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Abstract: The elderly population is growing at increased rates and is expected to double in size by
2050 in the United States and worldwide. The consumption of healthy foods and enriched diets
have been associated with improved cognition and brain health. The key nutrients common to
many healthy foods and diets are the omega-3 polyunsaturated fatty acids (omega-3 FAs), such as
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We explored whether omega-3 FA
levels are associated with brain volume and cognition. Forty healthy, cognitively normal, Seventh-day
Adventist older adults (mean age 76.3 years at MRI scan, 22 females) completed neurocognitive
testing, a blood draw, and structural neuroimaging from 2016 to 2018. EPA and an overall omega-
3 index were associated with individual measures of delayed recall (RAVLT-DR) and processing
speed (Stroop Color) as well as entorhinal cortex thickness. EPA, DHA, and the omega-3 index
were significantly correlated with the total white matter volume. The entorhinal cortex, frontal
pole, and total white matter were associated with higher scores on delayed memory recall. This
exploratory study found that among healthy, cognitively older adults, increased levels of omega-3
FAs are associated with better memory, processing speed, and structural brain measures.
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1. Introduction

The aging population is expected to double from 703 million individuals 65 years
or older to 1.5 billion globally by 2050 [1]. The symptoms associated with aging include
decreased physical abilities, a loss of muscle mass and strength, changes in brain structure
and function, and decreased cognitive abilities [2–5]. The processing speed and efficiency,
encoding of new memories, working memory, and reasoning skills have been observed to
decline starting in early adulthood, while crystallized knowledge, such as vocabulary or
general information, appears to remain relatively stable until the 60s [6,7]. Many factors
influence the trajectory of one’s physical and cognitive abilities, including greater physical
activity, more social contacts, the absence of depression and cognitive impairment, and
nutrition [8].

Some of the physiological benefits of a healthy diet have been well documented and
include a decreased risk of cardiovascular disease, coronary heart disease, stroke, diabetes,
dyslipidemias, hypertension, and obesity [9–11]. In recent years, the benefits of a healthy
diet on brain function have also been explored. The Mediterranean diet (MeDi), the Dietary
Approaches to Stop Hypertension (DASH) diet, and the Mediterranean-DASH Intervention
for Neurodegenerative Delay (MIND) diet have all received considerable research and
have been found to have positive effects on both brain function and structure [12–18].

Omega-3 fatty acids (FAs) are common elements in the MeDi, DASH, and MIND diets.
Foods that contain high amounts of omega-3 FAs include vegetable oils, flaxseeds, walnuts,
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vegetables, and fatty fish [19,20]. The accumulating evidence from many studies indicates
that increased consumption of omega-3 FAs may serve as a protective factor against the
negative consequences of aging [21–26]. Specifically, omega-3 FAs have been associated
with positive effects on both cognition [27–30] and various brain measures, including
hippocampal, gray matter, and total brain volumes and white matter microstructural
integrity [18,31,32]. Moreover, a diet rich in omega-3 FAs was found to be correlated with
increased synaptic density [21] and decreased neuronal loss [22].

Further studies have found an inverse relationship between fish intake and cognitive
impairment [33]. Working memory and selective attention improvements were noted after
five weeks [34] and executive functions after six months of fish oil supplementation [18]. A
lower omega-3 index (DHA + EPA) was associated with lower scores for visual memory,
executive function, and abstract thinking [35]. Nevertheless, other studies have not found
associations between omega-3 FA supplementation and cognition [36,37], and some ran-
domized controlled trials have not documented a significant change in global cognitive
function or language, revealing only small improvements in executive function, memory,
and visuospatial skills [38–40]. These discrepant findings highlight the importance of
further exploring the cognitive and neurophysiological effects of omega-3 FAs.

The current study examines the associations between blood serum levels of omega-3
FAs, cognitive function, and brain volume to explore the relationship between omega-3
FAs and brain health among a sample of older participants of the Adventist Health Study-2
(AHS-2). Members of the Seventh-day Adventist (SDA) church typically lead a relatively
healthy and active lifestyle and adhere to healthy eating patterns (e.g., follow a vegetarian
or vegan diet) and abstain from smoking and drinking alcohol, which have been associated
with brain atrophy and cognitive deficiencies [41–43].

