysis and Prediction of Potential Therapeutic Agents

In the box plot, we could see that the stromal score, immune score, and estimate
score were all dramatically higher in the high-risk group than those in the low-risk group
(Figure 7a). A total of 25 immune cells, such as activated B cells, activated dendritic cells,
and CD56 bright natural killer cells, were significantly different between high/low-risk
groups using the ssGSEA algorithm (Figure 7b–d). Most of the significantly differential
immune cells were positively correlated with risk model genes, of which activated CD4 T
cells, gamma delta T cells, and natural killer T cells had the greatest positive correlation
with risk model genes, while activated B cells were notably negatively correlated with
KIF18A and BRCA1 (Figure 7e). Besides, eight immune cells, including naive B cells, CD8
T cells, and CD4 naive T cells, showed differences between high/low-risk groups using
the CIBERSORT algorithm (Figure S4a,b). Further, a total of 46 chemotherapeutic agents
showed significant differences between high/low-risk groups, and the Top 12 significantly
different expressed chemotherapeutic agents in high/low-risk groups were exhibited, such
as bexarotene, dasatinib, and erlotinib (Figure S5a). AT.9283, EXEL.2280, Gilteritinib, and
Pracinostat had the largest correlation (absolute value) with the risk score (Figure S5b).
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Figure 7. Immune-related analysis and drug susceptibility analysis of the risk model (a) Boxplot of
the stromal score, immune score, and estimated score in high/low-risk groups (b) Histogram for the
infiltration score of 28 immune cells in TCGA-LGG cohorts (c) Violin plot and (d) heatmap for the
infiltration levels of 28 immune cells in high/low-risk groups (e) Correlation heatmap of four risk
model genes and 25 significantly differentially expressed immune cells. ns indicates not significance,
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3.8. mRNA-miRNA-lncRNA Regulatory Network/

We yielded 347 DE-miRNAs, 1807 DE-lncRNAs, 16 intersected miRNAs, and 21 inter-
sected lncRNAs at last (Figure 8a–d). In total, 4 risk model genes (mRNAs), 12 miRNAs,
and 21 lncRNAs formed the ceRNA network, which included HOXA10-hsa-miR-129-5p-
LINC00689, KIF18A-hsa-miR-221-3p-DANCR, ANXA5-hsa-miR-410-3p-LINC01579, and
other relationship pairs (Figure 8e).
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Figure 8. Construction of the mRNA-miRNA-lncRNA regulatory network based on four risk model
genes (a) Volcano plot for differentially expressed miRNAs (DE-miRNAs) in the TCGA-LGG co-
hort. (b) Volcano plot for differentially expressed lncRNAs (DE-lncRNAs) in the TCGA-LGG cohort.
(c) Venn plot to identify 16 intersected miRNAs (d) Venn plot to identify 21 intersected lncRNAs
(e) The mRNA-miRNA-lncRNA regulatory network, red represents up-regulated genes, blue repre-
sents down-regulated genes.
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3.9. Expression of Risk Model Genes

ANXA5, KIF18A, BRCA1, and HOXA10 were all notably different between LGG and
normal samples, and they were highly expressed in LGG samples (Figure 9a). The results
in the validation set were consistent with the TCGA dataset (Figure 9b). It can be seen in
Figure 9c that proteins corresponding to ANXA5, KIF18A, BRCA1, and HOXA10 were all
highly expressed in glioma tissues (Table S10).
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Figure 9. Expression variation of four prognostic genes (a) Boxplot of ANXA5, KIF18A, BRCA1,
and HOXA10 in the TCGA-LGG cohort (wilcox.test). (b) Boxplot of ANXA5, KIF18A, BRCA1, and
HOXA10 in the GSE16011 set (wilcox.test), **** p < 0.0001, ** p < 0.01, * p < 0.05. (c) The results of
immunohistochemistry (IHC) methods for the protein expression levels of risk model genes between
glioma and normal tissues through the human protein atlas (HPA) database The deeper the yellow in
the diagram, the higher the protein expression of the target gene.

