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Abstract: Drug addiction is one of the major worldwide health problems, which will have serious
adverse consequences on human health and significantly burden the social economy and public
health. Drug abuse is more common in anesthesiologists than in the general population because
of their easier access to controlled substances. Although opioids have been generally considered
the most commonly abused drugs among anesthesiologists and nurse anesthetists, the abuse of
non-opioid anesthetics has been increasingly severe in recent years. The purpose of this review is
to provide an overview of the clinical situation and potential molecular mechanisms of non-opioid
anesthetics addiction. This review incorporates the clinical and biomolecular evidence supporting
the abuse potential of non-opioid anesthetics and the foreseeable mechanism causing the non-opioid
anesthetics addiction phenotypes, promoting a better understanding of its pathogenesis and helping
to find effective preventive and curative strategies.

Keywords: drug addiction; substance use disorders; non-opioid anesthetics

1. Introduction

Addiction is a chronically relapsing brain disease, which is related to the complex
interactions between biological factors (pharmacological effects of drugs, genetics, epige-
netics, developmental attributes, and neurocircuitry) and environmental factors (social and
cultural systems, insufficient social connection, stress, trauma, and exposure to alternative
reinforcers) [1,2]. The characteristics of addiction are compulsively seeking and taking
drugs, loss of control when limiting intake, and negative emotions (such as irritability,
anxiety, and dysphoria) when drugs are unavailable [3,4]. Although opioids have been
reported to be the most abused anesthesia medication, the trend of non-opioid anesthetics
abuse has become increasingly severe in recent years [5,6].

The non-opioid anesthetics have gradually become a significant cause of addiction,
death, and career termination [6]. Recently, a retrospective study among anesthesiologists
and nurse anesthetists in Australia and New Zealand shows that the pattern of drug abuse
has changed compared with that before. Specifically, propofol has replaced opioids as
the most frequently abused substance. Moreover, other non-opioid anesthetics include
ketamine, benzodiazepines, and inhalational anesthetics [5,7,8]. Non-opioid anesthetics
have gradually become an essential source of drug abuse. However, their incidence, related
adverse events, and mortality have been underestimated. Furthermore, a comprehensive
understanding of the neurobiological mechanisms of establishment and maintenance of
non-opioid anesthetics addiction is still lacking.

The purpose of this review is to provide an overview of non-opioid anesthetic drug
addiction. We started with a brief overview of the clinical situation and then introduced
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the molecular mechanism of non-opioid anesthetic drug addiction (including propofol,
ketamine, benzodiazepines, and inhaled anesthetics), providing insights into the potential
novel therapeutic target of non-opioid anesthetic drug addiction.

2. Methods

The manuscript includes research articles gathered from PubMed that expound on
the clinical situation and mechanism of non-opioid anesthetics addiction. The follow-
ing keywords were used: “anesthesiology”, “drug addiction”, “substance use disorders”,
“propofol addiction”, “ketamine addiction”, “benzodiazepines addiction”, and “inhala-
tional anesthetics addiction”. Only articles written in English were selected for study.

3. The Current Situation of Non-Opioid Anesthetics Addiction

Among the non-opioid anesthetics abused by anesthesiologists, propofol, ketamine,
benzodiazepines, and inhaled anesthetics topped the list. We review the current prevalence
of these non-opioid anesthetic medications used by anesthesia personnel.

Propofol is one of the most common intravenous anesthetics. Due to its rapid onset,
stable efficacy, and short duration, it has been widely used in clinical practice [9,10]. It can
be used for induction and maintenance of general anesthesia, long-term sedation, moni-
tored anesthesia care (MAC), and conscious sedation in the intensive care unit (ICU) [11].
However, the abuse potential of propofol has been underestimated, and it has not been a
controlled substance anywhere in the world except in Korea so far [12]. It is reported that
the number of propofol abuse increased five times from 1995 to 2005 [13]. In a retrospec-
tive study, propofol has been reported to become the most frequent abuse of anesthesia
drugs among Australian and New Zealand anesthetists, accounting for 41% of drug abuse
cases from 2004 to 2013 [7]. Notably, the safe margin between the euphoric dose and the
lethal dose caused by propofol is relatively narrow, and many abusers die of respiratory
depression caused by excessive propofol, and the mortality rate can be as high as 45% [14].