2. Materials and Methods
2.1. Study Population

The Adventist Health Study-2 (AHS-2), a longstanding prospective cohort study of
over 96,000 Seventh-day Adventists in the United States and Canada was established in
2002 to explore the associations between diet, lifestyle, and health outcomes [44,45]. In
2016, 2685 members of the cohort were identified who were 60 years or older, community-
dwelling, and living within 75 miles of Loma Linda University (LLU). From 2016 to
2018, 916 (34.1%) were randomly identified, among which 199 (21.7%) were reached by
telephone and invited to participate in the AHS-2 Cognitive and Neuroimaging (AHS-
2CAN) substudy. Of those, 168 agreed to participate and were screened for eligibility. The
exclusion criteria included not being able to understand or speak English proficiently or
having any acute medical conditions that could negatively impact cognitive function. One
hundred and thirty-two participants who met the inclusion criteria were enrolled in the
AHS2-CAN substudy to investigate the effect of dietary patterns on cognitive aging, and
they completed baseline study procedures, including cognitive and physical assessments.

Approximately 1 year after enrolling in the AHS2-CAN, the participants were invited
to return for a follow-up cognitive assessment as well as a brain MRI scan. Additional
exclusions were made for conditions that would be contraindicated for a brain MRI with
contrast: pacemakers or other implanted devices; a history of kidney disease or diabetes;
and claustrophobia [46]. Forty-five AHS2-CAN participants (34.1%) completed the follow-
up assessment, of whom 40 completed the MRI scan. Five participants were unable to
complete the MRI for the following reasons: one had metal in his/her body, one was
unable to lie flat for the purpose of MRI acquisition, and three declined due to symptoms
of claustrophobia or concerns related to the contrast agent.

All the study procedures were approved by the LLU Institutional Review Board, and
written informed consent was obtained from all the participants.
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2.2. Neuropsychological Tests

The participants’ performance on tests of memory, processing speed, attention and
working memory, and executive function were assessed at the time of the MRI and blood
collection. The participants completed the Rey Auditory Verbal Learning Test (RAVLT), a
test of verbal learning and memory [47]; the RAVLT Immediate Recall score (RAVLT-IR,
total words recalled across the first 5 learning trials) and Delayed Recall score (RAVLT-DR,
total words recalled after a 30 min delay) were examined. In the Stroop Test [48], the Stroop
Word and Stroop Color measure processing speed, as reflected by the total number of
words read and colors named, respectively, within each 45 s trial; the Stroop Color/Word
Inhibition measures executive function (i.e., selective attention and response inhibition) as
reflected by the number of mismatched color word/ink combinations correctly completed
in 45 s. The Digit Span subtest of the Wechsler Adult Intelligence Scale—4th Edition (WAIS-
IV) [49] was included as a measure of attention and working memory; the total raw score
(sum of number sequences correctly repeated in forward, backward, and sequencing order)
was examined. Cognitive testing was conducted by trained study personnel.

2.3. Omega-3 Fatty Acids

A drop of blood was collected on filter paper that was pre-treated with an antioxidant
cocktail (Fatty Acid Preservative Solution, FAPS™) and allowed to dry at room temperature
for 15 min. The dried blood spots (DBS) were immediately stored in a −80 ◦C freezer
until they were shipped to OmegaQuant for FA analysis. Eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) were measured, and an omega-3 index was calculated
as the sum of the EPA and DHA, adjusted by a regression equation (r = 0.97) to predict
the omega-3 index in red blood cells (RBC) (see Appendix A). The FA composition was
expressed as a percent of the total identified fatty acids. The RBC FA composition has
been shown to reflect FA intake up to 120 days prior to measurement compared to plasma
concentrations, which reflect the intake over the last few days [35,46,50].