4. Discussion

LGG accounts for 6.4% of all primary CNS tumors in adults [16]. The median over-
all survival (OS) for LGG (WHO grade II), undifferentiated glioblastoma (WHO grade
III), and glioblastoma multiforme (WHO grade IV) was 78.1-, 37.6- and 14.4 months, re-
spectively [17]. LGG have higher survival rates and a better prognosis than high-grade
gliomas (HGG). Many LGGs inevitably progress to high-grade gliomas. Gliomas can
hardly be completely cured by surgical resection [18]. Therefore, it is necessary to explore
the mechanism of low-grade glioma metastasis, which can early identify the high-risk
group and provide targeted therapy. M6A is the most common mRNA post-transcriptional
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modification in mammals. This dynamic and reversible epigenetic modification affects the
fate of RNA molecules and further regulates mammalian cell differentiation, immunity,
and apoptosis. Studies have shown that the imbalance of m6A is involved in the devel-
opment of gliomas [7,19,20]. M6A can regulate cell self-renewal, differentiation, invasion,
and apoptosis by regulating gene expression. Meanwhile, m6A modification in LGG is
significantly associated with angiogenesis. Each of the 17 m6A regulators and 36 ARGs
exhibited a significant self-positive correlation [20], and the researcher found that three
m6a-lncRNAs, including ELOA-AS1, HOXB-AS1, and FLG-AS1, were closely related to
the prognosis of LGG patients. Cancer cells can resist anoikis in several ways, such as by
secreting growth factors, activating pro-survival signaling pathways, and altering integrin
expression patterns [21]. Given the widespread post-translational modification of m6A
on RNA molecules, m6A affects the metastasis and deterioration of low-grade gliomas
by regulating the expression of anoikis-related genes. Likewise, we also found that seven
ANRG genes (ANGPTL2, BAG1, CDH2, IFI27, PTK2B, SOD2, and UBE2C) have a signifi-
cant relationship with the prognosis of LGG patients. However, the relationship between
the m6A regulator and anoikis and their effect on LGG prognosis are still not clear.

Before exploring the prognostic role and biological activities of the m6A-related anoikis
gene, it is important to accurately identify these potential genes. Various machine learn-
ing (ML) algorithms have been used to predict potential m6A modification sites, such
as i6mA-Caps [22], m6Aboost (AdaBoost) [23], as well as periodontitis-associated m6A-
SNPs [24]. Considering the empirical application of univariate Cox regression and the
LASSO algorithm for constructing diagnostic models, in this study, we screened out four
m6A-related anoikis genes (ANXA5, KIF18A, BRCA1, and HOXA10) and found that they
were all positively correlated with the risk score. The ANXA5 gene encodes a protein called
Annexin A5, which is a calcium-binding protein and belongs to the annexin protein family.
ANXA5 is one of the most common proteins that is overexpressed in a series of cancers
and participates in the multi-step process of tumor development. It has been reported that
annexin A5 plays a role in promoting tumorigenesis and metastasis in various cancers such
as pancreatic adenocarcinoma, sarcoma, breast cancer, and prostate cancer [25]. At present,
there are few reports about ANXA5 in LGG. A study reported that the ANXA5 polymor-
phism increased the risk of glioma in patients and suggested a poor prognosis [26]. The
research reveals that annexin A5 is the transcriptional target of Snail and can activate the
PI3K/Akt/NF-κB signaling pathway [27]. KIF18A encodes the protein of Kinesin family
member 18A. This protein is involved in the process of cell mitosis and is an important
microtubule dynamin. This study found that the expression of KIF18A was related to the
occurrence and development of LGG. The expression level of KIF18A in LGG tissues was
higher, which was positively correlated with the size of the tumor and the proliferation
ability of the tumor cells [28]. Studies have also found that high expression of KIF18A
may indicate an increased risk of malignant transformation from low-grade gliomas to
high-grade gliomas [28,29]. BRCA1 is a gene associated with breast cancer that is involved
in biological processes such as DNA repair and gene expression regulation. There is no
definite study of BRCA1 in gliomas, but it has been reported that the mutation of the
BRCA1 gene may be related to some types of brain tumors, such as metastatic brain tumors
of breast cancer and ependymoma [29]. BRCA1 gene methylation may also play a crucial
role in tumor development [30]. The relationship between LGG and BRCA1 still deserves
further study. HOXA10 is a member of the human HOX gene family, which is involved
in regulating biological processes such as embryonic development and cell differentiation.
At present, the research on HOXA10 in gliomas is still limited. Some studies have shown
that the high expression level of HOXA10 is related to the malignancy of gliomas, poor
prognosis, and tumor immunity [31–33]. All in all, past reports on these genes provide
strong evidence for our research. It is worth noting that univariate Cox regression and the
LASSO algorithm may neglect the potential interactions and nonlinear relationships among
variables, and the inability to handle missing data and outliers might impact the accuracy of
the models as well. It is, therefore, necessary to combine larger cohorts and more methods
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in the future to evaluate the accuracy of the diagnostic model more comprehensively and
the interactions among these key genes.