Ketamine is a noncompetitive NMDAR antagonist, first synthesized by American
chemist Calvin Lee Stevens in the Parke-Davis laboratory in 1962 and approved by the US
Food and Drug Administration (FDA) in 1970 [15]. Ketamine is often used for anesthesia in
children, superficial surgery, and burn operations and can also be used as an adjunct to re-
gional block anesthesia [16]. Although ketamine can inhibit the thalamic-neocortical, it can
activate the limbic system. It provides a unique state of anesthesia in which consciousness
and physical sensation are temporarily separated (the so-called “dissociative anesthesia”),
which is the basis of ketamine abuse [17]. The patient feels relaxed and euphoric after
obtaining ketamine, but their consciousness remains clear. Before 1990, ketamine accounted
for 4% of anesthetic drug addiction [18]. From the 1990s to the beginning of the 21st cen-
tury, ketamine accounted for approximately 2% of the drugs abused among American
anesthesiologists, and it was placed into Schedule III of Schedules of Controlled Substances
by the US Drug Enforcement Administration [19,20]. Long-term ketamine use can cause
permanent damage to the brain, as well as negative effects on the urinary, cardiovascular,
and digestive systems [21–24].

Benzodiazepines (BDZs) have sedative, hypnotic, and anti-anxiety effects, which
are usually used as pre-anesthetic drugs, adjuvants for local and intraspinal anesthesia,
induction and maintenance of general anesthesia in the maintenance practice [25,26]. BDZs
are among the most commonly abused non-opioid anesthetic drugs, accounting for 14% of
the drugs abused among anesthesiologists in the United States [19]. It is often accompanied
by the misuse of other substances, making its treatment very complex. Midazolam is the
most commonly abused BDZs [5]. Long-term use of BDZs can cause cognitive and motor
disorders and severe withdrawal symptoms (including anxiety, insomnia, muscle spasms,
nervousness, and hypersensitivity) [27,28].

Inhalational anesthetics have been reported to account for 2% of drug abuse among
anesthesiologists in the United States and 5% in Australia and New Zealand [7,29]. Though
inhalational anesthetics were not generally regarded as addictive drugs in the past, recently,
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more and more reports have shown that they also have abuse potential [30,31]. In a survey
of inhalational anesthetic abuse in anesthesia training programs, nitrous oxide (N2O),
isoflurane, sevoflurane, halothane, and desflurane accounts for 47%, 24%, 19%, 19%, and
9.5%, respectively. Since its discovery and first use in the 1840s, N2O has been widely used
for anesthesia in dental and cesarean operations. Nowadays, N2O use disorder has been
well-documented [32,33]. One of the most concerning aspects of inhalational anesthetics
addiction is the high mortality, which is similar to propofol abuse [34]. Acute N2O can
lead to severe hypoxia symptoms [34,35]. Long-term exposure to N2O can lead to many
psychiatric symptoms, such as delusions, delirium, and depression. Apart from psychiatric
symptoms, it also causes B12 deficiency, leading to peripheral neuropathy and megaloblastic
anemia [34–42].

4. Molecular Mechanism of Non-Opioid Anesthetic Drug Addiction

Drug addiction is characterized by the damage and disorder of multiple neural net-
works and circuits in the brain, which includes the reward system, the anti-reward/stress
system, and the central immune system [43]. Specifically, the reward system has a crucial
role in driving drug-seeking behavior. The reward system is a regional network composed
of the limbic system, prefrontal cortex (PFC), striatum, and midbrain [44], and the dopamin-
ergic (DAergic) delivery from the ventral tegmental area (VTA) to the nucleus accumbens
(NAc) is the basis of the reward system [2]. Moreover, DAergic, glutamatergic (GLUergic),
and GABAergic delivery in the PFC, hippocampus, amygdala, and globus pallidus are also
closely related to drug-seeking behavior, withdrawal symptoms, and negative emotional
responses [3,45,46] (Figure 1A). Dopamine (DA) is located in the center of drug reward
signal transduction in the brain and a common feature of different abused drugs is that they
eventually cause the increase of DA in NAc through different pharmacological effects [44].
With the continuous research and deep understanding of reward circuits, the research on
neurotransmitters and neuromodulators of drug addiction has also been deepened. Recent
studies have found that, in addition to DA, other neurotransmitters and neuromodula-
tors such as glutamate, gamma-aminobutyric acid (GABA), opiate peptides, serotonin,
acetylcholine, and endogenous cannabinoids also play a vital role in drug addiction and
relapse [47–50]. Although they are not widely studied comparable to DA, their role in addic-
tion should not be underestimated. Changes in synaptic plasticity caused by drug-induced
DA increase is another common feature of addictive drugs [45] (Figure 1B). Increased DA
release can trigger various forms of synaptic plasticity changes by altering the expression
of genes closely related to synaptic plasticity, such as ∆FosB, NFκB, etc., or by RNA editing,
leading to the strengthening or weakening of connections between different nuclei in the
reward circuit [51]. The changes in synaptic plasticity mainly include the plasticity of
morphological structure and function. The morphological plasticity mainly includes the
changes in the synaptic number, synaptic interface structure, and dendrites. Functional
plasticity mainly refers to long-term potentiation (LTP) and long-term depression (LTD),
which underlie learning and memory [45,51].