2.4. MRI Acquisition and Image Analysis

MR imaging was performed at Loma Linda University Medical Center on an existing
3T Siemens Skyra (Siemens Medical Systems, Erlangen, Germany) using a 32-channel array
head coil to provide greater signal-to-noise and parallel imaging capability to facilitate
faster imaging. Multiple sequences were acquired in the 45 min of scan time: 3D T1-
weighted MPRAGE, Dynamic Contrast Enhanced (DCE), Diffusion Tensor Imaging (DTI),
Susceptibility Weighted Imaging (SWI), and FLAIR. 3D T1-weighted MPRAGE images with
the sequencing parameters TR/TE = 1950/2.3 ms, TI = 900 ms, FA = 8◦, FOV = 240 × 240,
matrix 256 × 256, GRAPPA = 2, acquisition time = 4:30, and slice thickness = 0.9 mm were
used for the analyses.

The image analysis consisted of cortical/subcortical volumetric segmentation, cortical
surface reconstruction, and parcellation of the T1-weighted scans using the FreeSurfer
software package version 7.2.0 [51–56]. FreeSurfer is an open-source software package
for the automatic processing and analysis of brain MRI images, and it has been found
to produce comparable results [57,58], or in some cases more accurate results [59], than
manual tracing. To generate the PFC thickness (frontal pole) and the volumes for the
hippocampus, entorhinal cortex, and total white matter, the FreeSurfer command recon-all
was used.

2.5. Statistical Analysis

The descriptive statistics of the participants were summarized. Two-tailed, partial
correlations were used to calculate p-values. A statistically significant correlation was
considered at p < 0.05. Partial correlations, adjusted for age, sex, and education as continu-
ous variables between the omega-3 FAs (EPA, DHA, omega-3 index), brain volume and
thickness (hippocampus, entorhinal cortex, and frontal pole), and cognitive scores were
calculated. SPSS v.28 [60] was used for all the statistical analyses.
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3. Results
3.1. Demographic and Clinical Characteristics of Study Participants

The mean age of the participants (n = 40) was 76.3 years (SD = 8.3, range = 63–90 years),
with an average of 16.8 years of education (SD = 2.5) (Table 1). Thirty-four partici-
pants were non-Hispanic White (85.0%), one was Black or African American (2.5%), two
were Asian (5.0%), two were Hispanic (5.0%), and one was Native Hawaiian or Pacific
Islander (2.5%).

Table 1. Descriptive information of study sample (n = 40).

Variable n %

Sex
Female 22 55.0
Male 18 45.0

Age (Mean ± SD (range)) 76.3 ± 8.3 (63–90)
60–69 10 25.0
70–79 15 37.5
80–89 13 32.5
90–96 2 5.0

Years of Education (Mean ±
SD (range)) 16.8 ± 2.5 (10–20)

≤12 1 2.5
13–16 19 47.5
17–18 10 25.0
≥19 10 25.0
Race

Caucasian 34 85.0
Black or African American 1 2.5

Asian 2 5.0
Hispanic 2 5.0

Native Hawaiian or Pacific
Islander 1 2.5

Marital Status
Married 29 72.5

Widowed 5 12.5
Single/Never Married 3 7.5

Divorced 3 7.5
Family History of

Neurological Illness
None 25 62.5
Stroke 4 10.0

Dementia 2 5.0
Alzheimer’s Disease 4 10.0
Parkinson’s Disease 1 2.5

Other 4 10.0
Omega-3 Fatty Acids Mean ± SD (range)

EPA 0.9% ± 0.7% (0.15–3.45)
DHA 2.6% ± 1.1% (1.14–5.74)

Omega-3 Index 5.4% ± 1.9% (2.88–11.79)

3.2. Correlations between Omega-3 Fatty Acids and Cognitive Scores

After controlling for age, sex, and education, multiple statistically significant corre-
lations were observed between the cognitive scores and omega-3 FAs (Table 2). EPA was
significantly positively correlated with RAVLT-DR (r = 0.40, p = 0.02) and Stroop Color
(r = 0.50, p = 0.003). Statistically significant positive correlations were observed between
the omega-3 index and RAVLT-DR (r = 0.38, p = 0.03) and Stroop Color (r = 0.39, p = 0.02).
No statistically significant correlations were observed between the omega-3 variables and
RAVLT-IR, Stroop Word, or Digit Span.
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Table 2. Correlations between omega-3 fatty acids and cognitive scores.