In this paper, we complete the pathway enrichment analysis of the above four genes.
There are not many studies on the specific mechanisms of the four genes in LGG or the
gene functional pathways involved. Among them, ANXA5 was involved in apoptosis, IL2
STAT5 signaling, and so on. The activation of IL2 receptor binding leads to the activation
of JAK protein tyrosine kinase, which promotes the phosphorylation and activation of
STAT5 and further regulates the transcription and expression of target genes. A literature
review reported that glioma is involved in tumor growth and metastasis through the
PI3K/Akt/NF-κB signaling pathway [27]. IL2 STAT5 signaling and IL2 activation can lead
to the activation and phosphorylation of PI3K, thereby further activating the AKT signaling
pathway and promoting cell proliferation and survival. In the pan-cancer analysis from the
perspective of pyroptosis, the IL2-STAT5 signaling pathway was significantly associated
with the prognosis of LGG [34]. Inhibition of the IL2-STAT5 signaling pathway can inhibit
the proliferation and invasion of LGG cells, promote the apoptosis of tumor cells, and block
immune escape. The IL2-STAT5 signaling pathway may become an important therapeutic
target in low-grade gliomas.

Another gene we are interested in is BRCA1. BRCA1 has received great attention
in breast cancer but little research in gliomas. When the BRCA1 gene mutates or loses
its function, it will lead to abnormal biological processes such as DNA damage repair
and cell cycle, thereby increasing the risk of the occurrence and development of breast
cancer [35]. It has been reported that BRCA1-related proteins inhibit the proliferation
and migration of glioma cells and the self-renewal of glioma stem cells through the TGF-
β/PI3K/AKT/mTOR signaling pathways [36]. BRCA1-related proteins are significantly
related to the prognosis of glioma patients, which is consistent with our research. In low-
grade gliomas, the mechanism of BRCA1 in epithelial mesenchymal transition, mitotic
spindle, and glycolysis also deserves further study.

In this article, we performed immune infiltrating cell analysis. Studies have shown that
low-grade gliomas and high-grade gliomas are significantly different [37]. The decrease in
glioma purity is significantly related to malignant entities and a worse prognosis [34]. This
is consistent with our results that the stromal score, immune score, and estimate score of the
high-risk group were significantly higher than those of the low-risk group. We also noticed
that activated CD4 T cells, gamma delta T cells, and natural killer T cells were positively
correlated with biomarkers, while activated B cells were negatively correlated with KIF18 A
and BRCA1. The presence of activated CD4 T cells, γδ T cells, and NKT cells may indicate
that the immune system is trying to recognize and attack tumor cells. This means that high-
risk LGGs may trigger a stronger immune response because they have a more aggressive
nature. The unique features of γδ T cells make them an emerging breakthrough in cancer
immunotherapy. These features include their tissue tropism, tumor-targeting activity
independent of neoantigen load, and conventional MHC-dependent antigen presentation,
as well as their combination of characteristics typical of unconventional T cells and natural
killer cells [38]. Researchers indicate that alterations in the ratio and functionality of
Vδ1 T cells and Vδ2 T cells may be linked to the pathogenesis of gliomas [39]. In the
presence of IL-2, Vδ1 T cells predominate in patients with glioblastoma, with enhanced
immunosuppressive function of Vδ1 T cells and reduced cytotoxicity of Vδ2 T cells. On the
other hand, a literature review employed single-cell RNA sequencing profiles from murine
glioma models to demonstrate a high proportion of CD4(+), CD8(+) T cells, and natural
killer cells in LGG samples, whereas this infiltration was absent in HGG samples [40].
Overall, our findings are consistent with previous results, where specific mechanisms need
to be further explored. The study also reported that freshly isolated NKT cells from glioma
patients are functionally equivalent to cells from healthy controls [41]. This suggests that
activating natural killer T cells to dissolve tumor cells in low-grade gliomas is a possible
targeted therapy strategy. Activated B cells are significantly negatively correlated with
KIF18 A and BRCA1. At present, there are very few studies on this type of cell. Our results
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show that tumor invasion may be achieved by inhibiting activated B cells in low-grade
gliomas, and its related research mechanism remains to be further studied.