Although the additive drugs may converge on a common addition pathway, the
primary target receptors or proteins of different drugs are not the same. Thus, exploring the
specific cellular and molecular mechanisms involved in non-opioid anesthetics addiction is
necessary to identify effective therapy.

4.1. Propofol

In animal experiments, the addictive potential of propofol has been confirmed by two
classical behavioral methods for assessing drug abuse (namely self-administration (SA)
and conditioned place preference (CPP)) [52–56]. Similar to other addictive drugs, repeated
propofol exposure can activate the reward system [57]. Many studies have explored the
possible mechanism of propofol addiction at the neural circuit, molecular, and cellular
levels (Table 1).
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Figure 1. Common characteristics of addictive drugs. (A) Schematic representation of the brain
reward system. The DAergic delivery from the VTA to the NAc is located at the center of the reward
system. VTA DAergic neurons can also project to the PFC and striatum and receive excitatory
glutamate inputs from the LH and the LDTg. Meanwhile, GABAergic medium spiny neurons in
the NAc receive GLUergic inputs from the PFC, BNST, hippocampus, thalamus, and amygdala, and
send GABAergic projections to the LH, VTA, and VP. (B) Schematic representation of the changes of
synaptic plasticity. Persistent drug exposure can cause changes in synaptic plasticity, which initially
causes changes in the levels of fosB, DeltaFosB, NFκB, CdK5, DNMT3A, and MEF2 genes, and then
repeated drug exposure can cause changes in the morphological structure and function of the synapse.
Functional plasticity mainly includes LTP of synaptic transmission and morphological plasticity is
mainly reflected in the change of dendritic spine density. AMG, amygdala; AMPAR, alpha-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor; BNST, bed nucleus of stria terminalis; LDTg,
laterodorsal tegmental nucleus; LH, lateral hypothalamus; LTP, long-term potentiation; NAc, nucleus
accumbens; NMDAR, N-methyl-D-aspartate receptor; PFC, prefrontal cortex; VP, ventral pallidum;
VTA, ventral tegmental area.

Table 1. Summary of experiments addressing mechanisms of propofol addiction.

Target Brain Region Paradigm Manipulation Results Species Ref.

ERK NAc SA MEK inhibitor Impaired
propofol-maintained SA Rat [54]

ERK Nac SA MEK inhibitor Decreased SA Rat [58]

DeltaFosB NAc / WB, PCR Increased DeltaFosB
expression Rat [59]

CRF1R Systemic SA CRF1R
antagonist Inhibited acquisition Rat [53]

GR Systemic SA GR agonist or
antagonist

Inhibited
reward-enhancing effect Rat [60]

GR NAc SA GR agonist Increased SA Rat [61]
CNS Systemic LA NO inhibitor Inhibited LA Rat [62]
NO Systemic CPP NOS inhibitor Abolished CPP Rat [55]
NO Systemic LA NOS inhibitor Inhibited LA Rat [63]
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Table 1. Cont.

Target Brain Region Paradigm Manipulation Results Species Ref.

GABAAR Systemic Nose-poke
discrimination

GABAARs
agonist

discriminative
stimulus effects Rat [64]

NMDAR Systemic SA NDMAR
antagonist Inhibited acquisition Rat [65]

A2AR NAc SA A2AR agonist
or antagonist

Agonist inhibited and
antagonist promoted SA Rat [52]

NA system LC CPP Chemogenetic
inhibition Abolished CPP Rat [56]

A2AR, adenosine A2A; CNS, central nitrergic system; CPP, conditioned place preference; CRF1R, corticotropin-
releasing factor-1 receptor; ERK, extracellular regulated protein kinases; GABAAR, gamma-aminobutyric acid type
A receptor; GR, glucocorticoid receptor; LA, Locomotor activity; LC, locus coeruleus; NAc, nucleus accumbens;
NA, Noradrenergic; NMDA, N-methyl-D-aspartate; NMDAR, NMDA receptors; NO, nitric oxide; NOS, nitric
oxide synthase; SA, self- administration.