Immediate Memory Delayed Memory Processing Speed Executive Functions

Fatty Acid RVLT-IR RAVLT-DR Stroop Word Stroop Color Stroop C/W Digit Span

EPA −0.07 0.40 * 0.23 0.50 ** 0.32 † 0.18
DHA 0.03 0.33 † 0.22 0.29 0.19 0.06

Omega-3 Index −0.01 0.38 * 0.24 0.39 * 0.26 0.11

Note: All values are Pearson r coefficients, controlled for age (years; continuous), sex (male, female), and education
(years; continuous). RAVLT = Rey Auditory Verbal Learning Test; IR = Immediate Recall; DR = Delayed Recall;
Stroop C/W = Stroop Color/Word Inhibition * p < 0.05, ** p < 0.01, † 0.05 < p < 0.10.

3.3. Correlations between Omega-3 Fatty Acids and Brain Region Volumes and Thickness

After controlling for age, sex, and education, statistically significant positive corre-
lations were found between EPA and EC (r = 0.41, p < 0.05) and the omega-3 index and
EC volumes (r = 0.34, p < 0.05) (Table 3). EPA, DHA, and the omega-3 index were all
significantly positively correlated with white matter volume (all p < 0.05).

Table 3. Correlations between omega-3 fatty acids and brain region volumes and thickness.

Fatty Acid

Brain Region EPA DHA Omega-3 Index

Hippocampus 0.16 0.04 0.09
Entorhinal Cortex 0.41 * 0.26 0.34 *

Frontal Pole −0.22 −0.12 −0.17
White Matter 0.34 * 0.33 * 0.36 *

Note: All values are Pearson r coefficients, controlled for age, sex, and education. * p < 0.05.

3.4. Correlations between Brain Volume and Thickness and Cognitive Scores

The entorhinal cortex volume was statistically significantly correlated with RAVLT-DR
(r = 0.36, p < 0.04) (Table 4). The frontal pole thickness was significantly positively correlated
with RAVLT-IR (r = 0.45, p = 0.01) and RAVLT-DR (r = 0.36, p = 0.04). The white matter
volume was significantly positively correlated with RAVLT-DR (r = 0.36, p = 0.04). No
statistically significant correlations were observed with Stroop or Digit Span.

Table 4. Correlations between brain region volumes and thickness and cognitive scores.

Immediate Memory Delayed Memory Processing Speed Executive Functions

Brain Region RAVLT-IR RAVLT-DR Stroop Word Stroop Color Stroop C/W Digit Span

Hippocampus 0.22 0.33 † −0.25 −0.13 −0.22 −0.07
Entorhinal

Cortex 0.31 † 0.36 * −0.10 0.13 0.18 −0.10

Frontal Pole 0.45 * 0.36 * −0.20 −0.06 −0.14 −0.08
White Matter 0.24 0.36 * 0.01 0.02 0.01 0.06

Note: All values are Pearson r coefficients, controlled for age, sex, and education. RAVLT = Rey Auditory
Verbal Learning Test; IR = Immediate Recall; DR = Delayed Recall; Stroop C/W = Stroop Color/Word Inhibition.
* p < 0.05, † 0.05 < p < 0.10.

4. Discussion

The results of this exploratory cross-sectional study demonstrate that among a healthy,
cognitively normal, aging population, omega-3 FA levels had variable associations with
cognition and the brain region volume and thickness as assessed by MRI. Significant
correlations were observed between both EPA and the omega-3 index and measures of
delayed memory and processing speed but not with measures of working memory and
executive function. EPA and the omega-3 index were also correlated with the entorhinal
cortical volume, and all three omega-3 FA variables were correlated with the total white
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matter volume. None of the omega-3 FA variables were correlated with the hippocampal
volume or the frontal pole cortical thickness.

These findings are generally consistent with previous studies showing associations be-
tween levels of omega-3 FAs, cognitive functioning, and brain regions of interest [18,21,35,61].
Other studies [36,37] did not find associations between omega-3 FAs and cognition. Two
features make our study unique and may offer some explanation for how our findings
compare to those of other studies. First, methodological differences in omega-3 FA mea-
surement (e.g., blood, plasma, or serum) may at least partially explain discrepant findings
and make study comparisons more difficult. For the current study, we utilized a serum
measurement of omega-3 FAs. This method estimates FA intake up to 120 days and reflects
longer-term FA levels compared to other methods that measure acute levels. Gatto et al. [45]
also found that this study cohort exhibited a stable and consistent dietary pattern over their
lifetime. Therefore, not only did our FA measurement reflect intake over a longer period
but the study participants were also more likely to have consistently adhered to the same
diet over time. Other methodological differences that have been noted in the literature
include subgroup effects (e.g., genetic or risk factor burden), short treatment periods, or
dosing and tracking [62].