However, our study also has certain limitations. Firstly, there is a lack of functional
experimental validation. Secondly, our data is static, which limits our ability to fully com-
prehend the dynamic changes of the relevant biomarkers. Lastly, the insufficient sample
size hinders the precise establishment of predictive models using machine learning. Moving
forward, we aim to address these limitations by acquiring larger sample datasets and con-
ducting pertinent experiments to gain a more comprehensive and profound understanding
of the regulatory roles of the relevant genes.

5. Conclusions

In this paper, a prediction model of m6A-related anoikis genes was constructed by
mining public databases, and four biomarkers of ANXA5, KIF18A, BRCA1, and HOXA10
were finally determined, showing strong predictive potential of LGG. Although the valida-
tion of clinical samples was lacking, we explored the possible mechanisms in low-grade
gliomas by constructing a ceRNA network and performing immune infiltration analysis
and drug sensitivity analysis. Next, we will continue to focus on the research progress of
cell m6A-related anoikis genes and LGG.
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(b) Top20 interaction degree for 149 DE-m6A-ANRGs in the PPI network. Figure S2. Validation
of the risk model using Kaplan-Meier survival curves and Receiver operating characteristic (ROC)
curves. (a) Distribution of risk score, survival states and gene expression of four risk model genes
in training set. (b) Validation of the risk model in internal validation set. (c) Validation of the risk
model in external validation set. Figure S3. Analysis for four risk model genes. (a) Kaplan-Meier
survival curves of four risk model genes in different expression patterns (p < 0.05). (b) Circle plot
for chromosome positions of four risk model genes. Figure S4. Immune cells infiltration differences
between high/low risk groups using CIBERSORT algorithm. (a) Histogram for the infiltration score
of 20 immune cells in TCGA-LGG cohorts. (b) Violin plot for the infiltration levels of 20 immune cells
in high/low risk groups. Figure S5. Correlation of potential therapeutic agents and the risk model.
(a) Violin plots of Top12 are significantly different expressed chemotherapeutic agents in high/low-
risk groups. (b) Correlation scatter plots for the Top4 relationship of risk score and differential
expressed chemotherapeutic agents (p < 0.05). Table S1. Lists of differentially expressed genes
(DEGs) between LGG and Normal samples. Table S2. Results of Gene Ontology (GO) analysis of six
differentially expressed N6-methyladenosine (m6A) related genes (DE-m6A-RGs). Table S3. Results
of GO analysis of 214 differentially expressed anoikis-related genes (DE-ANRGs). Table S4. Results
of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of 214 DE-ANRGs. Table S5. Results
of Gene set enrichment analysis (GSEA) of ANXA5. Table S6. Lists of GSEA of KIF18A. Table S7.
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(HPA) database.
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KEGG Kyoto Encyclopedia of Genes and Genomes
PPI protein interaction
ROC receiver operating characteristic
K-M Kaplan–Meier
GSVA gene set variation analysis
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ceRNA competing endogenous RNA
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