4.1.1. Propofol Addiction and DAergic System

The mesolimbic DA system is also recognized as the most important brain region
related to addiction. DA is a neurotransmitter that can bring pleasure to people and is
thought to be at the center of the reward circuit, which is often considered the “culprit”
of addiction [43,66–68]. Drugs with addictive potential can increase the release of DA by
direct or indirect effects according to their distinct pharmacological effects on different
molecular targets [2,51]. DA signaling is mainly mediated by DA receptors (DARs) and
several downstream signaling molecules. DARs belong to the G protein-coupled recep-
tor (GPCP) superfamily and DARs include five members: Dopamine receptor 1 (DAR1),
Dopamine receptor 2 (DAR2), Dopamine receptor 3 (DAR3), Dopamine receptor 4 (DAR4),
and Dopamine receptor 5 (DAR5) [69,70]. In the striatum, DA mainly interacts with DARs
on medium spiny neurons (MSN). The MSN in the striatum can be divided into two sub-
groups: substantia nigra neurons in the direct striatal pathway and pallidum neurons in the
striatal indirect pathway, and there are huge differences in the expression of functional and
signaling molecules between these two subgroups [71]. The direct and indirect pathways
in the striatum play distinct roles in regulating the reward and motivation of addictive
drugs. It is generally believed that the direct pathway is the basis of reward, while the
indirect pathway is related to punishment [72]. In the direct pathway, DA binds to DAR1,
in a stimulatory manner, which can mediate reward through increasing cyclic adenosine
monophosphate (cAMP) and intracellular calcium signal transduction; In the indirect
pathway, DA binds to DAR2 in an inhibitory manner, specifically reducing the cAMP and
intracellular calcium signal transduction as well as opposing aversive responses [2,73]. In
addition, DA also interacts with DAR3 and DAR4 that co-locate with DAR1, exerting signif-
icant influence on DAR1 signaling and neural plasticity. The downstream signal molecules
of DARs mainly include protein kinase A (PKA), protein kinase C (PKC), extracellular
signal regulated kinase (ERK), calmodulin dependent protein kinase II (CaMKII), etc. These
protein kinases are generally believed to affect the transmission function of synapses by
changing the properties or density of ion channels, and regulate the structure of synapses
both at the gene and protein levels [74,75].

Based on a microdialysis probe, Pain and colleagues found propofol could also alter
the level of DA in the NAc [76]. Similarly, another study found a significant increase in the
expression of dopamine in the thalamus [77]. Repeated propofol abuse also upregulated
DAR1 and its downstream signaling molecules DeltaFosB and p-ERK in the NAc, while
the antagonist of DAR1 (SCH23390) and ERK (U0126) attenuated the self-administration of
propofol [54,58,59]. These results suggested that the DAergic system in the NAc is involved
in the maintenance of propofol self-administration and its rewarding effects (Figure 2A).
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Figure 2. Potential molecular mechanisms underlying propofol addiction. (A) Dopamine signal
transduction pathway in the brain of propofol-addicted rats. Propofol can promote the release of DA
and activate DAR1, leading to the activation of protein kinase A and L-type calcium channels, thus
activating the Raf. At the same time, propofol can activate NMDAR, leading to Ca2+ influx and Raf
activation. After the activation of Raf, it causes the phosphorylation of MEK and ERK, followed by
the activation of downstream MSK1 and EIK1, and finally causes the transcription of c-fos, DeltaFosB,
and other genes, being a potential mechanism for inducing propofol addiction. (B) Schematic repre-
sentation of the dysregulation of the anti-reward system affecting propofol addiction. The center of
the anti-reward system is located in the extended amygdala region of the basal forebrain, including
the BNST, NAc, CeA, etc. The CRF system is the neurobiochemical basis of the anti-reward system.
The addictive behavior of propofol can be significantly regulated by CRF1R and GR. (C) The nitrergic
system affects propofol addiction. Glu released by GLUergic neurons promotes the production of
NO through NMDAR on the nitrergic neurons. A low level of NO can enhance the release of DA by
enhancing the release of Glu. In addition, NO can also reduce the reuptake of dopamine by inhibiting
DAT, eventually leading to the increase of extracellular DA. However, excessive NO will inhibit the
NMDAR and block the release of DA. ACTH, Adrenocorticotrophin hormone; BDNF, brain-derived
neurotrophic factor; BNST, bed nucleus of stria terminalis; cAMP, cyclic adenosine monophosphate;
CeA, central amygdaloid nucleus; CRF, corticotropin-releasing factor; CRF1R, CRF receptor-1; DA,
dopamine; DAergic, dopaminergic; DAR1, Dopamine receptor 1; DAT, dopamine transporter; Glu,
glutamate; GLUergic, glutamatergic; GR, glucocorticoid receptor; HY, hypothalamus; NAc, nucleus
accumbens; NMDAR, N-methyl-D-aspartate receptor; nNOS, Neuronal nitric oxide synthase; NO,
nitric oxide; PFC, prefrontal cortex; VTA, ventral tegmental area.

4.1.2. Propofol Addiction and Stress/Anti-Reward System

While the reward system is related to positive reinforcing, the anti-reward system is re-
lated to negative reinforcing in the central nervous system (CNS). The changes in the reward
system and the anti-reward system eventually led to the formation and recurrence of addic-
tive behaviors [78,79]. The extended amygdala located at the basal forebrain which is critical
for the anti-reward system has been implicated in the experience of negative emotions
associated with drug withdrawal. The extended amygdala is composed of the bed nucleus
of stria terminals (BNST), the NAc, and the central amygdaloid nucleus (CeA) [78,80]. The
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neurotransmitters involved in the anti-reward system include corticotropin-releasing factor
(CRF), norepinephrine, dynorphin, and neuropeptide Y, among which the CRF system is
one of the best-studied neurobiochemical basis of the anti-reward system [80,81].