Due to the documented effects of omega-3 FAs on synaptic membranes, preventing
neuronal loss and atrophy, and other brain health and functioning [21,63,64], we expected
the results to indicate stronger associations between omega-3 FA levels and the regions
of interest, particularly the subcortical regions, namely the hippocampus. Although the
results did not indicate statistically significant associations between the omega-3 FA levels
and the hippocampus, statistically significant associations between EPA and the omega-3
index and the entorhinal cortical volume were observed. The entorhinal cortex is largely
known as the major input and output structure of the hippocampus and is involved with
learning and memory [65–67]. Due to the physiological makeup of the entorhinal cortex,
namely the white matter tracts connecting to the hippocampal formation and other cortical
projections, it may be possible that the entorhinal cortex is more sensitive to the effects of
omega-3 FAs on white matter and other neuronal properties.

Additionally, we observed statistically significant associations between all the omega-3
FA variables and the white matter volume. The white matter microstructure has been found
to mediate the relationship between a dietary pattern high in omega-3 FAs and cognitive
scores [68]. The effect of omega-3 FAs on the white matter microstructure may be due to
decreased inflammation or oxidative stress or their role in pathways directly involving
axonal loss or demyelination. Another possible mechanism underlying the relationship
between omega-3 FAs and white matter integrity in older adults, in particular, is that
omega-3 FAs may help preserve the integrity of fibers that are particularly vulnerable to
aging and, subsequently, slow white matter degeneration [69]. Although there are some
contradictory findings [70,71], the association between increased omega-3 FA intake and
white matter volume appears consistent with other studies that revealed that omega-3 FAs
increase the white matter volume or microstructural integrity [35,72–75].

Omega-3 FAs are critical components of brain structure and functioning, with the
effects reported to include increased gray matter volume and white matter microstructural
integrity [18,31] and improved cognitive function [27–30]. Omega-3 FAs exert their influ-
ence on cellular components (e.g., proteins, receptors, ion channels, and enzymes), which
can lead to decreased inflammation, increased synaptic plasticity and dendritic spines, and
improved neurotransmission and signaling [21–23,73]. The additional effects of omega-3
FAs may reduce the production of amyloid-β, implicated in Alzheimer’s disease, and
increase brain-derived neurotrophic factor (BDNF) and synaptic protection [35,76,77].

These results should be interpreted while considering the following limitations. First,
the small sample size limited our statistical power. However, the effect sizes observed in
this study ranged from small to medium and, in general, the correlations were trending
in expected directions. The authors cannot determine causality and are unable to assess
atrophy rates in the brain. The entorhinal cortex, or rather atrophy of the entorhinal cor-
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tex, appears to be particularly sensitive to poorer memory performance and pathological
processes, including the conversion from mild cognitive impairment to Alzheimer’s dis-
ease [78–81]. Finally, given our small sample size, which limited the complexity of our
statistical analysis, we could not adjust the correlations for several factors that have been
shown to affect the metabolism and absorption of omega-3 FAs [82–87] (e.g., genetic factors,
physical activity and health status, smoking, alcohol consumption, metabolic syndromes,
and geography). Nevertheless, the health-conscious lifestyle practices of our study popu-
lation, including abstaining from smoking and alcohol and remaining physically active,
reduce the likelihood that these factors could confound the associations we observed.