CRF plays its role through CRF receptor-1 (CRF1R) and CRF receptor-2 (CRF2R). As
Dong indicated in a 2010 study, the antagonist of CRF1R significantly reduced the self-
administration behavior of propofol [53]. In addition, direct injection of glucocorticoid
receptor (GR) agonists into the NAc promoted propofol addiction in rats, and the self-
administration of propofol could also be blocked by GR antagonists [60,61], suggesting
that the CRF system plays an essential role in propofol drug-seeking behavior (Figure 2B).

4.1.3. Propofol Addiction and Nitrergic System

Nitric oxide (NO) is a bioactive free radical produced by most cells. The endogenous
pathway of NO synthesis is mainly produced by the two-step oxidation of L-arginine
catalyzed by nitric oxide synthase (NOS) [82–84]. In previous studies, NO was generally
considered to be a toxic intermediate that was involved in a variety of disease processes.
However, in recent years, there has been increasing attention to its physiological functions
as a key messenger molecule in the central nervous system (CNS). For example, it regulates
the release and uptake of neurotransmitters such as DA and glutamate and participates in
learning and memory processes [83,84].

In the past years, an increasing number of studies have shown the significance of
NO in the process of drug reward. In the animal model of propofol addiction, peripheral
administration of NOS inhibitors significantly inhibited the conditioned spontaneous
activity of rats [55,62]. At the same time, it also reverses propofol-induced CPP, suggesting
that the central nitrergic system may be one of the causes of propofol-induced CPP [63]
(Figure 2C).

In addition to the aforementioned mechanisms, recent studies have also found that
N-methyl-D-aspartate receptor (NMDAR) and adenosine A2A receptor (A2AR), which
were previously thought to be related to the dependence of classic addictive drugs such as
opioids and cocaine, can also regulate the addictive behavior of propofol [52,65].

4.2. Ketamine

Ketamine has a strong addiction potential via inducing SA and CPP [85–87]. However,
there is no systematic review of the specific mechanisms of ketamine addiction. As below,
we describe the possible mechanisms of ketamine addiction (Table 2).

Table 2. Summary of experiments addressing mechanisms of ketamine addiction.

Target Brain Region Paradigm Manipulation Results Species Ref.

NMDA VTA SA, CPP NR1 knockout Confined addiction
liability Mouse [88]

GluN2D Systemic / GluN2D
knockout

No changes in sEPSC
frequency Mouse [89]

GluA2/3 Systemic / Rhy Suppressed glua2/3 and
glun1 expression Rat [90]

GluN2D Systemic LA GluN2D
knockout

Inhibited locomotor
sensitization Mouse [91]

DAR2, DAT PFC / / Decreased in DAR2 and
DAT expression Monkey [92]

5HT2, DAR2 Systemic LA 5HT2, DAR2
antagonist

Inhibited locomotor
sensitization Mouse [93]

DA NAc / Pentobarbital
Inhibited

ketamine-induced
dopamine

Rat [94]
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Table 2. Cont.

Target Brain Region Paradigm Manipulation Results Species Ref.

ERK, CREB Systemic CPP l-THP Abolished CPP Rat [95]
CREB, Nurr1,

BDNF Systemic CPP Rhy Abolished CPP Rat [96]

TH TH / rsfMRI Decreased TH
Connectivity Human [97]

Cortex Cortex / MRI Cortical atrophy Human [98]
GLUergic

system mFPC / MRI Increased GLUergic
activity Human [99]

ACC, PC ACC, PC / fMRI Increased activation in the
ACC and PC Human [100]

PFC PFC / fMRI Alterations in the FC
of PFC Human [101]

Striatal Striatal / fMRI Altered striatal
connectivity Human [102]

miR-331-5p HIP CPP Rhy Abolished CPP Rat [103]

αCaMKII Reward-
Related SA / αCaMKII

autophosphorylation Rat [85]

Spine NAc CPP / Increased in spine density Rat [87]

GSK-3β CPU, NAc,
and VTA SA GSK-3β

inhibitor
Inhibited

reward-enhancing effect Rat [104]

ACC, anterior cingulate cortex; BDNF, brain-derived neurotrophic factor; CPP, conditioned place preference; CPU,
caudate putamen; CREB, cyclic AMP response element binding protein; DA, dopamine; DAR2, Dopamine receptor
2; DAT, dopamine transporter; ERK, extracellular signal-regulated kinase; FC, functional connectivity; fMRI,
functional magnetic resonance imaging; GSK-3β, glycogen synthase kinase-3; HIP, hippocampus; mFPC, medial
prefrontal cortex; LA, locomotor activity; l-THP, Levo-tetrahydropalmatine; MRI, magnetic resonance imaging;
NAc, nucleus accumbens; NMDA, N-methyl-D-aspartate; Nurr1, nuclear receptor-related-1; PC, precuneus;
PFC, prefrontal cortex; PFC, prefrontal cortices; Rhy, Rhynchophylline; rsfMRI, resting-state functional magnetic
resonance imaging; SA, self-administration; sEPSC, spontaneous excitatory postsynaptic currents; TH, thalamus;
VTA, ventral tegmental area.

4.2.1. Ketamine Addiction and GLUergic System

Growing evidence has identified the glutamate system as a crucial role in mediating
drug addiction [105–109]. Glutamate is a major excitatory neurotransmitter in the CNS.
Its receptors can be divided into two categories: ionic receptors, including NMDAR,
kainate receptor (KAR), α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic acid receptor
(AMPAR); the other is metabotropic glutamate receptors (mGluRs). In these two types of
receptors, NMDAR, AMPAR, and mGluRs are closely related to drug addiction [43,110,111].

Ketamine, as a blocker of NMDAR, may lead to addiction mainly by inhibiting the ac-
tivity of NMDAR. NMDAR is a tetrameric ion channel, which is composed of two obligatory
GluN1 subunits and two GluN2 or GluN3 subunits, of which GluN2 have four (GluN2A-
GluN2D) and GluN3 have two (GluN3A GluN3B) subtypes, respectively [112,113]. As
a non-competitive antagonist of NMDAR, ketamine can block NMDAR on GABAergic
neurons, causing the disinhibition of DAergic neurons and the activation of the reward
system [88,114]. In addition, repeated administration of ketamine significantly increased
the expression of the GluN1 subunit gene and increased the polymorphism of the GluN2B
gene [115,116]. Moreover, ketamine-induced hyperlocomotion and behavioral sensitization
would be blocked by the knockout of the GluN2D gene, indicating that GluN2D plays a
regulatory role in ketamine addiction [89,91].

4.2.2. Ketamine Addiction and DAergic System

The mesolimbic DA system has been implicated in ketamine abuse and potentiation,
with increased DA release following repeated ketamine use [117,118]. Continuous stim-
ulation of DAR2 by excessive DA can reduce the number and sensitivity of DAR2. The
decrease in DAR2 level gradually reduces the ability to receive rewards, thus increasing
the demand for ketamine, further leading to the low reaction of DAR2, and forming a
vicious circle [92]. Moreover, pretreatment with a DAR2 antagonist significantly blocked
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the addictive behavior of the mice, indicating that DAR2 plays a regulatory role in ketamine
addiction [93]. Furthermore, inhibition of ERK and CREB phosphorylation, downstream
signal molecules of DARs, can inhibit the acquisition of ketamine-induced conditioned
place preference [95,96].

4.2.3. Ketamine Addiction and Changes in Brain Structure and Functional Brain
Network Integrity

Non-invasive neuroimaging has contributed important insights into identifying the
differences in brain structure and function between substance use disorders (SUD) patients
and healthy individuals. Using structural magnetic resonance imaging (sMRI), researchers
found that the brain structure of ketamine addicts had distinct changes, including signifi-
cant atrophy of the frontal, parietal, or occipital cortex [98,119].

Recent years have witnessed the explosive growth of functional magnetic resonance
imaging (fMRI) in studying brain functional connectivity, especially resting state functional
connectivity (rsFC) [120–122]. The rsFC can provide a valuable tool for exploring large-
scale brain networks and their interactions and identifying the neural circuit disorders
behind SUD [121,123]. Using fMRI, we found that ketamine could significantly increase
neuronal activity, especially in the PFC, anterior cingulate cortex, precuneus, and precentral
frontal gyrus [99–101]. Chronic ketamine use can also alter rsFC, especially in the thalamus,
basal ganglia, and higher cortex [97]. Ketamine abusers showed decreased thalamocortical
connectivity. Specifically, compared with control subjects, ketamine users had significantly
reduced connectivity between thalamic nuclear and PFC, motor cortex, and posterior
parietal cortex [97]. In another study, ketamine altered rsFC in the striatum, significantly
increasing connectivity between the caudate nucleus and the dorsal anterior cingulate
cortex, between the pallidum and bilateral cerebellum, and between the putamen and
the left orbitofrontal cortex [102]. The increased connection between the caudate nucleus
and dorsal anterior cingulate cortex may be related to drug craving, while the connection
between the putamen and OFC may increase impulsive drug-seeking behavior [124–127].
In conclusion, these findings suggest that chronic ketamine use can change the structure
and functional connectivity of brain regions related to reward processing.