This study has many strengths. As noted, the unique sample of SDA participants
is advantageous in that it provides a fairly homogenous group with fewer confounding
variables (e.g., diverse lifestyles and geographic location). However, the omega-3 FA
levels measured in our sample were slightly lower than other studies that used similar
measurement techniques [18,35,88], which may be due to the unique characteristics of the
participants. SDA church members are less likely to consume oily fish, which is one of the
more highly concentrated sources of long-chain omega-3 FAs, especially EPA, thereby likely
lowering their overall percentage of EPA levels and the omega-3 index. Gu et al. [13] noted
that the association they found between adherence to a Mediterranean-type diet and larger
grey and white matter volumes was likely driven by high fish and low meat consumption.
Furthermore, the study sample being drawn from an SDA population may decrease the
generalizability of our findings to the general population. Approximately two-thirds of our
sample participants reported following a vegetarian or vegan type of diet, which is much
higher than the approximately 6% in the US population in 2022 [89]. However, even with
these decreased omega-3 FA levels in our sample, we still observed statistically significant
associations between the variables.

5. Conclusions

Lifestyle factors are of interest as a means of preventing or delaying cognitive decline.
Diet and nutrition, in particular, have garnered attention due to their low cost to the
general population and reported neuroprotective effects. In this study, we investigated the
relationships between the levels of red blood cell omega-3 FAs, brain volume, and cognition.
We found that higher levels of omega-3 FAs were associated with better performance on
tests of memory and processing speed and greater brain volume in the entorhinal cortex
and total white matter.

More research is required to determine the extent to which omega-3 FA consumption
affects cognitive ability and/or protects against or delays cognitive decline. Recommen-
dations for future studies investigating the effects of fatty acids on brain function include
utilizing additional forms of neuroimaging (e.g., fMRI, DTI), larger sample sizes, and
longitudinal studies. The results of this exploratory cross-sectional study provide support
for the associations between omega-3 FAs, regions of interest, and cognitive abilities in a
healthy, cognitively normal, older adult population.
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Appendix A

DBS Fatty Acid Analysis

A drop of blood was collected on filter paper that was pre-treated with an antioxidant
cocktail (Fatty Acid Preservative Solution, FAPS™) and allowed to dry at room temperature
for 15 min. The dried blood spots (DBS) were shipped to OmegaQuant for fatty acid analysis.
One punch of the DBS was transferred to a screw-cap glass vial followed by the addition
of BTM (methanol containing 14% boron trifluoride, toluene, methanol; 35:30:35 v/v/v)
(Sigma-Aldrich, St. Louis, MO, USA). The vial was briefly vortexed and heated in a hot bath
at 100 ◦C for 45 min. After cooling, hexane (EMD Chemicals, Gibbstown, NJ, USA) and
HPLC grade water were added and the tubes were recapped, vortexed, and centrifuged to
help to separate the layers. An aliquot of the hexane layer was transferred to a GC vial. GC
was carried out using a GC-2010 Gas Chromatograph (Shimadzu Corporation, Columbia,
MD, USA) equipped with a SP-2560, 100-m fused silica capillary column (0.25 mm internal
diameter, 0.2 um film thickness; Supelco, Bellefonte, PA, USA).

The fatty acids were identified by comparison with a standard mixture of the fatty acids
characteristic of RBC (GLC OQ-A, NuCheck Prep, Elysian, MN, USA), which was also used
to construct individual fatty acid calibration curves. The following 24 fatty acids (by class)
were identified: saturated (14:0, 16:0, 18:0, 20:0, 22:0 24:0); cis monounsaturated (16:1, 18:1,
20:1, 24:1); trans (16:1, 18:1 *, 18:2 *—see below for more details); cis n-6 polyunsaturated
(18:2, 18:3, 20:2, 20:3, 20:4, 22:4, 22:5); and cis n-3 polyunsaturated (18:3, 20:5, 22:5, 22:6).
The fatty acid composition was expressed as a percent of the total identified fatty acids.
The omega-3 index is defined as the sum of 20:5n-3 (EPA) and 22:6n-3 (DHA), adjusted by
a regression equation (r = 0.97) to predict the omega-3 index in the RBC.

* The chromatographic conditions used in this study were sufficient to isolate the
C16:1trans isomers and the C18:2 ∆ 9t-12c, 9t-12t, and 9c-12t isomers; the latter is reported
as C18:2n6t. However, each individual C18:1 trans molecular species (i.e., C18:1 ∆6 through
∆13) could not be separated but appeared as two blended peaks that eluted just before oleic
acid. The areas of these two peaks were summed and referred to a C18:1 trans.
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