In addition to the above mechanisms, some studies have shown that ketamine can
cause changes in synaptic plasticity in the NAc and hippocampus [87,96]. However, a
recent study published in Nature suggested that ketamine has rewarding properties, but it
could not induce synaptic plasticity similar to other typical addictive drugs, so ketamine
has low addiction liability [88]. However, the true picture of ketamine addiction is probably
more complex and does not arise through a single pathway. For example, glial cells play
a key role in forming neuronal synaptic activity, and ketamine may have an effect on the
glial [128]. What is more, long-term use of ketamine use may also contribute to an increased
risk of addiction through its effects on other brain regions and cell types. Therefore, further
research is needed to determine the risk of addiction to long-term ketamine use.

4.3. Benzodiazepines

The addictive drugs can be divided into three groups through their mechanism of
increasing DA in the midbrain margin:(1) some drugs can reduce the inhibitory afferent
of gamma GABAergic neurons to DAergic neurons, which is defined as disinhibition
(opioids, γ-hydroxybutyric acid, and cannabinoids). (2) The second group can depolarize
DAergic neurons directly by activating the α4β2 acetylcholine receptor (nicotine). (3) The
third group is those drugs that can target DA transporters and interfere with DA reuptake
(cocaine, amphetamines, and ecstasy) [66,129]. Similar to opioids, γ-hydroxybutyric acid,
and cannabinoids, BDZs also increase DA levels through disinhibition, but their molecular
target is different. BDZs is an allosteric modulator of GABA type A receptors (GABAARs).
According to their efficacy, BDZs can be divided into three groups: positive allosteric modu-
lators, negative allosteric modulators, and antagonists [130]. Most of the clinically classical
BDZs, including midazolam, are positive allosteric modulators of GABAARs, which can en-
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hance the function of GABAARs through conformational changes and increase the affinity
for GABA [131]. GABAARs are usually composed of at least 19 subunits (α 1-6, β 1-3, γ 1-3,
δ, ε, θ, π, ρ 1-3), which is a ligand-gated chloride channel [131]. Receptors containing α1,
α2, α3, or α5 subunits can be modulated by classical BDZs whereas receptors containing
α4 and α6 subunits isoforms are insensitive to BDZs [130,132–134]. BDZs bind to a pocket
formed by the α and the γ subunits [131,135]. Since most of the pharmacological effects of
BDZs are mediated through binding to GABAARs, changes in the number, structure, and
function of GABAARs may play a crucial role in the development and progression of BDZ
addiction (Table 3).

Table 3. Summary of experiments addressing mechanisms of BDZs addiction.

Subtypes of
GABAARs Brain Region Paradigm Manipulation Results Species Ref.

α1 VTA SA Electrophysiology Disinhibition Mouse [136]
α1 Systemic OCB GABAARs agonist Decreased response rates Monkey [137]

α2 and α3 NAc ICSS α2 and
α3-point-mutant mice

Abolished
reward-enhancing effect Mouse [138]

α2 NAc ICSS, TBCD α2-point-mutant mice Inhibited
reward-enhancing effect Mouse [139]

α3 Systemic SA GABAARs agonist Reinforced
reward-enhancing effect Monkey [140]

α2, α3, and α5 Systemic SA GABAARs agonist Reinforced
reward-enhancing effect Monkey [141]

α2 and α3 Systemic SA GABAARs agonist Reinforced
reward-enhancing effect Baboons [142]

α5 HIP LA α5-point-mutant mice Reinforced tolerance Mouse [143]
BDZs, benzodiazepines; HIP, hippocampus; ICSS, intracranial self-stimulation; LA, Locomotor activity; NAc,
nucleus accumbens; OCB, Operant conditioning behavior; SA, self-administration; TBCD, two-bottle choice
drinking; VTA, ventral tegmental area.

4.3.1. BDZs Addiction and α1-GABAARs

Recent studies have shown that α1-GABAARs are closely related to the addictive
properties of BDZs [137,144]. VTA is an important brain region in the DA pathway, mainly
composed of DAergic neurons (about 70%), GABAergic neurons (about 20%), and GLUergic
neurons (about 10%) [145]. Normally, the activity of DAergic neurons is inhibited by
GABAergic interneurons [145]. Both DAergic neurons and GABAergic interneurons express
GABAARs, but the α1 subunit is specifically expressed on GABAergic neurons while α2, α3,
and α4 subunits are expressed on DAergic neurons [132,146]. Longtime exposure to BDZs
can lead to the combination of BDZs with GABAARs on these two kinds of neurons and
enhance inhibitory GABA-induced currents, but the effect on GABAergic interneurons was
greater than that on DAergic neurons. The increased inhibitory currents of interneurons
led to the reduction of GABA release, and thus its inhibitory effect on DAergic neurons
were relieved, ultimately leading to more DA release [132,136] (Figure 3).

4.3.2. BDZ Addiction and Other Subtypes of GABAARs

Although α1-GABAARs are involved in the addictive process of BDZs, it was found
that the animals could still maintain the drug administration behavior when animals were
treated with L-838, 417, the antagonist of α1-GABAARs, suggesting that other GABAARs
subtypes may also be involved in the process of BDZs abuse [141]. Using H-R mutant mice,
researchers found that the reward effects of diazepam were reduced in α1 subunit mutation
(H101R) mice, but the reward effects were abolished in α2 subunit mutation (H101R) mice.
These results demonstrated that both α1-GABAARs and α2-GABAARs may be involved in
BDZs addiction, and the role of α2-GABAARs may be more dominant [139]. Furthermore,
the recombinant adeno-associated virus was used for the knockdown of α2-GABAARs, and
it was shown that the preference for midazolam depends on the positive modulation of α2-
GABAARs in the NAc [139]. Similarly, another study using an intracranial self-stimulation
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(ICCS) test and point mutation mice also suggested that α2-GABAARs and α3-GABAARs
were the key mediators of BDZs reward effects [138]. In addition, α5-GABAARs receptors
in the dentate gyrus appear to be specific targets associated with BDZ tolerance through α5
subunit mutation mice [143]. Furthermore, it has been confirmed in primates that the activ-
ity of α2-GABAARs, α3-GABAARs, and α5-GABAARs is related to the addictive potential
of BDZs [141]. In conclusion, apart from α1-GABAARs, other subtypes of GABAARs are
also crucial in the addiction of BDZs, and these findings provide a solid foundation for the
development of new drugs for treating BDZs abuse.
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Figure 3. Mechanisms of benzodiazepine addiction. (A) Normally, DAergic neurons in the VTA receive
inhibitory inputs from inhibitory GABAergic interneurons. As a result, the activity of DAergic neurons
is inhibited, and eventually, the release of DA in the NAc is reduced. (B) When benzodiazepines bind to
α1-GABAARs receptors on gabaergic neurons, the inhibitory effect of GABAergic neurons on DAergic
neurons is relieved (disinhibition), leading to the activation of DAergic neurons and an increase in
DA release in the NAc. DA, dopamine; DAergic, dopaminergic; GABA, gamma-aminobutyric acid;
GABAARs, GABA type A receptors; GLUergic, glutamatergic; NAc, nucleus accumbens; VTA, ventral
tegmental area.

4.4. Inhalational Anesthetics

Although there are increasing studies emphasizing the addictive properties of inhala-
tional anesthetics, research on its specific mechanisms is lacking [147,148]. Studies have
found that almost all addictive drugs can cause an increase in dopamine release in the NAc,
and N2O is no exception. Through rat microdialysis studies, it was found that the DA levels
in NAc of rats exposed to N2O were significantly increased, accompanied by the phospho-
rylation of ERK [149]. The antagonist of DAR1 was found to inhibit N2O-induced CPP
and enhance p-ERK, indicating that DAR1 plays an important role in N2O reward [150].
Together, these findings suggest that the reward effects of N2O are closely linked to the
dopaminergic system.

5. Conclusions and Future Perspectives

Increasing evidence have indicated that the incidence of abuse of non-opioid anesthetic
drugs (including propofol, ketamine, BDZs, and inhalational anesthetics) is increasing,
which needs more attention from researchers and exposed patients. Effective regulatory
and therapeutic methods are needed for the identification, monitoring, and treatment of
individuals with non-opioid anesthetic drug abuse. Understanding the current situation
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and mechanism of non-opioid anesthetics addiction is helpful to improve a better under-
standing of it and can provide certain ideas for the prevention and treatment of non-opioid
anesthetics. Growing studies have confirmed the abuse potential for propofol, ketamine,
BDZs, and inhalational anesthetics using CPP and SA models. Similar to other classic
addictive, propofol, ketamine, BDZs, and inhalational anesthetics could also influence the
reward system. However, the focus on the clinical situation and the potential mechanisms
of non-opioid anesthetics addiction appears to be in its preliminary stages.

In the future, more clinical studies are needed to update the incidence of non-opioid
anesthetics addiction and determine the population at risk of non-opioid anesthetics addic-
tion abuse. In addition, more advanced imaging techniques, tracing techniques, optoge-
netic tools, chemogenetic tools, and electrophysiological techniques should also be used
to analyze the complex neural network behind the specific reward circuitry of non-opioid
anesthetics to further clarify the specific mechanism of the non-opioid anesthetics addiction.
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